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Similar matrices
Results and Examples

We will now introduce the notion of similarity.

De�nition
Let A and B be two n-by-n matrices. We say that A is similar to B if there exists
an invertible matrix P such that

A = PBP�1.

In linear algebra, two n-by-n matrices A and B are called similar if A = PBP�1

for some invertible matrix P.
Notation. The notation A � B means that the matrix A is similar to the matrix
B.
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Next, we give an example.

Example (Example 2)

Let A and B be the two matrices given by

A =
�
�4 7
3 0

�
, B =

�
13 �8
25 �17

�
.

Then A is similar to B because for the matrix P =
�

4 �3
�1 1

�
, we have after

few computation

PBP�1 =
�

4 �3
�1 1

��
13 �8
25 �17

��
1 3
1 4

�
=

�
�4 7
3 0

�
= A.

But, the question we ask here: How to �nd the invertible matrix P so that
A = PBP�1?
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We have the following properties:

Theorem

Let A and B be two n-by-n similar matrices; i.e., there exists an invertible matrix
P such that A = PBP�1. Then

1. For each positive integer k, Ak = PBkP�1.

2. pA (x) = pB (x), that is A and B have the same characteristic polynomial.
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Proof.
Let us show the theorem as follows:

1 Assume that A and B are two similar matrices, and let P be an invertible
matrix such that A = PBP�1. For each integer k � 0 we have

Ak =
�
PBP�1

� �
PBP�1

�
...
�
PBP�1

�
| {z }

k�times

= P BB ...B| {z }
k�times

P�1

= PBkP�1.

2 We prove the following implication

A � B ) pA (x) = pB (x) . (1)
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Proof.
That is, if the matrices A and B are similar to each other, then A and B have the
same characteristic equation, and hence have the same eigenvalues. In fact, we
have

pA (x) = det (A� xI )
= det

�
PBP�1 � xPP�1

�
, since PP�1 = Ix 2 R

= det
�
P (B � xI )P�1

�
, since x 2 R

= det (P) det (B � xI ) det
�
P�1

�
(2)

= det (B � xI ) (3)

= pB (x) .

Note that the passage from (2) to (3) because det
�
P�1

�
=

1
det (P)

.

The proof is �nished.
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Remark. The converse of (1) is false. For example, for

A =
�
1 1
0 1

�
and B =

�
1 0
0 1

�
= I2

We see that pA (x) = pB (x). Therefore, Sp (A) = Sp (B) = f1g and
det (A) = det (B) . Further, if A is similar to B then there exists an invertible
matrix P such that

A = PBP�1 = PI2P
�1 = I2.

A contradiction since A 6= I2. Thus, A is not similar to B (we denote A � B).
Conclusion: We can also write8<: Sp (A) = Sp (B); A � B,

pA (x) = pB (x); A � B,
det (A) = det (B); A � B.
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Remark

By applying the following rule:

det (A) = 0, 0 2 Sp (A) . (4)

Let A and B be two similar matrices, i.e., there exists an invertible matrix P such
that A = PBP�1. We can also prove that Sp (A) = Sp (B) . Let λ 2 Sp (A),
there exists a nonzero vector x tel que Ax = λx. That is,

(A� λI ) x = 0 = 0.x

Which gives 0 2 Sp (A� λI ). On the other hand, we have

A� λI = P (B � λI )P�1. (5)
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Remark
Asssume that 0 /2 Sp (B � λI ). By (4) and (5) we have B � λI 2 GLn (R).
Consequently, A� λI 2 GLn (R). From (4), 0 /2 Sp (A� λI ). A contradiction.
Finally, we deduce that 0 2 Sp (B � λI ) , and hence λ 2 Sp (B). Thus,
Sp (A) � Sp (B) .
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Corollary

Two similar matrices A and B have the same determinant.

Proof.
Let P be an invertible matrix P such that A = PBP�1. It follows that

det (A) = det
�
PBP�1

�
= det (P) det (B) det

�
P�1

�
= det (B) ,

and so det (A) = det (B). This completes the proof.
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Example
Consider the following two matrices:

A =
�

2 1
�1 �1

�
and B =

�
5 2
4 1

�
.

How can we tell (rather quickly) that the matrices A and B are not similar to each
other?
In fact, A � B because det (A) = �1 6= det (B) = �3. Thus, we have the result:

det (A) 6= det (B)) A � B.

Dj. Bellaouar (University 08 Mai 1945 Guelma) Similar Matrices December 2020 11 / 20



Similar matrices
Results and Examples

Theorem
The relation " � " similarity is an equivalence relation.

Proof.
This relation is what we call an equivalence relation, because we have the
following three properties:

1. The relation " � " is re�exive, because for each matrix A 2 Mn(R) we have

A = InAI�1n .

