Similar Matrices By

Bellaouar Djamel

University 08 Mai 1945 Guelma

December 2020

 299

メロメ メ御き メミメ メミ

We will now introduce the notion of similarity.

Definition

Let A and B be two n-by-n matrices. We say that A is **similar to** B if there exists an invertible matrix P such that

$$
A = PBP^{-1}.
$$

In linear algebra, two n-by-n matrices A and B are called similar if $A = PBP^{-1}$ for some invertible matrix P.

Notation. The notation $A \sim B$ means that the matrix A is similar to the matrix B.

 Ω

K ロ ト K 何 ト K ヨ ト K

Next, we give an example.

Example (Example 2)

Let A and B be the two matrices given by

$$
A = \left(\begin{array}{cc} -4 & 7 \\ 3 & 0 \end{array}\right), B = \left(\begin{array}{cc} 13 & -8 \\ 25 & -17 \end{array}\right).
$$

Then A is similar to B because for the matrix $P=\emptyset$ $\left(\begin{array}{cc} 4 & -3 \\ -1 & 1 \end{array} \right)$, we have after few computation

$$
PBP^{-1} = \left(\begin{array}{cc}4 & -3 \\ -1 & 1\end{array}\right)\left(\begin{array}{cc}13 & -8 \\ 25 & -17\end{array}\right)\left(\begin{array}{cc}1 & 3 \\ 1 & 4\end{array}\right) = \left(\begin{array}{cc}-4 & 7 \\ 3 & 0\end{array}\right) = A.
$$

But, the question we ask here: How to find the invertible matrix P so that $A = PBP^{-1}$? メロト メ御 トメ ヨ トメ ヨト

 Ω

We have the following properties:

Theorem

Let A and B be two n-by-n similar matrices; i.e., there exists an invertible matrix P such that $A = PBP^{-1}$. Then

- 1. For each positive integer k, $A^k = PB^kP^{-1}$.
- 2. $p_A(x) = p_B(x)$, that is A and B have the same characteristic polynomial.

K ロ ト K 何 ト K ヨ ト

Proof.

Let us show the theorem as follows:

 \bullet Assume that A and B are two similar matrices, and let P be an invertible matrix such that $A = PBP^{-1}$. For each integer $k \geq 0$ we have

$$
A^{k} = \underbrace{\left(PBP^{-1}\right)\left(PBP^{-1}\right)\dots\left(PBP^{-1}\right)}_{k-\text{times}}
$$

$$
= P\underbrace{BB...B}_{k-\text{times}}P^{-1}
$$

$$
= PB^{k}P^{-1}.
$$

² We prove the following implication

$$
A \sim B \Rightarrow p_A(x) = p_B(x). \tag{1}
$$

Proof.

That is, if the matrices A and B are similar to each other, then A and B have the same characteristic equation, and hence have the same eigenvalues. In fact, we have

$$
p_A(x) = \det(A - xI)
$$

= $\det(PBP^{-1} - xPP^{-1})$, since $PP^{-1} = Ix \in \mathbb{R}$
= $\det(P(B - xI)P^{-1})$, since $x \in \mathbb{R}$
= $\det(P) \det(B - xI) \det(P^{-1})$ (2)
= $\det(B - xI)$ (3)
= $p_B(x)$.

Note that the passage from [\(2\)](#page-5-0) to [\(3\)](#page-5-1) because det $(P^{-1}) = \frac{1}{1+e^{\lambda}}$ $\frac{1}{\det(P)}$. The proof is finished.

Remark. The converse of [\(1\)](#page-4-0) is false. For example, for

$$
\mathcal{A}=\left(\begin{array}{cc}1&1\\0&1\end{array}\right)\text{ and } \mathcal{B}=\left(\begin{array}{cc}1&0\\0&1\end{array}\right)=\mathit{I}_2
$$

We see that $p_A(x) = p_B(x)$. Therefore, $Sp(A) = Sp(B) = \{1\}$ and det $(A) =$ det (B) . Further, if A is similar to B then there exists an invertible matrix P such that

$$
A = PBP^{-1} = Pl_2P^{-1} = l_2.
$$

A contradiction since $A \neq I_2$. Thus, A is not similar to B (we denote $A \nsim B$). Conclusion: We can also write

$$
\begin{cases}\nSp(A) = Sp(B) \nRightarrow A \sim B, \\
p_A(x) = p_B(x) \nRightarrow A \sim B, \\
\det(A) = \det(B) \nRightarrow A \sim B.\n\end{cases}
$$

メロメ メ都 メメ ミメ メミメ

Remark

By applying the following rule:

$$
\det (A) = 0 \Leftrightarrow 0 \in Sp(A). \tag{4}
$$

Let A and B be two similar matrices, i.e., there exists an invertible matrix P such that $A = PBP^{-1}$. We can also prove that $Sp(A) = Sp(B)$. Let $\lambda \in Sp(A)$, there exists a nonzero vector x tel que $Ax = \lambda x$. That is,

$$
(A - \lambda I) x = 0 = 0.x
$$

Which gives $0 \in Sp(A - \lambda I)$. On the other hand, we have

$$
A - \lambda I = P(B - \lambda I) P^{-1}.
$$
 (5)

 Ω

イロト イ押 トイヨ トイヨ

Remark

Asssume that $0 \notin Sp (B - \lambda I)$. By [\(4\)](#page-7-0) and [\(5\)](#page-7-1) we have $B - \lambda I \in GL_n (\mathbb{R})$. Consequently, $A - \lambda I \in GL_n(\mathbb{R})$. From [\(4\)](#page-7-0), $0 \notin Sp(A - \lambda I)$. A contradiction. Finally, we deduce that $0 \in Sp (B - \lambda I)$, and hence $\lambda \in Sp (B)$. Thus, $Sp(A) \subset Sp(B)$.

