Bellaouar Djamel

University 08 Mai 1945 Guelma

December 2020

 299

メロメ メタメ メミメ イ

Definition

Let $A = (a_{ii}) \in M_n(\mathbb{R})$ be a square matrix. A is said to be **diagonal**, if and only if

$$
a_{ij}=0, \ \ \forall \ i\neq j.
$$

Or, equivalently

$$
A = \begin{pmatrix} a_{11} & & & \\ & a_{22} & & \\ & & \ddots & \\ & & & a_{nn} \end{pmatrix}
$$

In this case, A is denoted by D. We also write $D = \text{diag} \{a_{11}, a_{22}, ..., a_{nn}\}.$

 209

K ロ ▶ | K 御 ▶ | K 唐 ▶ |

Results and Examples

Definition

Let A be a square matrix. We say that A is **diagonalizable** if A is similar to a diagonal matrix $D.$ That is, there exists an invertible matrix P such that $P^{-1}AP$ is diagonal, say D. That is,

A is diagonalizable $\Leftrightarrow \exists P \in GL_n (\mathbb{R})$ such that $A = PDP^{-1}$,

where $D = diag \{ \lambda_1, \lambda_2, ..., \lambda_n \}$ and $\lambda_1, \lambda_2, ..., \lambda_n$ are the eigenvalues of A.

Example

Consider the following matrices

$$
A = \left(\begin{array}{cc} 5 & -4 \\ 2 & -1 \end{array}\right), \ D = \left(\begin{array}{cc} 1 & 0 \\ 0 & 3 \end{array}\right) \text{ and } P = \left(\begin{array}{cc} 1 & 2 \\ 1 & 1 \end{array}\right).
$$

Compute PDP^{-1} . What can we conclude?

メロト メタト メミトメ

 $2Q$

Example

By computation, we obtain

$$
PDP^{-1} = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}
$$

= $\begin{pmatrix} 1 & 6 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 5 & -4 \\ 2 & -1 \end{pmatrix} = A.$

Thus, $A = PDP^{-1}$ and so A is diagonalizable.

But the question posed is how to determine P and D if they exist? How to diagonalize a matrix?. Here is the following theorem.

 Ω

メロメ メタメ メミメ メミ

Theorem (Necessary and sufficient condition for diagonalization)

Let $A \in \mathcal{M}_n(\mathbb{R})$ be a square matrix. A is diagonalizable, if and only if, there exists a basis B of \mathbb{R}^n formed by n eigenvectors of A.

Proof.

Assume that A is diagonalizable. That is, there exists an invertible matrix P such that

$$
A = PDP^{-1}
$$

.

Or, equivalently

$$
P^{-1}AP=D.
$$

Setting

$$
P = [y_1 \quad y_2 \quad \dots \quad y_n] = [Pe_1 \quad Pe_2 \quad \dots \quad Pe_n]
$$

where $(e_i)_{1 \leq i \leq n}$ is the canonical basis of \mathbb{R}^n ,

つへぐ

,

K ロ ⊁ K 倒 ≯ K 差 ≯ K

Results and Examples

and let

$$
D = \begin{pmatrix} d_1 & & & \\ & d_2 & & \\ & & \ddots & \\ & & & d_n \end{pmatrix} = diag \{d_1, d_2, ..., d_n\}
$$

= $\begin{bmatrix} d_1 e_1 & d_2 e_2 & ... & d_n e_n \end{bmatrix}$.

It follows that

$$
\begin{bmatrix}\nAy_1 & Ay_2 & \dots & Ay_n\n\end{bmatrix} = AP = I_nAP = PP^{-1}AP = PD \\
= P \begin{bmatrix}\nd_1 e_1 & d_2 e_2 & \dots & d_n e_n\n\end{bmatrix} \\
= \begin{bmatrix}\nd_1 Pe_1 & d_2 Pe_2 & \dots & d_n Pe_n\n\end{bmatrix} \\
= \begin{bmatrix}\nd_1 y_1 & d_2 y_2 & \dots & d_n y_n\n\end{bmatrix}.
$$