Then A � A.
2. The relation " � " is symmetric, because for all matrices A,B 2 Mn(R) we
have

A � B ) 9 P 2 GLn (R) such that A = PBP�1.
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Proof.
Thus, B � A (i.e., we can just say that A and B are similar to each other). For
the matrices A, B, and P of Example 2, verify by direct computation that
A = PBP�1 and that B = P�1AP.

3. The relation " � " is transitive, because for all matrices A,B,C 2 Mn(R)
we have

A � B
B � C

�
)
�
9 P 2 GLn (R) such that A = PBP�1,
9 Q 2 GLn (R) such that B = QCQ�1.

Which gives

A = P
�
QCQ�1

�
P�1 = (PQ)| {z }

R

C (PQ)�1 = RCR�1 with R 2 GLn (R) .

Hence, A � C .
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Proposition
Let P 2 GLn (R). De�ne the mapping TP by: TP : Mn(R)!Mn(R),
A 7! TP (A) = P�1AP. Then the following statements hold:

1 TP (In) = In
2 TP (A+ B) = TP (A) + TP (B)
3 TP (AB) = TP (A)TP (B)
4 TP (rA) = rTP (A)

5 TP
�
Ak
�
= (TP (A))

k

6 TP
�
A�1

�
= (TP (A))

�1

7 TP
�
eA
�
= eTP (A)

8 TQ (TP (A)) = TPQ (A) .
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Proof.
We have

1 In fact, TP (In) = P�1InP = P�1P = In .
2 TP (A+ B) = P�1 (A+ B)P = P�1AP + P�1BP = TP (A) + TP (B).
3 TP (AB) = P�1ABP = P�1APP�1BP =

�
P�1AP

� �
P�1BP

�
=

TP (A)TP (B).
4 TP (rA) = P�1 (rA)P = r

�
P�1AP

�
= rTP (A).

5 TP
�
Ak
�
= P�1AkP =

�
P�1AP

�k
= (TP (A))

k .

6 TP
�
A�1

�
= P�1A�1P =

�
P�1AP

��1
= (TP (A))

�1.

7 TP
�
eA
�
= P�1eAP = eP

�1AP = eTP (A).

8 It is clear that TQ (TP (A)) = Q�1TP (A)Q
= Q�1

�
P�1AP

�
Q = (PQ)�1 A (PQ) = TPQ (A). This completes the

proof.
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Remark. Let A,B 2 Mn(R). If A � B , then

A 2 GLn (R), B 2 GLn (R) .

In fact, we have A = PBP�1 , B = P�1AP.
Conclusion. Let A 2 Mn(R), and let B = P�1AP 2 Mn(R) be a matrix
similar to A. Then A and B have the same characteristic polynomial. Furthermore,
q(A) = Pq(B)P�1 for each q 2 K[X ], and in particular Ak = PBkP�1for k � 1.

Corollary

Let A,B 2 Mn(R). If A and B are similar, then Tr(A) = Tr(B).
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Proof.
We know that

8 M,N 2 Mn(R) : Tr (MN) = Tr (NM) .

Then
Tr (A) = Tr

�
PBP�1

�
= Tr

�
BPP�1

�
= Tr (B) .

Corollary
Two similar matrix have the same rank.

Proof.
Assume that A = PBP�1 for some invertible square matrix P. We have
rk (B) � rk

�
PBP�1

�
= rk (A). Now note that B = P�1AP, so we similarily get

rk (A) � rk
�
P�1AP

�
= rk (B).
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Conclusion. Two similar matrices have the same determinant, same trace, same
rank, same characteristic polynomial, same eigenvalues.
On the other hand, we have the following absolutely remarkable result.

Theorem
In dimension 2 and 3, two matrices are similar i¤ they have the same minimal
polynomial and the same characteristic polynomial.
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Ex 01. Let A and B be two similar matrices, i.e., there exists an invertible matrix P
such that A = PBP�1. Prove that

(λ, x) is an eigenpair of A)
�

λ,P�1x
�
is an eigenpair of B.

Ex 02. Let A,B Mn(R) and f (x) = a0 + a1x + ...+ anxn 2 R [x ] be a polynomial
of degree n. Prove that

A � B ) f (A) � f (B) .

Ex 03. Consider the two matrices:

A =

0@ 1 0 4
1 1 3
2 1 7

1A et B =

0@ 1 0 1
0 1 1
3 1 2

1A .
Prove that A � B ; i.e., A and B are not similar.
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Ex 04. Show that
A� λIn � B ) A � B + λn I .

Ex 05. Using two methods. Prove that similar matrices have the same eigenvalues.
Ex 06. Prove that

A � B ) eA � eB .
Ex 07. Without calculating, neither eigenvalues nor eigenvectors, show that�

1 �1
3 1

�
�
�

1 3
�1 1

�
.

Ex 08. Show by direct computation that the matrices A and B of Example 2 have
the same characteristic equation. What are the eigenvalues of A and B?
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