Bellaouar Djamel

University 08 Mai 1945 Guelma

December 2020

A matrix with all zero entries is called a **zero matrix** and is denoted by 0. That is,

$$A = \left(\begin{array}{cccc} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{array}\right).$$

Also, A is called the **null matrix**.

A square matrix $A=(a_{ij})$ is diagonal if $a_{ij}=0$ for $i\neq j$. In this case, we write $D=diag\{\lambda_1,\lambda_2,...,\lambda_n\}$. So, A **diagonal matrix** is given by:

$$D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}.$$

• Every computation on diagonal matrices are quite easy. For example, \sqrt{D} , D^k , D^{-1} , e^D , $\cos D$, $\ln D$, ...

The unit matrix or the identity matrix:

$$I_n = \left(\begin{array}{cccc} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{array}\right)$$

This is a diagonal matrix; but, all the diagonal elements are equal to 1.

Fact

For any $A \in \mathcal{M}_n(\mathbb{R})$ we have

$$A \cdot I_n = I_n \cdot A = A$$
.

A square matrix is **upper triangular** if all entries below the main diagonal are zero. The general form of an upper triangular matrix is given by

$$U = \begin{pmatrix} \mathbf{a_{11}} & \mathbf{a_{12}} & \cdots & \mathbf{a_{1n}} \\ 0 & \mathbf{a_{22}} & \cdots & \mathbf{a_{1n}} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mathbf{a_{nn}} \end{pmatrix}.$$

A square matrix is **lower triangular** if all entries above the main diagonal are 0. he general form of a lower triangular matrix is given by

$$L = \begin{pmatrix} \mathbf{a_{11}} & 0 & \cdots & 0 \\ \mathbf{a_{21}} & \mathbf{a_{22}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{a_{n1}} & \mathbf{a_{n2}} & \cdots & \mathbf{a_{nn}} \end{pmatrix}.$$

Strictly triangular matrices are of the form:

$$\left(\begin{array}{cccc} {\bf 0} & a_{12} & \cdots & a_{1n} \\ 0 & {\bf 0} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & {\bf 0} \end{array} \right) \ \text{or} \ \left(\begin{array}{ccccc} {\bf 0} & 0 & \cdots & 0 \\ a_{21} & {\bf 0} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & {\bf 0} \end{array} \right) .$$

The **transpose** of an $m \times n$ matrix A, denoted by A^t , is the $n \times m$ matrix obtained by interchanging rows and columns of A. That is,

$$\text{if } A = \left(\mathsf{a}_{\mathit{ij}} \right)_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}} \in \mathcal{M}_{m,n} \left(\mathbb{K} \right) \overset{\text{then}}{\Rightarrow} A^t = \left(\mathsf{a}_{\mathit{ji}} \right)_{\substack{1 \leq j \leq n \\ 1 \leq i \leq m}} \in \mathcal{M}_{n,m} \left(\mathbb{K} \right).$$

It is cleat that the mapping $A \mapsto A^t$ from $\mathcal{M}_{m,n}\left(\mathbb{K}\right)$ to $\mathcal{M}_{n,m}\left(\mathbb{K}\right)$ is linear, and that if $A \in \mathcal{M}_{m,n}\left(\mathbb{K}\right)$, then

$$\left(A^{t}\right)^{t}=A.$$

Further, if $A \in \mathcal{M}_{m,n}\left(\mathbb{K}\right)$ and $B \in \mathcal{M}_{n,p}\left(\mathbb{K}\right)$, we have

$$(AB)^{t} = B^{t}A^{t} \in \mathcal{M}_{p,m}\left(\mathbb{K}\right).$$

Symmetric Matrices

Properties of transpose:

- $(A^t)^t = A$.
- $\bullet (A+B)^t = A^t + B^t.$
- For scalar α , $(\alpha A)^t = \alpha A^t$.
- $\bullet (AB)^t = B^t A^t.$

Example

For the matrix

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} \in \mathcal{M}_{3,2}\left(\mathbb{R}\right),$$

we have

$$A^{t}=\left(egin{array}{ccc}1&3&5\\2&4&6\end{array}
ight)\in\mathcal{M}_{2,3}\left(\mathbb{R}
ight).$$

Symmetric Matrices

Theorem

Let $A \in \mathcal{M}_n(\mathbb{R})$. Then A and A^t have the same eigenvalues.