We deduce that for each $i \in \overline{1, n}$, $Ay_i = d_i y_i$. Then y_i is an eigenvector of A correspondin[g](#page-36-0) to d_i . Since P is invertible, then the [f](#page-1-0)amilly $B = \{y_1, y_2, ..., y_n\}$ is a basis of \mathbb{R}^n . メロトメ 御下 メミトメ 299

Dj. Bellaouar (University 08 Mai 1945 Guelma) [Diagonalizable matrices](#page-0-0) Diagonalizable matrices December 2020 6 / 37

Conversely, assume that \mathbb{R}^n has a basis $B = \{x_1, x_2, ..., x_n\}$ formed by n eigenvectors of A. In this case, we put

$$
P = \left[\begin{array}{cccc} x_1 & x_2 & \ldots & x_n \end{array} \right].
$$

It follows that

$$
\begin{array}{rcl}\nAP & = & \left[\begin{array}{cccc} Ax_1 & Ax_2 & \dots & Ax_n \end{array} \right] \\
 & = & \left[\begin{array}{cccc} \lambda_1 x_1 & \lambda_2 x_2 & \dots & \lambda_n x_n \end{array} \right],\n\end{array}
$$

where $(\lambda_i)_{1\leq i\leq n}$ are the eigenvalues of A associated with $\left(x_i\right)_{1\leq i\leq n}$, respectively.

 298

メロト メ御 トメ ヨ トメ ヨト

Results and Examples

Therefore,

$$
AP = \begin{pmatrix} \lambda_1 x_{11} & \lambda_2 x_{21} & \dots & \lambda_n x_{n1} \\ \lambda_1 x_{12} & \lambda_2 x_{22} & \dots & \lambda_n x_{n2} \\ \vdots & \vdots & \dots & \vdots \\ \lambda_1 x_{1N} & \lambda_2 x_{2N} & \dots & \lambda_n x_{nn} \end{pmatrix} = \begin{pmatrix} x_{11} & x_{21} & \dots & x_{n1} \\ x_{12} & x_{22} & \dots & x_{n2} \\ \vdots & \vdots & \dots & \vdots \\ x_{1N} & x_{2N} & \dots & x_{nn} \end{pmatrix} \times \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix}
$$
\n
$$
= \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix}
$$
\n
$$
= \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix}
$$

Hence $A = P D P^{-1}$, where D is diagonale and P is invertible. The proof is finished.

 299

K ロ ト K 倒 ト K 差 ト K

Corollary

Let $A \in \mathcal{M}_n(\mathbb{R})$ be a diagonalizable matrix. There exists a basis $B =$ $\{x_1, x_2, ..., x_n\}$ of \mathbb{R}^n formed by n eigenvectors A.

Proof.

Assume that $A = PDP^{-1}$. We know that $\{e_1, e_2, ..., e_n\}$ are eigenvectors of D associated with $diag(D)$, i.e.,

$$
De_i = P^{-1}APe_i = \lambda_i e_i
$$
, for $i = 1, 2, ..., n$.

Hence

$$
APe_i = \lambda_i Pe_i
$$
, for $i = 1, 2, ..., n$.

That is, $\{Pe_i\}_{1\leq i\leq n}$ are eigenvectors of A . Since P is invertible, then $\{Pe_i\}_{1\leq i\leq n}$ is a basis of \mathbb{R}^n .

 200

メロメ メタメ メミメ メ

Conclusion. Let $A \in M_n(\mathbb{R})$ be a square matrix and let $\lambda_1, \lambda_2, ..., \lambda_k$ be its eigenvalues. Let $A_m(\lambda_i)$ and $G_m(\lambda_i)$ denote the algebraic multiplicity and the geometric multiplicity of λ_i , respectively. Then A is diagonalizable if and oly if

$$
A_{m} (\lambda_{i}) = G_{m} (\lambda_{i}), \text{ for } i = 1, 2, ..., k.
$$

Corollary

Let $A \in \mathcal{M}_n(\mathbb{R})$ be a square matrix. Assume that

$$
p_A(x) = (x - \lambda_1)^{\alpha_1} (x - \lambda_2)^{\alpha_2} ... (x - \lambda_k)^{\alpha_k}
$$
, where $k \le n$.

