Bellaouar Djamel

University 08 Mai 1945 Guelma

December 2020

Definition

Let $A=(a_{ij})\in\mathcal{M}_n(\mathbb{R})$ be a square matrix. A is said to be **diagonal**, if and only if

$$a_{ij}=0, \ \forall \ i\neq j.$$

Or, equivalently

$$A = \left(\begin{array}{ccc} a_{11} & & & \\ & a_{22} & & \\ & & \ddots & \\ & & & a_{nn} \end{array}\right).$$

In this case, A is denoted by D. We also write $D = diag\{a_{11}, a_{22}, ..., a_{nn}\}$.

Results and Examples

Definition

Let A be a square matrix. We say that A is **diagonalizable** if A is similar to a diagonal matrix D. That is, there exists an invertible matrix P such that $P^{-1}AP$ is diagonal, say D. That is,

A is diagonalizable
$$\Leftrightarrow \exists P \in \mathbb{GL}_n(\mathbb{R})$$
 such that $A = PDP^{-1}$,

where $D = diag\{\lambda_1, \lambda_2, ..., \lambda_n\}$ and $\lambda_1, \lambda_2, ..., \lambda_n$ are the eigenvalues of A.

Example

Consider the following matrices

$$A=\left(\begin{array}{cc} 5 & -4 \\ 2 & -1 \end{array}\right),\ D=\left(\begin{array}{cc} 1 & 0 \\ 0 & 3 \end{array}\right)\ \text{and}\ P=\left(\begin{array}{cc} 1 & 2 \\ 1 & 1 \end{array}\right).$$

Compute PDP^{-1} . What can we conclude?

Results and Examples

Example

By computation, we obtain

$$PDP^{-1} = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 6 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 5 & -4 \\ 2 & -1 \end{pmatrix} = A.$$

Thus, $A = PDP^{-1}$ and so A is diagonalizable.

But the question posed is how to determine P and D if they exist? How to diagonalize a matrix?. Here is the following theorem.

Results and Examples

Theorem (Necessary and sufficient condition for diagonalization)

Let $A \in \mathcal{M}_n(\mathbb{R})$ be a square matrix. A is diagonalizable, if and only if, there exists a basis B of \mathbb{R}^n formed by n eigenvectors of A.

Proof.

Assume that A is diagonalizable. That is, there exists an invertible matrix P such that

$$A = PDP^{-1}$$
.

Or, equivalently

$$P^{-1}AP = D.$$

Setting

$$P = [y_1 \quad y_2 \quad \dots \quad y_n] = [Pe_1 \quad Pe_2 \quad \dots \quad Pe_n],$$

where $(e_i)_{1 \le i \le n}$ is the canonical basis of \mathbb{R}^n ,

Results and Examples

and let

$$D = \begin{pmatrix} d_1 & & & \\ & d_2 & & \\ & & \ddots & \\ & & & d_n \end{pmatrix} = diag \{d_1, d_2, ..., d_n\}$$
$$= \begin{bmatrix} d_1e_1 & d_2e_2 & ... & d_ne_n \end{bmatrix}.$$

It follows that

We deduce that for each $i \in \overline{1, n}$, $Ay_i = d_iy_i$. Then y_i is an eigenvector of A corresponding to d_i . Since P is invertible, then the family $B = \{y_1, y_2, ..., y_n\}$ is a basis of \mathbb{R}^n .

Conversely, assume that \mathbb{R}^n has a basis $B = \{x_1, x_2, ..., x_n\}$ formed by n eigenvectors of A. In this case, we put

$$P = [x_1 \quad x_2 \quad \dots \quad x_n].$$

It follows that

$$AP = \begin{bmatrix} Ax_1 & Ax_2 & \dots & Ax_n \end{bmatrix}$$
$$= \begin{bmatrix} \lambda_1 x_1 & \lambda_2 x_2 & \dots & \lambda_n x_n \end{bmatrix},$$

where $(\lambda_i)_{1 \leq i \leq n}$ are the eigenvalues of A associated with $(x_i)_{1 \leq i \leq n}$, respectively.

