English 1 for Master students At Department of Mathematics University 08 Mai 1945 Guelma By Bellaouar D., <u>bellaouar.djamel@univ-guelma.dz</u> 23th December 2020, Section 1/8

1 Basic arithmetic operations

- Addition: 3 + 5 = 8 three plus five equals [= is equal to] eight.
- Subtraction: 3-5 = -2 three minus five equals $[= \ldots]$ minus two.
- Multiplication: 3.5 = 15 three times five equals [= ...] fifteen.
- Division: $\frac{3}{5} = 0.6$ three divided by five equals [= . . .] zero point six.
- $(2-3)\cdot 6 + 1 = -5$ two minus three in brackets times six plus one equals minus five.
- $\frac{1-3}{2+4} = -\frac{1}{3}$ one minus three over two plus four equals minus one third.
- $4! = 1 \cdot 2 \cdot 3 \cdot 4$ four factorial.

2 Exponentiation and Roots

- 1. 5^2 five squared
- 2. 5^3 five cubed
- 3. 5^4 five to the (power of) four
- 4. 5^{-1} five to the minus one
- 5. $\sqrt{3}$ the square root of three
- 6. $\sqrt[3]{64}$ the cube root of sixty four
- 7. $\sqrt[5]{32}$ the fifth root of thirty two
- 8. $(1+2)^{2+2}$ one plus two, all to the power of two plus two
- 9. $e^{\pi i} = -1$ e to the (power of) pi i equals minus one

In the complex domain the notation $\sqrt[n]{a}$ is ambiguous, since any non-zero complex number has *n* different *n*-th roots. For example, $\sqrt[4]{-4}$ has four possible values: $\pm 1 \pm i$ (with all possible combinations of signs).

3 Algebraic Expressions

$A = a^2$	capital a equals small a squared					
$A = \sqrt{a}$	capital a equals the square root of small a					
a = x + y	a equals x plus y					
b = x - y	b equals x minus y					
c = x.y.z	c equals x times y times z					
(z+y)z+xy	x plus y in brackets times z plus x y					
$x^2 + y^3 + z^5$	x squared plus y cubed plus z to the (power of) five					
$x^n + y^n = z^n$	x to the n plus y to the n equals z to the n					
$(x-y)^{3m}$	x minus y in brackets to the (power of) three m					
	x minus y, all to the (power of) three m					
$\binom{n}{m}$	(the binomial coefficient) n over m					
$2^{x}3^{y}$	two to the x times three to the y					
$ax^2 + bx +$	c a x squared plus b x plus c					
$\sqrt{x} + \sqrt[3]{y}$	the square root of x plus the cube root of y					
$\sqrt[n]{x+y}$	the n-th root of x plus y					
$\frac{a+b}{c-d}$	a plus b over c minus d					

4 Indices

x zero x one plus y i (capital) R (subscript) i j; (capital) R lower i j (capital) M upper k lower i j; (capital) M superscript k subscript i j sum of a i x to the i for i from zero to n;

$$\sum_{i=0}^{n} a_i x^i$$

 x_0

 $\begin{array}{c} x_1 + y_i \\ R_{ij} \\ M_{ij}^k \end{array}$

sum over i (ranging) from zero to n of a i (times) x to the i

product of b m for m from one to infinity;

product over m (ranging) from one to infinity of b m

q i equals the sum of a i j times b j k for j from one to n;

q i
$$\sum_{i=0}^{n} {n \choose i} x^{i} y^{n-i}$$

 $\prod_{m=1}^{+\infty} b_m$

 $q_i = \sum_{j=1}^n a_{ij} b_{jk}$

q i is equal to the sum over j (ranging) from one to n of a i j times b j k sum of n over i x to the i y to the n minus i for i from zero to n

5 Fractions [= Rational Numbers]

- $\frac{1}{2}$ one half, $\frac{3}{8}$ three eighths
- $\frac{1}{3}$ one third, $\frac{26}{9}$ twenty-six ninths
- $\frac{1}{4}$ one quarter [=one fourth], $\frac{-5}{34}$ minus five thirty-fourths
- $\frac{1}{5}$ one fifth, $2\frac{3}{7}$ two and three sevenths
- $\frac{-1}{17}$ minus one seventeenth, $\frac{1}{5}$ one fifth

6 Complex Numbers

$$i$$
 i
 $3+4i$ three plus four i
 $1-2i$ one minus two i
 $\overline{1-2i} = 1+2i$ the complex conjugate of one minus two i equals one plus two i

• The real part and the imaginary part of 3 + 4i are equal, respectively, to 3 and 4.