Then A is diagonalizable if and only if $\dim E_{\lambda_i} = \alpha_i$, for $i = 1, 2, ..., k$.

 209

メロメ メ都 メメ ミメ メミメ

Results and Examples

Example

For the following matrices, by calculating the eigenpairs one has:

Matrix $p_A(x)$ $S_p(A)$ $A_m(\lambda)$ $G_m(\lambda)$ $A =$ $\sqrt{ }$ $\overline{1}$ 1 1 0 1 1 0 0 0 2 1 $x(x-2)^2$ 0 2 1 2 1 2 $B =$ λ $\overline{1}$ 2 1 1 $\begin{bmatrix} 2 & 1 & -2 \\ 1 & 2 & 2 \end{bmatrix}$ -1 0 -2 1 $(x+1)^2(x-3)$ $\frac{-1}{3}$ 3 2 1 1 1 $C =$ $\bigg)$ $\overline{1}$ 1 0 0 $\frac{1}{2}$ $\frac{2}{3}$ $1 \quad -1 \quad 0$ \setminus $(x + 1)(x - 1)(x - 3)$ $^{-1}$ 1 3 1 1 1 1 1 1

We deduce that A and B are diagonalizable, but B is not.

つへへ

メロト メタト メミトメ

We see also the following example:

Example

Show that the following matrix is diagonalizable.

$$
A = \left(\begin{array}{rrrr} 4 & 1 & 1 & 1 \\ 1 & 4 & 1 & 1 \\ 1 & 1 & 4 & 1 \\ 1 & 1 & 1 & 4 \end{array}\right)
$$

Solution. The characteristic polynomial is $p_A(x) = (x - 7)(x - 3)^3$. The eigenvalues of A are $\lambda_1 = 7$ (simple), and $\lambda_2 = 3$ (triple). The associated eigenvectors are $v_1 = (1, 1, 1, 1)$ for λ_1 , $v_2 = (-1, 1, 0, 0)$, $v_3 = (-1, 0, 1, 0)$ and $v_4 = (-1, 0, 0, 1)$ for λ_2 . The matrix A is therefore diagonalizable since $\dim E_{\lambda_i} = A_m(\lambda_i)$, for $i = 1, 2$.

 209

メロト メ都 トメ 君 トメ 君 トー

From Theorem [5,](#page-4-0) we have the following corollary:

Corollary

Let $A \in \mathcal{M}_n(\mathbb{R})$ be a square matrix. If A has n distinct eigenvalues, then A is diagonalizable.

Proof.

Since $A \in \mathcal{M}_n(\mathbb{R})$ and A has n distinct eigenvalues, then $\dim E_{\lambda_i} = 1 = A_m(\lambda_i)$,

for $i = 1, 2, ..., n$.

Proposition

Let A and B be two diagonalizable matrices with $P^{-1}AP = D_1$ and $P^{-1}BP = D_2$ for some invertible matrix P. Then $AB = BA$.

 Ω

K ロ ▶ K 御 ▶ K 경 ▶ K 경

Proof.

We can easily verify that if $P^{-1}AP=D_1$ and $P^{-1}BP=D_2$, it follows that

$$
\left\{\n\begin{array}{l}\nA = PD_1P^{-1} \\
B = PD_2P^{-1}.\n\end{array}\n\right.
$$

Note that $D_1D_2 = D_2D_1$, and therefore

$$
AB = PD_1D_2P^{-1} = PD_2D_1P^{-1} = PD_2P^{-1}PD_1P^{-1} = BA.
$$

Hence the result.

 209

メロト メタト メミト メミ

Results and Examples

Corollary

Let $A \in \mathcal{M}_n(\mathbb{R})$ be a square matrix, and assume that A has a unique eigenvalue $λ$. Then *A* is diagonalizable if and only if $A = λI_n$.

Proof.

