
Introduction to Flutter
Slides for an internal talk we had at Codemate Ltd.

14th of September 2017

https://www.codemate.com/en/


What is Flutter?

● SDK for building cross-platform mobile apps, built by 
Google

● Targets Android, iOS and Fuchsia
● Consistent UIs across devices and manufacturers
● Superb performance



Why Flutter?
● Strongly typed, modern language (Dart with Strong Mode on)
● Same codebase, two platforms: Android & iOS
● AOT compilation -> no Javascript or any other runtime / VM
● No WebViews, no native Views

○ Why? We’ll see.

● Once your UI works, it just works. And keeps working.
○ Manufacturers / OS versions / different devices can’t break it

● Especially Android APIs require a lot of ceremony for simple things
○ Flutter was able to start from scratch and avoid previously made pitfalls



Base image from: https://speakerdeck.com/passsy/flutter-60-fps-ui-of-the-future

Our cross-platform code Native land

● Also fast performance here, however:
○ Expensive to travel to

● We can’t afford to go here too often, just like 
we can’t afford beach vacations every week

● Everything in our control
● Things we do here have fantastic 

performance and are cheap
● We should stay here as much as possible

https://speakerdeck.com/passsy/flutter-60-fps-ui-of-the-future


Widgets
● To build UIs, we have Widgets -> the only UI building block in Flutter
● The whole app is a Widget. A screen is a Widget that contains Widgets. Widgets are made by composing basic 

Widgets into more advanced Widgets. 
○ Yo dawg?

● There’s a huge amount of different Widgets
● Can represent a:

○ UI element, such as Text, Button, BottomNavigationBar, TextField, etc.
○ Layout element, such as Padding, Center, Stack, Column, etc.
○ Completely new screen (Activity/ViewController equivalent), for example:



Stateless Widgets

● Have no state (duh)
● Immutable -> all instance fields are final
● For displaying something that doesn’t 

change once it has been initialized



Stateful Widgets
● Have a state (duh)
● The state has mutable instance fields that can be 

read synchronously
● Call setState() method for updating the state
● Framework handles UI Widget updates 

intelligently and efficiently when necessary
● So basically, really similar to React concepts

(count = count + 1;)



Widget rendering
● No native Views or WebViews
● Instead, a completely blank Canvas as seen on left
● The Material & Cupertino widgets are made by 

composing more basic Widgets
● Widgets are made of low-level rendering layer 

objects
○ In the end, Skia, C++ graphics library, 

renders them directly to these Canvases
● We have direct access to Canvas

○ pretty much any UI, even a wilder one, is 
doable



What’s the value in custom rendering anyway?



An actual ticket from our QA



Here’s how it looked like

weird black lines

Supposed to be white

Dropdown items that are supposed
to be, you know, visible?



Half a day for fixing bugs on two specific devices 
on one specific OS version.



Dependency management
● Ships with Pub, a modern dependency manager for Dart
● Official package repository hosted at pub.dartlang.org
● The whole existing ecosystem of Dart libraries available

○ Excludes lots of web-related libraries

● Also supports packages from Git, if you’re feeling lucky

https://pub.dartlang.org/


Native Plugins
● Allow access to every native platform API

○ Bluetooth, geolocation, sensors, fingerprint, camera, etc.

● Both official and community-driven plugins available
● Some plugins missing or in early stages

○ There’s a community-driven geolocation plugin with really limited API
○ There’s a community-driven Bluetooth plugin that doesn’t work with iOS just yet

● If a plugin for your use case doesn’t exist, you’ll have to make it yourself
● This is where other frameworks like React Native & Xamarin currently shine 

and Flutter takes the loss
○ Situation expected to be solved with time



Plugin sample: get current battery level

iOS co
de

Android code



Icons
● Ships with a whole lot of premade, quality vector icons
● Just say “new Icon(Icons.add_call);”
● You can also import your own icons & icon fonts if you 

want



● Column is a vertical stack of children. 
○ Opposite of Row, which stacks its children horizontally

● We give padding to the Text widget by wrapping it inside the 
Padding widget

● Styles come from the app level Theme object, so the whole theme 
of the app can be easily changed

○ You have the freedom to define your own styles inline too



Let’s make some friends



friend.dart
friend_page.dart



Android iOS



Performance overlay
(GIF taken on slow debug mode) Debug Paint

Quickly switch between 
Android / iOS UI on the 

same device

Debug tools

Also debugger, logs and 
animation debugging.



Getting creative

https://www.uplabs.com/posts/profile-ui-exploration

https://www.uplabs.com/posts/profile-ui-exploration


Navigation







= avatarUrl









The Hero Widget



Demo & source
https://github.com/CodemateLtd/FlutterMates

https://github.com/CodemateLtd/FlutterMates


Drawbacks
● UI markup & layout system learning 

curve
○ UI code can look quite ugly

● Not a lot of “hold your hand guides” 
available

○ Documentation is amazing
● Google’s product loyalty
● Inline maps & video, etc. can’t be 

done (at least yet)
○ Possible on full screen though

● Hot reload
● AOT compilation & direct canvas rendering for 

widgets -> amazing performance
● UI will work the same on different devices & 

manufacturers
○ Native look and feel on Android & iOS
○ Nobody can break our UIs

● You can create as complex and customized UIs as 
you want

However...



Thanks!
Questions?

● Flutter - A new hope: https://www.youtube.com/watch?v=0ijVuVtu6a4
● Flutter - 60 FPS UI of the Future: https://speakerdeck.com/albrecht87/flutter-60-fps-ui-of-the-future-droidcon-2017
● The Official Flutter homepage: https://flutter.io/

Inspiration & references

https://www.youtube.com/watch?v=0ijVuVtu6a4
https://speakerdeck.com/albrecht87/flutter-60-fps-ui-of-the-future-droidcon-2017
https://flutter.io/