Proof.

Let $x \in \mathbb{R}$. We have

$$p_A(x) = \det(A - xI) = \det\left(\left(A - xI\right)^t\right)$$
 (since $\det B = \det B^t$)
 $= \det\left(A^t - xI\right)$
 $= p_{A^t}(x)$.

Thus, A and its transpose have the same characteristic polynomial.

Definition

Let $A = (a_{ij})_{1 \le i,j \le n}$ be a square matrix. A is said to be **symmetric** if $A^t = A$.

That is, $a_{ij} = a_{ji}$ for each $i, j \in \overline{1, n}$. So, an $n \times n$ matrix A is called symmetric if it is equal to its transpose.

Symmetric Matrices

Example

The matrix

$$A = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 0 & 5 \\ 3 & 5 & 1 \end{array}\right)$$

is symmetric; since $A^t = A$.

Corollary

For every matrix $A \in \mathcal{M}_n(\mathbb{R})$, A^tA and AA^t are always symmetric.

Proof.

It is clear that

$$(A^tA)^t = A^t(A^t)^t = A^tA.$$

That is, for each $A \in \mathcal{M}_n(\mathbb{R})$, $A^t A$ is symmetric.

Symmetric Matrices

Proposition

The eigenvalues of a real symmetric matrix are real numbers.

Proof.

See Theorem 27.

Corollary

Let $A \in \mathcal{M}_n(\mathbb{R})$ be a symmetric matrix and let $\alpha_0, \alpha_1, ..., \alpha_m \in \mathbb{R}$ with $m \geq 1$. The matrix

$$\alpha_0 I + \alpha_1 A + ... + \alpha_m A^m$$

is also symmetric.

Proof.

(Easy).

Let $A = (a_{ij})_{1 \le i,j \le n}$ be a square matrix. A is said to be **skew-symmetric** if $A^t = -A$. That is, $a_{ii} = -a_{ji}$ for each $i, j \in \overline{1, n}$.

For example, the matrix

$$A = \left(\begin{array}{cc} 0 & 2 \\ -2 & 0 \end{array}\right)$$

is skew-symmetric since $A^t = -A$.

Lemma

Every square matrix $M \in \mathcal{M}_n(\mathbb{R})$ can be written as A+B, where A is skew-symmetric and B is symmetric.

Skew-symmetric Matrices

Proof.

It is clear that for each $M\in\mathcal{M}_{n}\left(\mathbb{R}\right)$ we have

$$M = \underbrace{\frac{1}{2} \left(M - M^t \right)}_{\text{skew-symmetric}} + \underbrace{\frac{1}{2} \left(M + M^t \right)}_{\text{symmetric}}.$$

Skew-symmetric Matrices

Theorem (Theorem 17)

Let B be a skew-symmetric matrix; i.e., $B^t = -B$. Then the matrix A = I - B is invertible.

Remark

Note that a matrix A is invertible if and only if $(Ax = 0 \Rightarrow x = 0)$.

Proof of Theorem 18.

It suffices to prove that Ax=0 implies x=0. In fact, if Ax=0, it follows that Bx=x. Therefore,

$$\langle x, x \rangle = \langle x, Bx \rangle$$
.

On the other hand, we have

$$x^{t}x = x^{t}Bx$$

 $\Rightarrow x^{t}x = x^{t}B^{t}x$ (since $(x^{t}x)^{t} = x^{t}x$ and $(x^{t}Bx)^{t} = x^{t}B^{t}x$)
 $\Rightarrow x^{t}x = x^{t}(-B)x$ (since B is skew-symmetric)
 $\Rightarrow x^{t}x = -x^{t}Bx$
 $\Rightarrow x^{t}x = -x^{t}x$
 $\Rightarrow x^{t}x = 0$.

Proof of Theorem 18.

Setting $x = (x_1 x_2 \dots x_n)^t$, we find

$$x^{t}x = (x_{1} \quad x_{2} \quad \dots \quad x_{n})\begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix} = x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2} = 0.$$

Thus, $x_i = 0$ for each $i \in \overline{1, n}$, and so x = 0.