It is clear that if $A = \lambda I_n$, then A is diagonalizable. Conversely, assume that $A \in \mathcal{M}_n(\mathbb{R})$ is diagonalizable and has a unique eigenvalue λ , there is therefore an invertible matrix P such $P^{-1}AP$ is diagonal. We put $P^{-1}AP = D$, where $diag (D) = Sp (A) = \{\lambda\}$. It follows that

$$
A = P \begin{pmatrix} \lambda & & \\ & \ddots & \\ & & \lambda \end{pmatrix} P^{-1} = \lambda P \begin{pmatrix} 1 & & \\ & \ddots & \\ & & 1 \end{pmatrix} P^{-1} = \lambda P I_n P^{-1} = \lambda I_n.
$$

This completes the proof.

KD > K@ > K E > K

Results and Examples

Proposition

Let A be a diagonalizable matrix ^a with $Sp(A) = \{\lambda_1, \lambda_2, ..., \lambda_n\}$. Then

$$
\det(A) = \lambda_1 \lambda_2 \dots \lambda_n. \tag{1}
$$

^aNote that the result of Equation [\(1\)](#page-15-0) is always true for any matrix $A \in M_n(\mathbb{C})$ which may or may not be diagonalizable.

Proof.

Assume that
$$
A = PDP^{-1}
$$
, where $D = diag \{ \lambda_1, \lambda_2, ..., \lambda_n \}$. Then

$$
det (A) = det (PDP-1)
$$

= det (P) det (D) det (P⁻¹)
= det (D)
= $\lambda_1 \lambda_2 ... \lambda_n$.

Results and Examples

Definition

 $\lambda \in \mathbb{R}$ is called the eigenvalue of multiplicity m if and only if

$$
p_A(x) = (x - \lambda)^m q(x) \text{ with } q(\lambda) \neq 0.
$$

Example

Let

$$
A = \left(\begin{array}{rrr} 2 & 1 & 1 \\ 2 & 1 & -2 \\ -1 & 0 & -2 \end{array}\right)
$$

Then $p_A(x) = (x-3)(x+1)^2$ and A cannot be diagonalizable on either $\mathbb R$ or **C**. Indeed, we have

$$
E_{-1} = \text{Vect} \, \{ (1, -2, -1) \}
$$

In \mathbb{R}^3 or \mathbb{C}^3 , E_{-1} is a vector space of dimension 1 equipped by $(1, -2, -1)$. Since -1 is an eigenvalue of A of multiplicity 2, A is not diagonalizable.

Applications of diagonalization

A classical application is the computing of the powers of a matrix A. Assume that A is given to be diagonalizable. That is, there exist P and D such that

$$
D = \left(\begin{array}{cccc} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ & & \ddots & \\ 0 & 0 & \dots & \lambda_n \end{array}\right)
$$

and $D = P^{-1}AP$. For each $k \geq 0$ we have

$$
A^k = PD^kP^{-1}.
$$

The preceding formula then generalizes to $k \in \mathbb{Z}$. The matrix A is then invertible if, and only if, D is invertible and

$$
A^{-1} = PD^{-1}P^{-1}.
$$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

Applications of diagonalization

Exercise

Consider the matrix

$$
A=\left(\begin{array}{cc}2 & -1\\-1 & 2\end{array}\right).
$$

Calculate A^n for every $n \geq 0$.

Solution

We start by computing the characteristic polynomial of A

$$
p_{A}(x) = \begin{vmatrix} 2-x & -1 \\ -1 & 2-x \end{vmatrix} = \begin{vmatrix} 1-x & -1 \\ 1-x & 2-x \end{vmatrix}
$$

= $(1-x)\begin{vmatrix} 1 & -1 \\ 1 & 2-x \end{vmatrix} = (1-x)(3-x).$

Then $Sp(A) = \{1, 3\}$.

Applications of diagonalization

Next, we find the eigenvectors of A :

$$
E_1 = \left\{ (x, y) \in \mathbb{R}^2; \begin{array}{l} 2x - y = x \\ -x + 2y = y \end{array} \right\}
$$

= Vect $\{(1, 1)\}$.

and also we have

$$
E_3 = \left\{ (x, y) \in \mathbb{R}^2; \begin{array}{c} 2x - y = 3x \\ -x + 2y = 3y \end{array} \right\}
$$

= Vect $\{(1, -1)\}$.