Therefore,

$$AP = \begin{pmatrix} \lambda_{1}x_{11} & \lambda_{2}x_{21} & \dots & \lambda_{n}x_{n1} \\ \lambda_{1}x_{12} & \lambda_{2}x_{22} & \dots & \lambda_{n}x_{n2} \\ \vdots & \vdots & \dots & \vdots \\ \lambda_{1}x_{1N} & \lambda_{2}x_{2N} & \dots & \lambda_{n}x_{nn} \end{pmatrix} = \begin{pmatrix} x_{11} & x_{21} & \dots & x_{n1} \\ x_{12} & x_{22} & \dots & x_{n2} \\ \vdots & \vdots & \dots & \vdots \\ x_{1N} & x_{2N} & \dots & x_{nn} \end{pmatrix} \times \begin{pmatrix} \lambda_{1} & & & & \\ & \lambda_{2} & & & \\ & & \ddots & & \\ & & & \lambda_{n} \end{pmatrix}$$

Hence $A = PDP^{-1}$, where D is diagonale and P is invertible. The proof is finished.

Results and Examples

Corollary

Let $A \in \mathcal{M}_n(\mathbb{R})$ be a diagonalizable matrix. There exists a basis $B = \{x_1, x_2, ..., x_n\}$ of \mathbb{R}^n formed by n eigenvectors A.

Proof.

Assume that $A = PDP^{-1}$. We know that $\{e_1, e_2, ..., e_n\}$ are eigenvectors of D associated with diag(D), i.e.,

$$De_i = P^{-1}APe_i = \lambda_i e_i$$
, for $i = 1, 2, ..., n$.

Hence

$$APe_i = \lambda_i Pe_i$$
, for $i = 1, 2, ..., n$.

That is, $\{Pe_i\}_{1 \leq i \leq n}$ are eigenvectors of A. Since P is invertible, then $\{Pe_i\}_{1 \leq i \leq n}$ is a basis of \mathbb{R}^n .

Conclusion. Let $A \in \mathcal{M}_n(\mathbb{R})$ be a square matrix and let $\lambda_1, \lambda_2, ..., \lambda_k$ be its eigenvalues. Let $A_m(\lambda_i)$ and $G_m(\lambda_i)$ denote the algebraic multiplicity and the geometric multiplicity of λ_i , respectively. Then A is diagonalizable if and oly if

$$A_{m}(\lambda_{i}) = G_{m}(\lambda_{i})$$
, for $i = 1, 2, ..., k$.

Corollary

Let $A \in \mathcal{M}_n(\mathbb{R})$ be a square matrix. Assume that

$$p_A\left(x
ight)=\left(x-\lambda_1
ight)^{lpha_1}\left(x-\lambda_2
ight)^{lpha_2}...\left(x-\lambda_k
ight)^{lpha_k}$$
 , where $k\leq n$.

Then A is diagonalizable if and only if dim $E_{\lambda_i} = \alpha_i$, for i = 1, 2, ..., k.

Example

For the following matrices, by calculating the eigenpairs one has:

We deduce that A and B are diagonalizable, but B is not.

We see also the following example:

Example

Show that the following matrix is diagonalizable.

$$A = \left(\begin{array}{cccc} 4 & 1 & 1 & 1 \\ 1 & 4 & 1 & 1 \\ 1 & 1 & 4 & 1 \\ 1 & 1 & 1 & 4 \end{array}\right)$$

Solution. The characteristic polynomial is $p_A(x) = (x-7)(x-3)^3$. The eigenvalues of A are $\lambda_1=7$ (simple), and $\lambda_2=3$ (triple). The associated eigenvectors are $v_1=(1,1,1,1)$ for $\lambda_1, v_2=(-1,1,0,0), v_3=(-1,0,1,0)$ and $v_4=(-1,0,0,1)$ for λ_2 . The matrix A is therefore diagonalizable since $\dim E_{\lambda_i}=A_m(\lambda_i)$, for i=1,2.

Results and Examples

From Theorem 5, we have the following corollary:

Corollary

Let $A \in \mathcal{M}_n(\mathbb{R})$ be a square matrix. If A has n distinct eigenvalues, then A is diagonalizable.

Proof.

Since $A\in\mathcal{M}_{n}(\mathbb{R})$ and A has n distinct eigenvalues, then $\dim \mathcal{E}_{\lambda_{i}}=1=A_{_{m}}\left(\lambda_{i}\right)$,

for i = 1, 2, ..., n.

Proposition

Let A and B be two diagonalizable matrices with $P^{-1}AP = D_1$ and $P^{-1}BP = D_2$ for some invertible matrix P. Then AB = BA.

Results and Examples

Proof.

We can easily verify that if $P^{-1}AP=D_1$ and $P^{-1}BP=D_2$, it follows that

$$\begin{cases} A = PD_1P^{-1} \\ B = PD_2P^{-1}. \end{cases}$$

Note that $D_1D_2 = D_2D_1$, and therefore

$$AB = PD_1D_2P^{-1} = PD_2D_1P^{-1} = PD_2P^{-1}PD_1P^{-1} = BA.$$

Hence the result.