 Ω

イロト イ押ト イヨト イ

Corollary

Two similar matrices A and B have the same determinant.

Proof.

Let P be an invertible matrix P such that $A = PBP^{-1}.$ It follows that

$$
\operatorname{det}\left(A\right)=\operatorname{det}\left(PBP^{-1}\right)=\operatorname{det}\left(P\right)\operatorname{det}\left(B\right)\operatorname{det}\left(P^{-1}\right)=\operatorname{det}\left(B\right),
$$

and so det $(A) =$ det (B) . This completes the proof.

 209

K ロ > K @ > K 경 > K 경

Example

Consider the following two matrices:

$$
A = \left(\begin{array}{cc} 2 & 1 \\ -1 & -1 \end{array} \right) \text{ and } B = \left(\begin{array}{cc} 5 & 2 \\ 4 & 1 \end{array} \right).
$$

How can we tell (rather quickly) that the matrices A and B are not similar to each other?

In fact, $A \nsim B$ because det $(A) = -1 \neq det(B) = -3$. Thus, we have the result:

$$
\det (A) \neq \det (B) \Rightarrow A \sim B.
$$

K ロ ⊁ K 倒 ≯ K 差 ≯ K

 299

Theorem

The relation $" \sim "$ similarity is an equivalence relation.

Proof.

This relation is what we call an equivalence relation, because we have the following three properties:

1. The relation " \sim " is reflexive, because for each matrix $A \in \mathcal{M}_n(\mathbb{R})$ we have

$$
A=I_nAI_n^{-1}.
$$

Then $A \sim A$.

2. The relation " \sim " is symmetric, because for all matrices $A, B \in \mathcal{M}_n(\mathbb{R})$ we have

$$
A \sim B \Rightarrow \exists P \in GL_n(\mathbb{R}) \text{ such that } A = PBP^{-1}.
$$

KORK KORK KORK

Proof.

Thus, $B \sim A$ (i.e., we can just say that A and B are similar to each other). For the matrices A , B , and P of Example [2,](#page-2-0) verify by direct computation that $A = PBP^{-1}$ and that $B = P^{-1}AP$.

3. The relation " \sim " is transitive, because for all matrices A, B, C $\in \mathcal{M}_n(\mathbb{R})$ we have

$$
\begin{array}{c} A \sim B \\ B \sim C \end{array} \Rightarrow \begin{cases} \exists P \in GL_n(\mathbb{R}) \text{ such that } A = PBP^{-1}, \\ \exists Q \in GL_n(\mathbb{R}) \text{ such that } B = QCQ^{-1}. \end{cases}
$$

Which gives

$$
A = P(QCQ^{-1}) P^{-1} = (PQ) C (PQ)^{-1} = RCR^{-1} \text{ with } R \in GL_n(\mathbb{R}).
$$

Hence, $A \sim C$.

Proposition

Let $P \in GL_n(\mathbb{R})$. Define the mapping T_P by: $T_P : \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$, $A \mapsto T_P(A) = P^{-1}AP$. Then the following statements hold: $T_P (I_n) = I_n$ **2** $T_P(A+B) = T_P(A) + T_P(B)$ $T_P (AB) = T_P (A) T_P (B)$ $\Phi T_P(rA) = rT_P(A)$ $\mathbf{J}_{P}\left(A^{k}\right)=\left(\mathit{T}_{P}\left(A\right)\right)^{k}$ $\qquad \qquad \bullet \ \ \textit{Tr}\,\left(A^{-1}\right)=\left(\textit{Tr}\,\left(A\right)\right)^{-1}$ $\mathcal{T}_P\left(e^A\right)=e^{\mathcal{T}_P\left(A\right)}$ \bullet T_Q $(T_P(A)) = T_{PQ}(A)$.

 Ω

K ロ ト K 何 ト K ヨ ト

Similar matrices

Results and Examples

Proof.