We put

$$
P=\left(\begin{array}{cc}1&1\\1&-1\end{array}\right),\ D=\left(\begin{array}{cc}1&0\\0&3\end{array}\right)
$$

K ロ ▶ (伊 ▶ (毛 ▶

 299

Applications of diagonalization

It follows that

$$
A^{n} = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1^{n} & 0 \\ 0 & 3^{n} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}^{-1}
$$

=
$$
\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 3^{n} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix}
$$

=
$$
\begin{pmatrix} \frac{1+3^{n}}{2} & \frac{1-3^{n}}{1+3^{n}} \\ \frac{1-3^{n}}{2} & \frac{1+3^{n}}{2} \end{pmatrix}.
$$

Þ

 299

K ロ ト K 倒 ト K 差 ト K

(2)

Applications of diagonalization

Example

Consider the matrix

$$
A = \left(\begin{array}{cc} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{4} & \frac{3}{4} \end{array}\right).
$$

Calculate $\lim_{n \to \infty} A^n$. $n \rightarrow +\infty$ First, let us calculate the eigenvalues and eigenvectors of A. From computation, we find

$$
\begin{cases} \lambda_1 = 1, \ v_1 = (1, 1), \\ \lambda_2 = \frac{1}{4}, \ v_2 = (-2, 1). \end{cases}
$$

 Ω

K ロ ⊁ K 倒 ≯ K 差 ≯ K

Applications of diagonalization

Since
$$
A = PDP^{-1}
$$
, then $A^k = PD^kP^{-1}$, where $P = \begin{pmatrix} 1 & -2 \\ 1 & 1 \end{pmatrix}$ and
\n
$$
D = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{4} \end{pmatrix}
$$
. It follows that

$$
\lim_{n \to +\infty} A^n = \lim_{n \to +\infty} \left(\begin{array}{cc} 1 & -2 \\ 1 & 1 \end{array} \right) \left(\begin{array}{cc} 1^n & 0 \\ 0 & \left(\frac{1}{4} \right)^n \end{array} \right) \left(\begin{array}{cc} \frac{1}{3} & \frac{2}{3} \\ -\frac{1}{3} & \frac{1}{3} \end{array} \right)
$$

= $\left(\begin{array}{cc} 1 & -2 \\ 1 & 1 \end{array} \right) \left(\begin{array}{cc} 1 & 0 \\ 0 & \lim_{n \to +\infty} \left(\frac{1}{4} \right)^n \end{array} \right) \left(\begin{array}{cc} \frac{1}{3} & \frac{2}{3} \\ -\frac{1}{3} & \frac{1}{3} \end{array} \right)$
= $\left(\begin{array}{cc} 1 & -2 \\ 1 & 1 \end{array} \right) \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right) \left(\begin{array}{cc} \frac{1}{3} & \frac{2}{3} \\ -\frac{1}{3} & \frac{1}{3} \end{array} \right) = \left(\begin{array}{cc} \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{2}{3} \end{array} \right).$

 299

メロト メタト メミト メミト

Example

Consider the mapping

$$
f : \mathbb{R}_3 [X] \longrightarrow \mathbb{R}_3 [X]
$$

$$
p \mapsto f(p) = 3xp - (x^2 - 1) p'
$$

and let $B = \{1, x, x^2, x^3\}$ be the canonical basis of $\mathbb{R}_3 [X]$.

- Calculate M_f (B) .
- ² Is f diagonalizable? if so, give the diagonalization.