Results and Examples

Corollary

Let $A \in \mathcal{M}_n(\mathbb{R})$ be a square matrix, and assume that A has a unique eigenvalue λ . Then A is diagonalizable if and only if $A = \lambda I_n$.

Proof.

It is clear that if $A=\lambda I_n$, then A is diagonalizable. Conversely, assume that $A\in\mathcal{M}_n(\mathbb{R})$ is diagonalizable and has a unique eigenvalue λ , there is therefore an invertible matrix P such $P^{-1}AP$ is diagonal. We put $P^{-1}AP=D$, where $diag\left(D\right)=Sp\left(A\right)=\left\{\lambda\right\}$. It follows that

$$A = P \begin{pmatrix} \lambda & & \\ & \ddots & \\ & & \lambda \end{pmatrix} P^{-1} = \lambda P \begin{pmatrix} 1 & & \\ & \ddots & \\ & & 1 \end{pmatrix} P^{-1} = \lambda P I_n P^{-1} = \lambda I_n.$$

This completes the proof.

Results and Examples

Proposition

Let A be a diagonalizable matrix a with $Sp(A) = \{\lambda_{1}, \lambda_{2},, \lambda_{n}\}$. Then

$$\det\left(A\right) = \lambda_1 \lambda_2 \lambda_n. \tag{1}$$

aNote that the result of Equation (1) is always true for any matrix $A\in\mathcal{M}_n(\mathbb{C})$ which may or may not be diagonalizable.

Proof.

Assume that $A = PDP^{-1}$, where $D = diag\{\lambda_1, \lambda_2,, \lambda_n\}$. Then

$$\begin{split} \det \left(A \right) &= \det \left(PDP^{-1} \right) \\ &= \det \left(P \right) \det \left(D \right) \det \left(P^{-1} \right) \\ &= \det \left(D \right) \\ &= \lambda_1 \lambda_2 \lambda_n. \end{split}$$

Results and Examples

Definition

 $\lambda \in \mathbb{R}$ is called the eigenvalue of multiplicity m if and only if

$$p_A(x) = (x - \lambda)^m q(x)$$
 with $q(\lambda) \neq 0$.

Example

Let

$$A = \left(\begin{array}{rrr} 2 & 1 & 1 \\ 2 & 1 & -2 \\ -1 & 0 & -2 \end{array}\right)$$

Then $p_A(x) = (x-3)(x+1)^2$ and A cannot be diagonalizable on either $\mathbb R$ or $\mathbb C$. Indeed, we have

$$E_{-1} = Vect \{(1, -2, -1)\}$$

In \mathbb{R}^3 or \mathbb{C}^3 , E_{-1} is a vector space of dimension 1 equipped by (1,-2,-1). Since -1 is an eigenvalue of A of multiplicity 2, A is not diagonalizable.

Applications of diagonalization

A classical application is the computing of the powers of a matrix A. Assume that A is given to be diagonalizable. That is, there exist P and D such that

$$D = \left(\begin{array}{cccc} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ & & \ddots & \\ 0 & 0 & \dots & \lambda_n \end{array}\right)$$

and $D = P^{-1}AP$. For each $k \ge 0$ we have

$$A^k = PD^k P^{-1}.$$

The preceding formula then generalizes to $k \in \mathbb{Z}$. The matrix A is then invertible if, and only if, D is invertible and

$$A^{-1} = PD^{-1}P^{-1}$$
.

Applications of diagonalization

Exercise

Consider the matrix

$$A = \left(\begin{array}{cc} 2 & -1 \\ -1 & 2 \end{array}\right).$$

Calculate A^n for every n > 0.

Solution

We start by computing the characteristic polynomial of A

$$\rho_{A}(x) = \begin{vmatrix} 2-x & -1 \\ -1 & 2-x \end{vmatrix} = \begin{vmatrix} 1-x & -1 \\ 1-x & 2-x \end{vmatrix} \\
= (1-x) \begin{vmatrix} 1 & -1 \\ 1 & 2-x \end{vmatrix} = (1-x)(3-x).$$

Then $Sp(A) = \{1, 3\}$.