7 Inequalities

- x > y x is greater than y
- $x \ge y$ x is greater (than) or equal to y
- x < y x is smaller than y
- $x \le y$ x is smaller (than) or equal to y
- x > 0 x is positive
- $x \ge 0$ x is positive or zero; x is non-negative
- x < 0 x is negative
- $x \le 0$ x is negative or zero

8 Set theory

- 1. $x \in A$ x is an element of A; x lies in A; x belongs to A; x is in A
- 2. $x \notin A$ x is not an element of A; x does not lie in A; x does not belong to A; x is not in A
- 3. $x,y \in A \pmod{x}$ and y are elements of A; . . . lie in A; . . . belong to A; . . . are in A
- 4. $x,y \notin A$ (neither) x nor y is an element of A; . . . lies in A; . . . belongs to A; . . . is in A
- 5. \emptyset the empty set (= set with no elements)
- 6. $A = \emptyset$ A is an empty set
- 7. $A \neq \emptyset$ A is non-empty
- 8. $A \cup B$ the union of (the sets) A and B; A union B
- 9. $A \cap B$ the intersection of (the sets) A and B; A intersection B
- 10. $A \times B$ the product of (the sets) A and B; A times
- 11. $A \cap B = \emptyset$ A is disjoint from B; the intersection of A and B is empty
- 12. $\{x \mid \dots\}$ the set of all x such that . . .
- 13. \mathbb{N} the set of natural numbers, \mathbb{Z} the set of integers
- 14. \mathbb{C} the set of all complex numbers
- 15. \mathbb{Q} the set of all rational numbers
- 16. \mathbb{R} the set of all real numbers
- 17. $A \cup B$ contains those elements that belong to A or to B (or to both).
- 18. $A \cap B$ contains those elements that belong to both A and B
- 19. $A^n = \underbrace{A \times A \times \ldots \times A}_{n-\text{times}}$ contains all ordered n-tuples of elements of A.
- 20. $S \Rightarrow T$ S implies T; if S then T
- 21. $S \Leftrightarrow T$ S is equivalent to T; S iff T
 - $\forall x \in A...$ for each [= for every] x in A...
 - $\exists x \in A...$ there exists [= there is] an x in A (such that) . . .
 - $\exists ! x \in A...$ there exists [= there is] a unique x in A (such that) . . .
 - $\nexists x \in A...$ there is no x in A (such that). . .

9 Limit

By definition, an infinite series of complex numbers $\sum_{n=1}^{\infty} a_n$ converges (to a complex number l) if the sequence of partial sums $s_n = a_1 + a_2 + ... + a_n$ has a finite limit (equal to l); otherwise it diverges.

- $\lim_{x \to 1} f(x) = 2$ the limit of f of x as x tends to one is equal to two.
- What is the sum $1 + 2 + 3 + \cdots$ equal to?

10 Divisibility

The multiples of a positive integer a are the numbers a, 2a, 3a, 4a, ... If b is a multiple of a, we also say that a divides b, or that a is a divisor of b (notation: a|b). This is equivalent to $\frac{b}{a}$ being an integer.

Two integers a, b are congruent modulo a positive integer m if they have the same remainder when divided by m (equivalently, if their difference a - b is a multiple of m).

- $a \equiv b \pmod{m}$ a is congruent to b modulo m
- $a \equiv b(m)$ a is congruent to b modulo m

11 Prime Numbers

An integer n > 1 is a prime (number) if it cannot be written as a product of two integers a, b > 1. If, on the contrary, n = ab for integers a, b > 1, we say that n is a composite number. The list of primes begins as follows:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61...

Note the presence of several "twin primes" (pairs of primes of the form p, p + 2) in this sequence:

11, 13 17, 19 29, 31 41, 43 $59, 61, \dots$

Two fundamental properties of primes:

Theorem 1 There are infinitely many primes.

Theorem 2 Every integer $n \ge 1$ can be written in a unique way as a product of distinct prime powers.