 209

K ロ ▶ K 御 ▶ K 경 ▶ K 경

Applications of diagonalization

Solution. There are two steps: \triangleright The calculation of $M_f(B)$. We see that

$$
\begin{cases}\n f(1) = 3x = 0 + 3x + 0x^2 + 0x^3 \\
 f(x) = 1 + 2x^2 = 1 + 0x + 2x^2 + 0x^3 \\
 f(x^2) = 2x + x^3 = 0 + 2x + 0x^2 + 1x^3 \\
 f(x^3) = 3x^2 = 0 + 0x + 3x^2 + 0x^3\n\end{cases}
$$

Which gives

$$
M_f(\mathcal{B}) = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 3 & 0 & 2 & 0 \\ 0 & 2 & 0 & 3 \\ 0 & 0 & 1 & 0 \end{array}\right).
$$

K ロ ⊁ K 倒 ≯ K 差 ≯ K

 QQ

 \triangleright Let us calculate the characteristic polynomial of M_f (\mathcal{B}) . Indeed, we have

$$
p_{M_f(B)}(x) = \begin{vmatrix} -x & 1 & 0 & 0 \\ 3 & -x & 2 & 0 \\ 0 & 2 & -x & 3 \\ 0 & 0 & 1 & -x \end{vmatrix} = x^4 - 10x^2 + 9.
$$

The eigenvalues of A are $\{-1, 1, -3, 3\}$. From Corollary [??](#page-0-1), M_f (β) is diagonalizable.

 \triangleright Diagonalization of $M_f(B)$: First, let us calculate the eigenvectors of $M_f(B)$, we obtain

$$
M_f(\mathcal{B}) = \left(\begin{array}{rrrrr} 1 & 1 & 1 & 1 \\ -3 & -1 & 1 & 3 \\ 3 & -1 & -1 & 3 \\ -1 & 1 & -1 & 1 \end{array}\right) \left(\begin{array}{rrrrr} -3 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{array}\right) \left(\begin{array}{rrrrr} \frac{1}{8} & -\frac{1}{8} & \frac{1}{8} & -\frac{1}{8} \\ \frac{3}{8} & -\frac{1}{8} & -\frac{1}{8} & \frac{3}{8} \\ \frac{3}{8} & \frac{1}{8} & -\frac{1}{8} & -\frac{3}{8} \\ \frac{1}{8} & \frac{1}{8} & \frac{1}{8} & \frac{1}{8} \end{array}\right)
$$

 $A \Box B$ $A \Box B$ $A \Box B$

 299

Diagonalizable matrices Problems

Ex $01.$ Let $A\in \mathcal{M}_3(\mathbb{R})$ be a square matrix such that

$$
p_A(x) = (x-1)(x-2)^2
$$
.

Is it diagonalizable ?

Ex 02. Let f be a diagonalizable endomorphism over a vector space E . Prove that

$$
E=\ker f\oplus \operatorname{Im} f.
$$

Ex 03. Let f be a diagonalizable endomorphism over a vector space satisfying $f^k = \mathsf{id}_E$ for some natural integer k . Show that $f^2 = \mathsf{id}_E$. \mathbf{Ex} 04. Let A be a 3-by-3 matrix given by

$$
A = \left(\begin{array}{rrr} 0 & 1 & 0 \\ -4 & 4 & 0 \\ -2 & 1 & 2 \end{array}\right).
$$

- 1. Is the matrix A diagonalizable?
- 2. Calculate $(A 2I_3)$ and $(A 2I_3)^n$ for every $n \in \mathbb{N}$. Deduce an explicit formula for A^n . **KOX KOX KEX K**

 299

Ex ${\bf 05.}$ Let M be a complex square matrix satisfying $M^k=I$ for some positive integer k . Prove that M is diagonalizable.

 $\mathbf{E} \mathbf{x}$ 06. Study the diagonalization of the matrix

$$
A = \left(\begin{array}{rrr} 3 & 0 & 0 \\ 4 & 1 & 2 \\ a & 0 & 3 \end{array}\right); a \in \mathbb{R}
$$

Ans. A is diagonalizable $\Leftrightarrow a = 0$.

Ex 07. Verify that the matrix

$$
A = \left(\begin{array}{rrr} 2 & -2 & 2 \\ 0 & 1 & 1 \\ -4 & 8 & 3 \end{array}\right)
$$

← ロ ▶ → ← 同

is diagonalizable. Ans : $Sp(A) = \{1, 2, 3\}$.