Next, we find the eigenvectors of A:

$$E_1 = \left\{ (x, y) \in \mathbb{R}^2; \begin{array}{l} 2x - y = x \\ -x + 2y = y \end{array} \right\}$$
$$= Vect \left\{ (1, 1) \right\}.$$

and also we have

$$E_3 = \left\{ (x, y) \in \mathbb{R}^2; \begin{array}{l} 2x - y = 3x \\ -x + 2y = 3y \end{array} \right\}$$
$$= Vect \left\{ (1, -1) \right\}.$$

We put

$$P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
, $D = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$

Applications of diagonalization

It follows that

$$A^{n} = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1^{n} & 0 \\ 0 & 3^{n} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}^{-1}$$

$$= \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 3^{n} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1+3^{n}}{2} & \frac{1-3^{n}}{2} \\ \frac{1-3^{n}}{2} & \frac{1+3^{n}}{2} \end{pmatrix}.$$
(2)

Applications of diagonalization

Example

Consider the matrix

$$A = \left(\begin{array}{cc} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{4} & \frac{3}{4} \end{array}\right).$$

Calculate $\lim_{n\to+\infty} A^n$.

First, let us calculate the eigenvalues and eigenvectors of A. From computation, we find

$$\left\{ \begin{array}{l} \lambda_1 = 1, \ v_1 = (1,1), \\ \lambda_2 = \frac{1}{4}, \ v_2 = (-2,1). \end{array} \right.$$

Applications of diagonalization

Since
$$A = PDP^{-1}$$
, then $A^k = PD^kP^{-1}$, where $P = \begin{pmatrix} 1 & -2 \\ 1 & 1 \end{pmatrix}$ and $D = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{4} \end{pmatrix}$. It follows that

$$\lim_{n \to +\infty} A^{n} = \lim_{n \to +\infty} \begin{pmatrix} 1 & -2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1^{n} & 0 \\ 0 & \left(\frac{1}{4}\right)^{n} \end{pmatrix} \begin{pmatrix} \frac{1}{3} & \frac{2}{3} \\ -\frac{1}{3} & \frac{1}{3} \end{pmatrix} \\
= \begin{pmatrix} 1 & -2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \lim_{n \to +\infty} \left(\frac{1}{4}\right)^{n} \end{pmatrix} \begin{pmatrix} \frac{1}{3} & \frac{2}{3} \\ -\frac{1}{3} & \frac{1}{3} \end{pmatrix} \\
= \begin{pmatrix} 1 & -2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{3} & \frac{2}{3} \\ -\frac{1}{3} & \frac{1}{3} \end{pmatrix} = \begin{pmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix}.$$

Results and Examples

Example

Consider the mapping

$$f: \mathbb{R}_3[X] \longrightarrow \mathbb{R}_3[X]$$

 $p \mapsto f(p) = 3xp - (x^2 - 1)p'$

and let $\mathcal{B}=\left\{ 1,x,x^{2},x^{3}\right\}$ be the canonical basis of $\mathbb{R}_{3}\left[X\right] .$

- lacksquare Calculate $M_f\left(\mathcal{B}
 ight)$.
- ② Is f diagonalizable? if so, give the diagonalization.

Applications of diagonalization

Solution. There are two steps:

ho The calculation of $M_f(\mathcal{B})$. We see that

$$\begin{cases} f(1) = 3x = 0 + 3x + 0x^{2} + 0x^{3} \\ f(x) = 1 + 2x^{2} = 1 + 0x + 2x^{2} + 0x^{3} \\ f(x^{2}) = 2x + x^{3} = 0 + 2x + 0x^{2} + 1x^{3} \\ f(x^{3}) = 3x^{2} = 0 + 0x + 3x^{2} + 0x^{3} \end{cases}$$

Which gives

$$M_f\left(\mathcal{B}
ight) = \left(egin{array}{cccc} 0 & 1 & 0 & 0 \ 3 & 0 & 2 & 0 \ 0 & 2 & 0 & 3 \ 0 & 0 & 1 & 0 \end{array}
ight).$$

Applications of diagonalization

riangle Let us calculate the characteristic polynomial of $\mathit{M}_{f}\left(\mathcal{B}
ight)$. Indeed, we have

$$p_{M_f(\mathcal{B})}(x) = \begin{vmatrix} -x & 1 & 0 & 0 \\ 3 & -x & 2 & 0 \\ 0 & 2 & -x & 3 \\ 0 & 0 & 1 & -x \end{vmatrix} = x^4 - 10x^2 + 9.$$

The eigenvalues of A are $\{-1,1,-3,3\}$. From Corollary $\ref{eq:condition}$, $M_f\left(\mathcal{B}\right)$ is diagonalizable.

