Chapter 1 : Overview of Computer Networks, TCP/IP Protocol Stack

Master 1 IS, Guelma University, 2024-2025

Mohamed Amine Ferrag, PhD

Chapter Objectives – Fundamental Concepts of Computer Networks

Understand Core Networking Concepts:

- Define key elements such as nodes, links, and protocols.
- Grasp the roles and interactions between different network components.
 Explore Network Types and Topologies:
- Overview of LAN, WAN, MAN, and wireless networks.
- Introduction to various network topologies (star, bus, ring, mesh, etc.).

Historical and Practical Perspectives:

- Brief history of network evolution.
- Real-world examples illustrating the importance of these concepts.

Chapter Objectives – Structure and Functioning of the TCP/IP Protocol Stack

• Introduction to the TCP/IP Model:

- Overview of the four-layer architecture: Application, Transport, Internet, and Link.
- Compare with the OSI model to highlight key differences and similarities.

• Detailed Look at Each Layer:

- Application Layer: Functions and examples (HTTP, FTP, SMTP, DNS).
- **Transport Layer:** Role of TCP and UDP, including connection-oriented vs. connectionless communication.
- Internet Layer: IP addressing, routing principles, and supporting protocols (ICMP, ARP).
- Link Layer: Data framing, physical transmission technologies (Ethernet, Wi-Fi).

• Processes and Data Flow:

- Explain the encapsulation and decapsulation process as data moves through the layers.
- Understand how each layer contributes to efficient and reliable data communication.

Plan

- Introduction
- Overview of Computer Networks
- Network Communication Models
- The TCP/IP Protocol Stack in Detail
- Operation and Data Exchange in the TCP/IP Stack

Historical Context of Networking

- Early Developments in the 1960s and 1970s:Conceptual Beginnings:
 - Emergence of time-sharing systems and research into data communication.
 - Pioneering work on packet switching by researchers such as Paul Baran and Donald Davies.

• ARPANET Emergence:

- Initiated by DARPA in the late 1960s as a research network.
- 1969: The first message sent from UCLA to Stanford Research Institute, marking the birth of networked communication.
- Transition from NCP to TCP/IP:
 - Early protocols like NCP were limited in scalability.
 - Development of TCP/IP by Vint Cerf and Bob Kahn in the 1970s provided a more robust solution.
- Adoption and Expansion:
 - In 1983, TCP/IP became the standard for ARPANET, setting the stage for global networking.
 - The shift from military and academic networks to widespread commercial and public use in the 1990s.

The Advanced Research Projects Agency Network (ARPANET) was the first wide-area <u>packet-switched</u> <u>network</u> with distributed control and one of the first computer networks to implement the <u>TCP/IP</u> protocol suite.

Basic Definitions and Concepts

Key Elements in Networking – Nodes & Links

• Nodes:

Definition: Devices connected to a network (computers, servers, routers, etc.).

Examples: Personal computers, mobile devices, network servers.

• Links:

Definition: The physical or wireless connections that interconnect nodes.

Types: Wired (Ethernet, fiber optic) and wireless (Wi-Fi, Bluetooth).

Understanding Protocols •Definition:

• Protocols are standardized rules that govern data communication between devices.

•Examples:

- Communication protocols such as TCP, IP, HTTP, FTP, and SMTP.
- •Role in Networking:
 - Ensure data integrity, manage error handling, and coordinate the data exchange process.

•Interoperability:

• Enable devices from different manufacturers and systems to communicate seamlessly.

Fundamental Networking Concepts

• Data Packets:

• The basic units of data transmission that travel across a network.

• Encapsulation/Decapsulation:

• The process of wrapping data with protocol-specific headers and trailers at each layer, and then unwrapping them at the destination.

• Performance Metrics:

- Bandwidth: The maximum rate of data transfer across a network.
- Latency: The time delay experienced in the system.
- **Throughput:** The actual rate of successful data delivery.

Network Topologies and Types

- LAN (Local Area Network) & MAN (Metropolitan Area Network)
- LAN (Local Area Network):
 - Definition: A network covering a small geographic area (e.g., office, home, school).
 - Technologies: Ethernet, Wi-Fi.
 - Characteristics: High speed, low latency, limited geographic reach.

• MAN (Metropolitan Area Network):

- Definition: A network covering a larger area than a LAN, typically a city or campus.
- Applications: Connecting multiple LANs within a metropolitan area.
- Examples: City-wide wireless networks or fiberoptic systems

Source : https://unstop.com/blog/difference-between-lan-man-and-wan

WAN (Wide Area Network)

- **Definition:**A network that spans large geographic areas, such as regions, countries, or continents.
- **Components:**Utilizes public or private communication links including satellite, leased lines, and fiber-optic cables.
- Role and Examples:Connects multiple LANs and MANs to form a global network (e.g., the Internet).
- Critical for long-distance communications and global business operations.

Wireless Networks and Emerging Technologies

• Wireless Networks:

- Technologies: Wi-Fi, cellular networks (4G, 5G), Bluetooth.
- Benefits: Mobility, ease of installation, and flexible connectivity.
- Challenges: Security vulnerabilities, signal interference, and range limitations.
- Emerging Trends: Internet of Things (IoT): Integration of smart devices and sensors in various environments.
- Hybrid Topologies: Combining wired and wireless infrastructures for optimized performance.
- Future Outlook: Ongoing innovations continue to expand network capabilities and improve connectivity in diverse scenarios.