 \mathbf{Ex} 08. Study the diagonalization of the matrix

$$
A = \left(\begin{array}{ccc} a & 1 & -1 \\ 0 & a & 2 \\ 0 & 0 & b \end{array}\right); a, b \in \mathbb{R}.
$$

 $\mathbf{E} \times \mathbf{0}$ Check that the matrices of the form

$$
A=\left(\begin{array}{cc} 1 & c \\ 0 & 1 \end{array}\right); \ c\neq 0
$$

are not diagonalizable.

メロト メタト メミト

 299

 $\mathbf{E} \mathbf{x}$ 10. Consider the two matrices

$$
A = \left(\begin{array}{rrr} 2 & 1 & -1 \\ 0 & 2 & -1 \\ -3 & -2 & 3 \end{array}\right) \text{ and } B = \left(\begin{array}{rrr} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{array}\right).
$$

 \bullet Check that A and B have the same eigenvalues.

• Prove that $A \nsim B$.

Ex 11. Find a matrix $A \in \mathcal{M}_2(\mathbb{R})$ which is not diagonalizable.

 \mathbf{I} 2. Let

$$
\mathcal{A}=\mathcal{S}\left(\begin{array}{cc} \lambda_1 & 0 \\ 0 & \lambda_2 \end{array}\right)\mathcal{S}^{-1};\ \mathcal{S}\in\text{GL}_2\left(\mathbb{R}\right)\ \text{and}\ \lambda_1,\lambda_2\in\mathbb{R}.
$$

Calculate the determinant of A and A^{-1} .

 Ω

K ロ ト K 何 ト K ヨ ト

 Ex 13. Calculate the eigenvalues and the eigenvectors of the following matrices. Are they diagonalizable? If so, determine a basis of eigenvectors.

$$
\begin{pmatrix}\n4 & 1 \\
0 & 3\n\end{pmatrix}, \begin{pmatrix}\n2 & 4 \\
1 & 1\n\end{pmatrix}, \begin{pmatrix}\n2 & -1 \\
1 & 3\n\end{pmatrix}, \begin{pmatrix}\n1 & -1 & 1 \\
-1 & 1 & -3 \\
1 & -3 & 1\n\end{pmatrix},
$$
\n
$$
\begin{pmatrix}\n1 & -2 & -1 \\
2 & 1 & -2 \\
2 & 2 & -3\n\end{pmatrix}, \begin{pmatrix}\n1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1\n\end{pmatrix}, \begin{pmatrix}\n1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n-7 & -2 & 1 \\
28 & 8 & -4 \\
31 & 10 & -5\n\end{pmatrix}, \begin{pmatrix}\n7 & 4 & 0 & 0 \\
-12 & -7 & 0 & 0 \\
20 & 11 & -6 & -7 \\
-12 & -6 & 6 & 6\n\end{pmatrix}
$$

 Ω

メロト メタト メミトメ

Ex 14. Let $A \in \mathcal{M}_n(\mathbb{R})$. Prove that A is diagonalozable $\Leftrightarrow A^t$ is diagonalizable. $\frac{1}{x}$ 15. Study the diagonalization of the following matrix

$$
A = \left(\begin{array}{rrr} 1 & a & b & c \\ 0 & 1 & d & e \\ 0 & 0 & 2 & f \\ 0 & 0 & 0 & 3 \end{array}\right); a \neq 0 \text{ and } b, c, d, e, f \in \mathbb{R}.
$$

 $\mathbf{E} \mathbf{x}$ 16. Study the diagonalization of the following matrices

$$
A_1=\left(\begin{array}{ccc}1 & 0 & 1 \\0 & 1 & 0 \\0 & 0 & 2\end{array}\right) \text{ and } A_2=\left(\begin{array}{ccc}1 & 1 & 0 \\0 & 1 & 0 \\0 & 0 & 2\end{array}\right)
$$

Ans. A_1 : yes, A_2 : no

 Ω

K ロ ト K 何 ト K 目

Diagonalizable matrices Problems

Ex 17. Discuss the diagonalization, according to $a, b \in \mathbb{R}$ of the matrix

$$
A = \left(\begin{array}{ccc} a & b & a - b \\ b & 2b & -b \\ a - b & -b & a \end{array}\right); \, ab \neq 0
$$

and find α , β and γ for which

$$
A^3 = \alpha A^2 + \beta A + \gamma I_3.
$$

Ans.
$$
p_A(x) = x(x - 3b)(x - 2a + b)
$$
.