1. Let

$$A = \left(\begin{array}{ccc} 0 & -2 & 3 \\ 2 & 0 & 4 \\ -3 & -4 & 0 \end{array}\right)$$

Verify that A is skew-symmetric.

2. Prove that $\mathcal{M}_n(\mathbb{R}) = \mathcal{S}_n(\mathbb{R}) \oplus \mathcal{A}_n(\mathbb{R})$, where $\mathcal{S}_n(\mathbb{R})$ is the subspace of all symmetric matrices and $\mathcal{A}_n(\mathbb{R})$ is the subspace of all skew-symmetric matrices.

Orthogonal Matrices

Definition

A matrix $A \in \mathcal{M}_n(\mathbb{R})$ is called **orthogonal** if $A^t = A^{-1}$.

Example

The matrix

$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}; \ \theta \in \mathbb{R}$$

is orthogonal, since

$$A^{t}A = AA^{t} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_{2}.$$

Orthogonal Matrices

An orthogonal matrix has the following properties:

- 1. its column vectors (rows) are orthonormal,
- 2. $A^t A = AA^t = I_n$
- 3. $A^t = A^{-1}$
- 4. For every $x \in \mathbb{R}^n : ||Ax|| = ||x||$,
- 5. For every $x, y \in \mathbb{R}^n : \langle Ax, Ay \rangle = \langle x, y \rangle$.

Corollary

Let $A \in \mathcal{M}_n(\mathbb{R})$ be an orthogonal matrix. Then $\det(A) = \pm 1$.

Proof.

Since $A^t = A^{-1}$, then $A^t A = I_n$. It follows that

$$\det\left(A^{t}A\right) = \det\left(A^{t}\right)\det\left(A\right) = \left(\det\left(A\right)\right)^{2} = \det\left(I_{n}\right) = 1.$$

Hence det $(A) = \pm 1$.

Orthogonal Matrices

Theorem

Let $A \in \mathcal{M}_n(\mathbb{R})$ be an orthogonal matrix. The following properties are equivalent.

- 1) A is orthogonal.
- 2) For every $x \in \mathbb{R}^n : ||Ax|| = ||x||$.
- 3) For every $x, y \in \mathbb{R}^n : \langle Ax, Ay \rangle = \langle x, y \rangle$.

Proof.

1) \Rightarrow 2). Assume that A is orthogonal. Let $x \in \mathbb{R}^n$, we have

$$||Ax||^2 = \langle Ax, Ax \rangle = \langle x, A^t Ax \rangle = \langle x, I_n x \rangle = \langle x, x \rangle = ||x||^2$$
.

Therefore, ||Ax|| = ||x||.

2) \Rightarrow 3). Assume that \forall $x \in \mathbb{R}^n$: ||Ax|| = ||x|| . Let $x, y \in \mathbb{R}^n$, we have

$$||A(x+y)||^2 = ||x+y||^2;$$

Proof.

That is, $\langle Ax + Ay, Ax + Ay \rangle = \langle x + y, x + y \rangle$, and so

$$\langle Ax, Ax \rangle + \langle Ay, Ay \rangle + 2 \langle Ax, Ay \rangle = \langle x, x \rangle + \langle y, y \rangle + 2 \langle x, y \rangle$$

Thus, $\langle Ax, Ay \rangle = \langle x, y \rangle$.

3) \Rightarrow 1). Assume that \forall x, $y \in \mathbb{R}^n$: $\langle Ax, Ay \rangle = \langle x, y \rangle$. It follows that

$$\langle x, A^t A y \rangle = \langle x, y \rangle$$

i.e., $\langle x, A^tAy - y \rangle = 0$. In particular, for $x = x^tAy - y$, we obtain

$$\left\|A^tAy-y\right\|^2=0.$$

Hence $A^tAy = y$, and therefore $A^tA = I_n$.

Orthogonal Matrices

Exercise

Consider the matrix

$$A = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right)$$

For each $\theta \in \mathbb{R}$, prove that $e^{\theta A}$ is orthogonal^a.

^aSee the chapter of exponential of square matrices.