"G" Waves

- 2G: Mobile for Voice
- 3G: Mobile for Data
- 4G: Mobile for Internet
- 5G: Mobile for Things
- 6G : Mobile for Intelligence

The OSI Model – Overview

7-Layer Architecture:

• Physical, Data Link, Network, Transport, Session, Presentation, Application

Advantages:

- Standardization: Universal guidelines for network communication.
- **Modularity:** Each layer handles specific functions, making design and troubleshooting more straightforward.
- Interoperability: Facilitates communication between different systems and products.

Limitations:

- **Complexity:** Overly detailed, with some layers rarely implemented in practice.
- Performance: Can introduce overhead due to multiple abstraction layers.
- Practical Adoption: Most modern networks use simplified models like TCP/IP.

Comparison – Key Differences Between OSI and TCP/IP Models •Layer Count:

• OSI: 7 layers versus TCP/IP: 4 layers.

•Abstraction and Practicality:

OSI provides detailed conceptual clarity, while TCP/IP focuses on practical implementation.

•Protocol Specificity:

• TCP/IP is tied directly to the protocols used in real-world networks; OSI is a more theoretical model.

Transmit

Application Layer & Transport Layer

Application Layer

- Provides protocols and services for user applications.
- Examples: HTTP, FTP, SMTP, DNS, etc.

• Transport Layer

- TCP:
 - Connection-oriented mechanisms, flow control, and congestion management.
- UDP:
 - Connectionless and lightweight; ideal for applications requiring low latency (e.g., streaming, online gaming).

Application	Application-Layer Protocol	Underlying Transport Protocol
Electronic mail	SMTP	ТСР
Remote terminal access	Telnet	ТСР
Web	НТТР	ТСР
File transfer	FTP	ТСР
Remote file server	NFS	Typically UDP
Streaming multimedia	typically proprietary	UDP or TCP
Internet telephony	typically proprietary	UDP or TCP
Network management	SNMP	Typically UDP
Routing protocol	RIP	Typically UDP
Name translation	DNS	Typically UDP

Source : <u>https://www.omscs-notes.com/computer-networks/transport-and-application-layers/</u>

The Internet Layer

• IP (IPv4/IPv6):

- Handles packet addressing and routing across networks.
- Highlights key differences in addressing and performance between IPv4 and IPv6.

• Other Protocols:

- ICMP: Used for error management and network diagnostics (e.g., ping, traceroute).
- ARP & RARP: Translate between IP addresses and physical (MAC) addresses, and vice versa.

Network Access (Link) Layer

- Technologies and Protocols:
 - Governs data transmission over the physical medium.
 - Examples include Ethernet, Wi-Fi, and other wired/wireless standards.
- Physical Aspects & Data Transmission:
 - Defines how data is encoded and transmitted on the medium.
 - Considers factors like transmission speed, interference management, and quality of service.

Data Encapsulation and Decapsulation

• Encapsulation Process:

- As data passes down the TCP/IP stack, each layer adds its own header to form a packet.
- Each header contains control information • (e.g., addressing, error checking, sequencing).

Decapsulation Process:

- At the receiving end, each layer removes its corresponding header.
- The process allows the data to be interpreted correctly at the appropriate layer.

Importance: •

- Ensures data integrity and proper routing.
- Maintains the separation of responsibilities between layers.

IP Addressing and Subnetting

Five Different Classes of IPv4 Addresses

Class	First Octet decimal (range)	First Octet binary (range)	IP range	Subnet Mask	Hosts per Network ID	# of networks
Class A	0 - 127	OXXXXXXX	0.0.0.0-127.255.255.255	255.0.0.0	2 ²⁴ -2	2 ⁷
Class B	128-191	10XXXXXX	128.0.0.0-191.255.255.255	255.255.0.0	2 ¹⁶ -2	2 ¹⁴
Class C	192-223	110XXXXX	192.0.0.0-223.255.255.255	255.255.255.0	2 ⁸ – 2	2 ²¹
Class D (Multicast)	224-239	1110XXXX	224.0.0.0-239.255.255.255			
Class E (Experimental)	240 — 255	1111XXXX	240.0.0.0-255.255.255.255			

• IP Addressing:

- Unique identifiers (IPv4/IPv6) assigned to devices for network communication.
- Enables devices to locate and communicate with each other across networks.
- Subnet Mask & CIDR Notation:
 - Subnet Mask: Divides the IP address into network and host portions.
 - CIDR (Classless Inter-Domain Routing): A more flexible method for allocating IP addresses and routing.
- Benefits:
 - Enhances network organization and security.
 - Optimizes routing efficiency by reducing broadcast domains.

Subnet Calculator

https://www.auvik.com/subnet-calculator/

	127.0.0.5	255.255.255.0/24 ~
	Decimal Notation	Binary Notation
Number of Network Bits	24	
Number of Host Bits	8	
Subnet Mask	255.255.255.0	11111111.11111111.00000000
Network Address	127.0.0.0	01111111.0000000.0000000.000000000
Broadcast Address	127.0.0.255	01111111.00000000.00000000.11111111
First IP Address	127.0.0.1	01111111.0000000.0000000.00000001
Last IP Address	127.0.0.254	01111111.0000000.0000000.11111110
Usable Addresses	254	

- Determines the best path for data packets to travel from source to destination.
- Utilizes routing protocols to communicate and update routes between network devices.

• Routing Protocols & Tables:

- Routing Protocols: (e.g., OSPF, BGP, RIP) help build and maintain routing tables.
- **Routing Tables:** Data structures that store routes and help routers forward packets efficiently.

• Key Considerations:

- Switches vs. routers and their roles in data forwarding.
- Efficiency, scalability, and reliability in network communications.

PW : Download Packet Tracer

<u>https://www.computernetworkingnotes.com/ccna-study-guide/download-packet-tracer-for-windows-and-linux.html</u>