
PW 5 : CoAP Lab Exercise Using aiocoap on Localhost

Dr. Mohamed Amine Ferrag
Guelma University

10/04/2025

Objective
• Understand the basics of the Constrained Application Protocol (CoAP).

• Set up and run a CoAP server locally using aiocoap.

• Use a CoAP client script to demonstrate GET, POST, PUT, and DELETE operations.

• Verify and analyze the CoAP message exchanges between the client and the server.

Lab Requirements
• A computer running Linux, macOS, or Windows.

• Python 3 installed.

• aiocoap library installed in a virtual environment.

• Terminal or command prompt access.

Part 1: Setting Up the Environment
1. Create a Virtual Environment:

Open a terminal, navigate to your project directory, and execute:
python3 -m venv venv

Listing 1: Create Virtual Environment

2. Activate the Virtual Environment:
On macOS/Linux, run:
source venv/bin/activate

Listing 2: Activate Virtual Environment

3. Install aiocoap:
With the virtual environment activated, install the package:
pip install aiocoap

Listing 3: Install aiocoap

1



Part 2: Running the CoAP Server
1. Prepare your CoAP server using the solution code provided in Section ?? below.

2. Open a terminal, ensure the virtual environment is activated, and run your server with:
python3 coap_server.py

Listing 4: Start CoAP Server

3. The server should start and display the available CoAP endpoints:

• GET coap://127.0.0.1/sensors/temp

• POST coap://127.0.0.1/alarms

• PUT coap://127.0.0.1/configuration/light1

• DELETE coap://127.0.0.1/sensors/obsolete_sensor

Part 3: Using the CoAP Client

Step 3.1: Testing the GET Operation

1. Open a new terminal (with the virtual environment activated).

2. Run the client to perform a GET request to the temperature sensor endpoint:
python3 coap_client.py GET

Listing 5: GET Request

3. Verify that the response contains the expected sensor data.

Step 3.2: Testing the POST Operation

1. Open another terminal, and run:
python3 coap_client.py POST

Listing 6: POST Request

2. Check that the response indicates the successful creation of a new subordinate resource.

Step 3.3: Testing the PUT Operation

1. Run the following command to test updating or creating a configuration:
python3 coap_client.py PUT

Listing 7: PUT Request

2. The client should receive a response confirming the update.

2



Step 3.4: Testing the DELETE Operation

1. Run the client with the DELETE command to remove a resource:
python3 coap_client.py DELETE

Listing 8: DELETE Request

2. Verify that the resource is marked as deleted by performing a subsequent GET request.

Part 4: Additional Testing and Options
• Experiment with different payloads and observe the response codes.

• Test error conditions by sending malformed requests.

• Discuss security considerations and constrained network characteristics in CoAP.

Troubleshooting Tips
• Server Not Running: Ensure the CoAP server is up and running in a separate terminal.

• Incorrect URIs: Double-check that the URIs in the client match those registered in the
server.

• Environment Issues: Ensure you are working within the virtual environment and that
there are no network restrictions.

Conclusion
This lab exercise introduces students to the CoAP protocol by:

• Setting up a local CoAP server using aiocoap.

• Running a client to execute GET, POST, PUT, and DELETE requests.

• Troubleshooting common issues in IoT communication scenarios.

This hands-on lab provides a practical foundation for working with CoAP in resource-constrained
environments, similar to real-world IoT applications.

3