Exercise

Let A be an orthogonal matrix. Prove the following properties:

- \bullet A^{-1} is orthogonal.
- **2** For every $\lambda \in Sp(A) \Rightarrow |\lambda| = 1$.
- If A_1 and A_2 are two orthogonal matrices, then A_1A_2 is also orthogonal.

Let $A = (a_{ij})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{C})$. That is a_{ij} is a complex number for $1 \leq i,j \leq n$. The matrix $(\overline{a_{ij}})_{1 \leq i,j \leq n}$ is called **conjugate** of A, denoted by \overline{A} . The **transpose conjugate** matrix of A is called the **adjoint** of A, denoted by A^* . Note that $A^* = \overline{A^t} = (\overline{A})^t$.

Definition

A matrix $A \in \mathcal{M}_n(\mathbb{C})$ is called **Hermitian**^a if $A^* = A$. Thta is, if $\overline{A^t} = A$.

^aOn the other hand, a matrix A is said to be skew-Hermitian if $A^* = -A$.

Hermitian Matrices

Example

The matrix

$$A = \begin{pmatrix} 1 & 1+i & 2+3i \\ 1-i & -2 & -i \\ 2-3i & i & 0 \end{pmatrix}$$

is Hermitian; because $A^* = A$.

Proposition

The diagonal coefficients of a Hermitian matrix are real.

Proof.

From Definition 23, the result is obvious since $a_{ii} = \overline{a_{ii}}$ for $1 \le i \le n$.

Remark

Let $A \in \mathcal{M}_n\left(\mathbb{C}\right)$. We can easily prove that $A+A^*$, AA^* and A^*A are Hermitian.

Hermitian Matrices

Theorem

The eigenvalues of a Hermitian matrix are real.

Proof.

Proof. Let (λ, x) be an eigenpair of a Hermitian matrix A (note that $x \neq 0$). We can write

$$\lambda \langle x, x \rangle = \langle \lambda x, x \rangle$$

$$= \langle Ax, x \rangle = (Ax)^t \overline{x} = x^t A^t \overline{x}$$

$$= x^t \left((\overline{A})^t \right)^t \overline{x} \quad (\text{since } (\overline{A})^t = A)$$

$$= x^t \overline{A} \overline{x} = x^t \overline{Ax} = \langle x, Ax \rangle = \langle x, \lambda x \rangle = \overline{\lambda} \langle x, x \rangle.$$

That is, $\lambda = \overline{\lambda}$.

A matrix $U \in \mathcal{M}_n(\mathbb{C})$ is said to be **unitary** if $U^{-1} = U^*$. In other words, a square matrix U with complex coefficients is said to be unitary if it satisfies the equalities:

$$U^*U=UU^*=I_n$$
.

- The unitary matrices with real coefficients are the orthogonal matrices.
- Note that a complex square matrix A is **normal** if it commutes with its conjugate transpose A^* . That is, $A^*A = AA^*$. Thus, unitary, Hermitian and skew-Hermitian matrices are normal.

Example

The matrix

$$A = \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right)$$

is unitary; since

$$AA^* = A^*A = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2.$$

Any unitary matrix U satisfies the following properties:

- a. its determinant has modulus 1;
- b. its eigenvectors are orthogonal;
- c. U is diagonalizable, i.e.,

$$U = VDV^*$$
,

where V is a unitary matrix and D is a unitary diagonal matrix.

d. *U* can be written as an exponential of a matrix:

$$U=e^{iH}$$
,

where i is the imaginary unit and H is a Hermitian matrix.

Proposition

Let U be a square matrix of size n with complex coefficients; the following five propositions are equivalent:

- U is unitary;
- U* is unitary;
- U is invertible and its inverse is U*;
- the columns of U form an orthonormal basis for the canonical Hermitian product over \mathbb{C}^n ;
- **1** U is normal and its eigenvalues have modulus 1.

Idempotent matrices

Definition

Let $A \in \mathcal{M}_n(\mathbb{K})$. Then A is called **idempotent** if $A^2 = A$.

Examples of 2×2 idempotent matrices are:

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{cc} 3 & -6 \\ 1 & -2 \end{array}\right)$$

Theorem

If A is idempotent, then A is diagonalizable.

Proof.

Since $A^2=A$, it follows that $m_A\left(x\right)=x\left(x-1\right)$ which has simple roots, and hence A is diagonalizable.