 $\mathbf{E} \mathbf{x}$ 18. Determine the real number a for which the matrix

$$
A = \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & a \\ 0 & 0 & 1 & -a \end{array}\right)
$$

is diagonalizable.

 Ω

K ロ ト K 何 ト K 目

Ex 19. Let $A \in \mathcal{M}_n(\mathbb{R})$ be a diagonalizable matrix with $Sp(A) = \{-1, 1\}$. Prove that $A=A^{-1}$.

 $\mathbf{E} \times 20$. Let

$$
A = \left(\begin{array}{rrr} 9 & 0 & 0 \\ -5 & 4 & 0 \\ -8 & 0 & 1 \end{array}\right).
$$

- i) Prove that A is diagonalizable and find a matrix $P \in GL_3 (\mathbb{R})$ for which $P^{-1}AP$ is diagonal.
- ii) Calculate A^n , $n \in \mathbb{N}$ and deduce an explicit formula of e^A .

 Ω

メロトメ 倒 トメ ミトメ ミト

Ex 21. Let $A \in \mathcal{M}_n(\mathbb{R})$ such that $A^2 = A$. Prove that A is diagonalizable. Ex 22. Calculate $p(A) = 2A^8 - 3A^5 + A^4 + A^2 - 4I_3$, where A is given by

$$
A = \left(\begin{array}{rrr} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{array}\right).
$$

Ex 23. Consider the matrix

$$
A_{\alpha}(n) = \left(\begin{array}{cc} 1 & \frac{\alpha}{n} \\ \frac{-\alpha}{n} & 1 \end{array}\right)
$$

Prove that

$$
\lim_{n \to +\infty} A_{\alpha}(n) = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}
$$

 Ω

.

K ロ ト K 何 ト K ヨ ト

Problems

 $\exists x$ 24. Let A be the matrix given by

$$
A = \begin{pmatrix} 0.6 & 0.8 \\ 0.4 & 0.2 \end{pmatrix}
$$

$$
\lim_{n \to +\infty} A^n = \begin{pmatrix} \frac{2}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{1}{3} \end{pmatrix}
$$

Ex 25. Consider the matrix

Verify that

$$
A = \left(\begin{array}{rrr} 9 & 0 & 0 \\ -5 & 4 & 0 \\ -8 & 0 & 1 \end{array}\right)
$$

Calculate A^n , for $n \in \mathbb{N}$. **Ans.**

$$
A^n = \left(\begin{array}{ccc} 9^n & 0 & 0 \\ 4^n - 9^n & 4^n & 0 \\ 1 - 9^n & 0 & 1 \end{array}\right).
$$

 299

K ロ ▶ イ 伊 ▶ イ ヨ

Problems

 $\mathbf{E} \times 26$. Let

$$
A = \left(\begin{array}{ccc} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{array}\right), B = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & 1 \end{array}\right)
$$

- **1** Diagonalize the matrix B.
- ² Is matrix A similar to B?

Ex 27. Let $n \ge 2$. Let A be the real $n \times n$ matrix of coefficients $a_{ij} = 0$ if $i = j$ and $a_{ii} = 1$; otherwise. We put $B = A + I_n$.

- 1. What is the rank of the matrix B? Deduce that -1 is an eigenvalue of A and determe the dimension of the associated eigenspace.
- 2. Calculate

$$
A\left(\begin{array}{c}1\\ \vdots\\ 1\end{array}\right),
$$

and deduce a new eigenvalue of A.

- 3. Justify that A is diagonalizable, and give its characteristic polynomial.
- 4. Give an invertible m[at](#page-36-0)rix P and a matrix D suc[h t](#page-35-0)hat $A = P D P^{-1}$ [\(](#page-36-0)[on](#page-0-0)[e do](#page-36-0)es <u>not ask to calculate P^{-1}).</u> メロメ メタメ メミメ メミ 299