 \triangleright Diagonalization of $M_f(\mathcal{B})$: First, let us calculate the eigenvectors of $M_f(\mathcal{B})$, we obtain

$$M_f\left(\mathcal{B}\right) = \left(\begin{array}{cccc} 1 & 1 & 1 & 1 \\ -3 & -1 & 1 & 3 \\ 3 & -1 & -1 & 3 \\ -1 & 1 & -1 & 1 \end{array}\right) \left(\begin{array}{ccccc} -3 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{array}\right) \left(\begin{array}{ccccc} \frac{1}{8} & -\frac{1}{8} & \frac{1}{8} & -\frac{1}{8} \\ \frac{3}{8} & -\frac{1}{8} & -\frac{1}{8} & \frac{3}{8} \\ \frac{3}{8} & \frac{1}{8} & -\frac{1}{8} & -\frac{3}{8} \\ \frac{1}{8} & \frac{1}{8} & \frac{1}{8} & \frac{1}{8} \end{array}\right)$$

Problems

Ex 01. Let $A \in \mathcal{M}_3(\mathbb{R})$ be a square matrix such that

$$p_A(x) = (x-1)(x-2)^2$$
.

Is it diagonalizable?

 \mathbf{x} 02. Let f be a diagonalizable endomorphism over a vector space E. Prove that

$$E = \ker f \oplus \operatorname{Im} f$$
.

- **2. 03.** Let f be a diagonalizable endomorphism over a vector space satisfying $f^k = id_E$ for some natural integer k. Show that $f^2 = id_E$.
- \times **04**. Let A be a 3-by-3 matrix given by

$$A = \left(\begin{array}{rrr} 0 & 1 & 0 \\ -4 & 4 & 0 \\ -2 & 1 & 2 \end{array}\right).$$

- 1. Is the matrix A diagonalizable?
- 2. Calculate $(A-2l_3)$ and $(A-2l_3)^n$ for every $n \in \mathbb{N}$. Deduce an explicit formula for A^n .

2. 05. Let M be a complex square matrix satisfying $M^k = I$ for some positive integer k. Prove that M is diagonalizable.

x 06. Study the diagonalization of the matrix

$$A = \left(\begin{array}{rrr} 3 & 0 & 0 \\ 4 & 1 & 2 \\ a & 0 & 3 \end{array}\right); \ a \in \mathbb{R}$$

Ans. A is diagonalizable $\Leftrightarrow a = 0$.

x 07. Verify that the matrix

$$A = \left(\begin{array}{ccc} 2 & -2 & 2 \\ 0 & 1 & 1 \\ -4 & 8 & 3 \end{array}\right)$$

is diagonalizable. **Ans** : $Sp(A) = \{1, 2, 3\}$.

x 08. Study the diagonalization of the matrix

$$A=\left(egin{array}{ccc} a&1&-1\0&a&2\0&0&b \end{array}
ight);\; a,b\in\mathbb{R}.$$

x 09. Check that the matrices of the form

$$A=\left(egin{array}{cc} 1 & c \ 0 & 1 \end{array}
ight);\ c
eq 0$$

are not diagonalizable.

x 10. Consider the two matrices

$$A = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 2 & -1 \\ -3 & -2 & 3 \end{pmatrix} \text{ and } B = \begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{pmatrix}.$$

- Check that A and B have the same eigenvalues.
- Prove that $A \sim B$.
- **x 11.** Find a matrix $A \in \mathcal{M}_2(\mathbb{R})$ which is not diagonalizable.

x 12. Let

$$A = S \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} S^{-1}; S \in \mathbb{GL}_2(\mathbb{R}) \text{ and } \lambda_1, \lambda_2 \in \mathbb{R}.$$

Calculate the determinant of A and A^{-1} .

13. Calculate the eigenvalues and the eigenvectors of the following matrices. Are they diagonalizable? If so, determine a basis of eigenvectors.

$$\begin{pmatrix} 4 & 1 \\ 0 & 3 \end{pmatrix}, \begin{pmatrix} 2 & 4 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -3 \\ 1 & -3 & 1 \end{pmatrix},$$

$$\begin{pmatrix} 1 & -2 & -1 \\ 2 & 1 & -2 \\ 2 & 2 & -3 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} -7 & -2 & 1 \\ 28 & 8 & -4 \\ 31 & 10 & -5 \end{pmatrix}, \begin{pmatrix} 7 & 4 & 0 & 0 \\ -12 & -7 & 0 & 0 \\ 20 & 11 & -6 & -7 \\ -12 & -6 & 6 & 6 \end{pmatrix}$$

x 14. Let $A \in \mathcal{M}_n(\mathbb{R})$. Prove that A is diagonalozable $\Leftrightarrow A^t$ is diagonalizable.