12 Functions

- f(x) f of x
- g(x,y) g of x (comma) y
- h(2x, 3y) h of two x (comma) three y
- $\sin x \quad \sin x$
- $\cos x \operatorname{cosine} \mathbf{x}$
- $\tan x \tan x$
- $\arcsin x \ \operatorname{arc sine} x$
- $\arccos x \ \operatorname{arc cosine } x$
- $\arctan x \arctan x$
- $\sinh x$ hyperbolic sine x
- $\cosh x$ hyperbolic cosine x
- $\tanh x$ hyperbolic $\tan x$
- $\sin x^2$ sine of x squared
- $\sin^2 x$ sine squared of x; sine x, all squared
- $\frac{x+1}{\tan(y^4)}$ x plus one, all over over tan of y to the four
- $3^{x-\cos(2x)}$ three to the (power of) x minus cosine of two x
- $e^{x^3+y^3}$ exponential of x cubed plus y cubed

13 Intervals

- (a, b) open interval a, b
- [a, b] closed interval a, b
- (a, b] half open interval a, b (open on the left, closed on the right)
- [a, b) half open interval a, b (open on the right, closed on the left)

14 Derivatives

- 1. f' f prime; the first derivative of f
- 2. f'' f double prime; the second derivative of f
- 3. f''' the third derivative of f
- 4. $f^{(n)}$ the n-th derivative of f
- 5. $\frac{dy}{dx}$ d y by d x; the derivative of y by x
- 6. $\frac{d^2y}{dx^2}$ the second derivative of y by x; d squared y by d x squared
- 7. $\frac{\partial f}{\partial x}$ the partial derivative of f by x (with respect to x); partial d f by d x
- 8. $\frac{\partial^2 f}{\partial x^2}$ the second partial derivative of f by x (with respect to x); partial d squared f by d x squared
- 9. ∇f nabla f; the gradient of f
- 10. $\triangle f$ delta f

15 Integrals

 $\int f(x) dx$ integral of f of x dx $\int_{a}^{b} t^{2} dt$ integral from a to b of t squared dt $\int \int_{S} h(x, y) dx dy$ double integral over S of h of x y dx dy

16 Greek letters used in mathematics

lpha	alpha	eta	beta	γ	ga	mma	δ	delta
$\epsilon, arepsilon$	epsilon	ζ	zeta	η	et	a	heta, artheta	theta
ι	iota	κ	kappa	λ	la	mbda	μ	mu
u	nu	ξ	xi	0	om	icron	$\pi, arpi$	pi
ho, arrho	rho	σ	sigma	au	ta	u	v	upsilon
$\phi, arphi$	phi	χ	chi	ψ	ps	i	ω	omega
В	Beta	Γ	Gamma		Δ	Delta	Θ	Theta
Λ	Lambda	Ξ	Xi		Π	Pi	Σ	Sigma
Υ	Upsilon	Φ	Phi		Ψ	Psi	Ω	Omega

17 Polynomial equations

A polynomial equation of degree $n \ge 1$ with complex coefficients

$$f(x) = a_0 x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0$$
, where $a_0 \neq 0$

has n complex solutions (= roots), provided that they are counted with multiplicities.

For example, a quadratic equation

$$f(x) = ax^{2} + bx + c = 0 \ (a \neq 0)$$

can be solved by completing the square, i.e., by rewriting the left hand side as

 $a (x + \text{constant})^2 + \text{ another constant.}$

This leads to an equivalent equation

$$a\left(x+\frac{b}{2a}\right)^2 = \frac{b^2-4ac}{4a},$$

whose solutions are

$$x_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a},$$

where $\Delta = b^2 - 4ac \ (= a^2 (x_1 - x_2)^2)$ is the discriminant of the original equation. More precisely,

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}).$$

If all coefficients a, b, c are real, then the sign of Δ plays a crucial¹ rôle²:

- if $\Delta = 0$, then $x_1 = x_2 \ (= \frac{-b}{2a})$ is a double root;
- if $\Delta > 0$, then $x_1 \neq x_2$ are both real;
- if $\Delta < 0$, then $x_1 = \overline{x_2}$ are complex conjugates of each other (and non-real).

¹essential, important

²role or rôle, both are true and have the same pronunciation.