We have

\n- **①** In fact,
$$
T_P(I_n) = P^{-1}I_nP = P^{-1}P = I_n
$$
.
\n- **②** $T_P(A + B) = P^{-1}(A + B)P = P^{-1}AP + P^{-1}BP = T_P(A) + T_P(B)$.
\n- **④** $T_P(AB) = P^{-1}ABP = P^{-1}APP^{-1}BP = (P^{-1}AP)(P^{-1}BP) = T_P(A)T_P(B)$.
\n- **④** $T_P(rA) = P^{-1}(rA)P = r(P^{-1}AP) = rT_P(A)$.
\n- **④** $T_P(A^k) = P^{-1}A^kP = (P^{-1}AP)^k = (T_P(A))^k$.
\n- **③** $T_P(A^{-1}) = P^{-1}A^{-1}P = (P^{-1}AP)^{-1} = (T_P(A))^{-1}$.
\n- **①** $T_P(e^A) = P^{-1}e^AP = e^{P^{-1}AP} = e^{T_P(A)}$.
\n- **④** It is clear that $T_Q(T_P(A)) = Q^{-1}T_P(A)Q = Q^{-1}T_P(A)$.
\n- **②** It is clear that $T_Q(T_P(A)) = Q^{-1}T_P(A)Q$ is complex.
\n- **④** $T_Q^{-1}(P^{-1}AP)Q = (PQ)^{-1}A(PQ) = T_{PQ}(A)$. This completes the proof.
\n

Remark. Let $A, B \in \mathcal{M}_n(\mathbb{R})$. If $A \sim B$, then

$$
A\in \mathbb{GL}_n(\mathbb{R})\Leftrightarrow B\in \mathbb{GL}_n(\mathbb{R}).
$$

In fact, we have $A = PBP^{-1} \Leftrightarrow B = P^{-1}AP$. **Conclusion.** Let $A \in \mathcal{M}_n(\mathbb{R})$, and let $B = P^{-1}AP \in \mathcal{M}_n(\mathbb{R})$ be a matrix similar to A. Then A and B have the same characteristic polynomial. Furthermore, $q(A) = Pq(B)P^{-1}$ for each $q \in K[X]$, and in particular $A^k = PB^kP^{-1}$ for $k \geq 1$.

Corollary

Let $A, B \in M_n(\mathbb{R})$. If A and B are similar, then $Tr(A) = Tr(B)$.

K ロ ト K 何 ト K ヨ ト K

Similar matrices

Results and Examples

Proof.

We know that

$$
\forall M, N \in \mathcal{M}_n(\mathbb{R}) : Tr(MN) = Tr(NM).
$$

Then

$$
Tr (A) = Tr (PBP^{-1}) = Tr (BPP^{-1}) = Tr (B).
$$

Corollary

Two similar matrix have the same rank.

Proof.

Assume that $A = P B P^{-1}$ for some invertible square matrix $P.$ We have $\mathsf{rk}\,(B) \geq \mathsf{rk}\,\big(\mathsf{P}\mathsf{B}\mathsf{P}^{-1}\big) = \mathsf{rk}\,(A).$ Now note that $B = \mathsf{P}^{-1} A \mathsf{P},$ so we similarily get $rk(A) \geq rk(P^{-1}AP) = rk(B).$

Conclusion. Two similar matrices have the same determinant, same trace, same rank, same characteristic polynomial, same eigenvalues. On the other hand, we have the following absolutely remarkable result.

Theorem

In dimension 2 and 3, two matrices are similar iff they have the same minimal polynomial and the same characteristic polynomial.

 Ω

K ロ ト K 何 ト K 目

Ex ${\bf 01.}$ Let A and B be two similar matrices, i.e., there exists an invertible matrix P such that $A = PBP^{-1}$. Prove that

$$
(\lambda, x) \text{ is an eigenpair of } A \Rightarrow \left(\lambda, P^{-1}x\right) \text{ is an eigenpair of } B.
$$

Ex 02. Let $A, B, M_n(\mathbb{R})$ and $f(x) = a_0 + a_1x + ... + a_nx^n \in \mathbb{R}[x]$ be a polynomial of degree n. Prove that

$$
A \sim B \Rightarrow f(A) \sim f(B).
$$

Ex 03. Consider the two matrices:

$$
A = \left(\begin{array}{rrr} 1 & 0 & 4 \\ 1 & 1 & 3 \\ 2 & 1 & 7 \end{array}\right) \text{ et } B = \left(\begin{array}{rrr} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 3 & 1 & 2 \end{array}\right).
$$

Prove that $A \sim B$; i.e., A and B are not similar.

K ロ ト K 何 ト K ヨ ト K

 299

Ex 04. Show that

$$
A - \lambda I_n \sim B \Rightarrow A \sim B + \lambda_n I.
$$

 Ex 05. Using two methods. Prove that similar matrices have the same eigenvalues. Ex 06. Prove that

$$
A \sim B \Rightarrow e^A \sim e^B.
$$

Ex 07. Without calculating, neither eigenvalues nor eigenvectors, show that

$$
\left(\begin{array}{cc} 1 & -1 \\ 3 & 1 \end{array}\right) \sim \left(\begin{array}{cc} 1 & 3 \\ -1 & 1 \end{array}\right).
$$

Ex 08. Show by direct computation that the matrices A and B of Example [2](#page-2-0) have the same characteristic equation. What are the eigenvalues of A and B ?

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \bigcap \mathbb{P} \right\} & \left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \end{array} \right\} \end{array} \right.$

 QQ