x 15. Study the diagonalization of the following matrix

$$A = \begin{pmatrix} 1 & a & b & c \\ 0 & 1 & d & e \\ 0 & 0 & 2 & f \\ 0 & 0 & 0 & 3 \end{pmatrix}; a \neq 0 \text{ and } b, c, d, e, f \in \mathbb{R}.$$

x 16. Study the diagonalization of the following matrices

$$A_1 = \left(egin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{array}
ight) \ \ {
m and} \ \ A_2 = \left(egin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{array}
ight)$$

Ans. A_1 : yes, A_2 : no

x 17. Discuss the diagonalization, according to $a,b\in\mathbb{R}$ of the matrix

$$A = \left(\begin{array}{ccc} a & b & a-b \\ b & 2b & -b \\ a-b & -b & a \end{array}\right); \ ab \neq 0$$

and find α , β and γ for which

$$A^3 = \alpha A^2 + \beta A + \gamma I_3.$$

Ans.
$$p_A(x) = x(x-3b)(x-2a+b)$$
.

x 18. Determine the real number a for which the matrix

$$A = \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & a \\ 0 & 0 & 1 & -a \end{array}\right)$$

is diagonalizable.

19. Let $A \in \mathcal{M}_n(\mathbb{R})$ be a diagonalizable matrix with $Sp(A) = \{-1, 1\}$. Prove that $A = A^{-1}$.

x 20. Let

$$A = \left(\begin{array}{rrr} 9 & 0 & 0 \\ -5 & 4 & 0 \\ -8 & 0 & 1 \end{array}\right).$$

- i) Prove that A is diagonalizable and find a matrix $P \in \mathbb{GL}_3(\mathbb{R})$ for which $P^{-1}AP$ is diagonal.
- ii) Calculate A^n , $n \in \mathbb{N}$ and deduce an explicit formula of e^A .

x 21. Let $A \in \mathcal{M}_n(\mathbb{R})$ such that $A^2 = A$. Prove that A is diagonalizable.

Ex 22. Calculate
$$p(A) = 2A^8 - 3A^5 + A^4 + A^2 - 4I_3$$
, where A is given by

$$A = \left(\begin{array}{ccc} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{array}\right).$$

x 23. Consider the matrix

$$A_{\alpha}(n) = \begin{pmatrix} 1 & \frac{\alpha}{n} \\ -\alpha & 1 \end{pmatrix}$$

Prove that

$$\lim_{n\to+\infty}A_{\alpha}\left(n\right)=\left(\begin{array}{cc}\cos\alpha&\sin\alpha\\-\sin\alpha&\cos\alpha\end{array}\right).$$

 \mathbf{x} **24.** Let A be the matrix given by

$$A = \left(\begin{array}{cc} 0.6 & 0.8 \\ 0.4 & 0.2 \end{array}\right)$$

Verify that

$$\lim_{n \to +\infty} A^n = \begin{pmatrix} \frac{2}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{1}{3} \end{pmatrix}$$

x 25. Consider the matrix

$$A = \left(\begin{array}{rrr} 9 & 0 & 0 \\ -5 & 4 & 0 \\ -8 & 0 & 1 \end{array}\right)$$

Calculate A^n , for $n \in \mathbb{N}$. **Ans.**

$$A^n = \left(\begin{array}{ccc} 9^n & 0 & 0 \\ 4^n - 9^n & 4^n & 0 \\ 1 - 9^n & 0 & 1 \end{array}\right).$$

Problems

x 26. Let

$$A = \left(\begin{array}{ccc} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{array}\right), B = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

- 1 Diagonalize the matrix B.
- 2 Is matrix A similar to B?
- **27.** Let $n \ge 2$. Let A be the real $n \times n$ matrix of coefficients $a_{ij} = 0$ if i = j and $a_{ii} = 1$; otherwise. We put $B = A + I_n$.
 - 1. What is the rank of the matrix B? Deduce that -1 is an eigenvalue of A and determe the dimension of the associated eigenspace.
 - 2. Calculate

$$A \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$$

and deduce a new eigenvalue of A.

- 3. Justify that A is diagonalizable, and give its characteristic polynomial.
- 4. Give an invertible matrix P and a matrix D such that $A = PDP^{-1}$ (one does not ask to calculate P^{-1}).