1 Trigonalization

Definition 1 Let $A \in \mathcal{M}_n(\mathbb{K})$. Then A is called **trigonalizable** if there exists an invertible matrix P, that is, $P \in \mathbb{GL}_n(\mathbb{K})$, such that $A = PTP^{-1}$, where T is an upper triangular matrix having the same eigenvalues of A . Or, equivalently, A is similar to a triangular matrix T.

Now, we present Schur Theorem decomposition of a square matrix $A \in \mathcal{M}_n(\mathbb{C})$.

Theorem 2 Any matrix with complex entries is trigonalizable over $\mathcal{M}_n(\mathbb{C})$.

Proof. Let $A \in \mathcal{M}_n(\mathbb{C})$. We will show that A is trigonalizable over $\mathcal{M}_n(\mathbb{C})$. We use induction on *n*. Indeed, for $n = 1$ we have

$$
A = (a_{11}), \text{ where } a_{11} \in \mathbb{C}.
$$

In this case, we write

$$
A = I(a_{11})I^{-1} = PTP^{-1}
$$
 with $P = I = (1)$ and $T = (a_{11}) = A$.

Assume that every matrix $A_1 \in M_n(\mathbb{C})$ is trigonalizable. Let (λ, x) be an eigenpair of A, and let $\{x, u_2, ..., u_n\}$ be a basis of \mathbb{C}^n . We put $U = (x, u_2, ..., u_n)$, it follows that

$$
AU = (Ax \quad Au_2 \quad \dots \quad Au_n) = (\lambda x \quad Au_2 \quad \dots \quad Au_n).
$$

Now, calculate $U^{-1}AU$. In fact, we have

$$
U^{-1} = U^{-1}Ue_1 = e_1,
$$

where $e_1 = (1, 0, ..., 0)$. Therefore,

$$
U^{-1}AU = U^{-1} \left(\begin{array}{cccc} \lambda x & A u_2 & \ldots & A u_n \end{array} \right) = \left(\begin{array}{cccc} \lambda e_1 & U^{-1} A u_2 & \ldots & U^{-1} A u_n \end{array} \right).
$$

Also we obtain

$$
U^{-1}AU = \left(\begin{array}{cccc} \lambda & \times & \dots & \times \\ 0 & * & \dots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & * & \dots & * \end{array}\right) = \left(\begin{array}{cc} \lambda & C \\ 0 & A_1 \end{array}\right) = T_1,
$$

where $C \in M_{1,n-1}(\mathbb{C})$ and $A_1 \in M_{n-1}(\mathbb{C})$. From the hypothesis, there exists an invertible matrix W such that

$$
\left(\begin{array}{cc} 1 & C \\ 0 & W^{-1} \end{array}\right)\left(\begin{array}{cc} \lambda & C \\ 0 & A_1 \end{array}\right)\left(\begin{array}{cc} 1 & 0 \\ 0 & W \end{array}\right)=\left(\begin{array}{cc} \lambda & CW \\ 0 & W^{-1}A_1W \end{array}\right)=\left(\begin{array}{cc} \lambda & CW \\ 0 & T' \end{array}\right).
$$

Hence

$$
A \sim T_1 \sim \left(\begin{array}{cc} \lambda & CW \\ 0 & T' \end{array}\right) = T,
$$

where T is upper triangular. That is, $A \sim T$.

Exercise 3 Trigonalize the following matrix:

$$
A = \left(\begin{array}{cc} 2 & -1 \\ 1 & 4 \end{array}\right).
$$

Then, calculate A^n , for $n \geq 0$.

1. From simple computation, we haev

$$
p_A(x) = (x - 3)^2
$$

:

This means that $\lambda = 3$ is an eigenvalue of A with multiplicity 2, and hence A is not diagonalizable since $A \neq 3I$.

Next, we find the corresponding eigenvectors. In fact, we have

$$
E_{\lambda} = \left\{ (x, y) \in \mathbb{R}^2; \begin{array}{l} 2x - y = 3x \\ x + 4y = 3y \end{array} \right\}
$$

= $\left\{ (x, y) \in \mathbb{R}^2; y = -x \right\}$
= $Vect \left\{ (1, -1) \right\} = Vect \left\{ v_1 \right\}.$

Let v_2 be a nonzero vector for which $\{v_1, v_2\}$ is a basis of \mathbb{R}^2 . For example, we put $v_2 = (1, 1)$, and let

$$
P = \left(\begin{array}{cc} 1 & 1 \\ -1 & 1 \end{array} \right).
$$

Therefore,

$$
P^{-1}AP = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & -2 \\ 0 & 3 \end{pmatrix} = T
$$

That is, $A \sim T$.

Next, we compute A^n : We have

$$
A^n = PT^n P^{-1}.
$$

It suffices to compute T^n : We write T in the form

$$
T = \begin{pmatrix} 3 & -2 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}_D + \begin{pmatrix} 0 & -2 \\ 0 & 0 \end{pmatrix}_N, where N^2 = 0.
$$

Hence

$$
T^{n} = D^{n} + nD^{n-1}N
$$

= $\begin{pmatrix} 3^{n} & 0 \\ 0 & 3^{n} \end{pmatrix} + n \begin{pmatrix} 3^{n-1} & 0 \\ 0 & 3^{n-1} \end{pmatrix} \begin{pmatrix} 0 & -2 \\ 0 & 0 \end{pmatrix}$
= $\begin{pmatrix} 3^{n} & -2n \times 3^{n-1} \\ 0 & 3^{n} \end{pmatrix}$; $n \ge 0$.

Finally, we deduce that

$$
A^{n} = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 3^{n} & -2n \cdot 3^{n-1} \\ 0 & 3^{n} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}
$$

=
$$
\begin{pmatrix} 3^{n} - n \cdot 3^{n-1} & -n \cdot 3^{n-1} \\ n \cdot 3^{n-1} & n \cdot 3^{n-1} + 3^{n} \end{pmatrix}; n \ge 0.
$$

Theorem 4 For any matrix $A \in \mathcal{M}_n(\mathbb{C})$, we have

$$
\det\left(A\right) = \prod_{\lambda \in Sp(A)} \lambda.
$$

Recall that $Sp(A)$ consists of all eigenvalues of A.

Proof. We know that A is trigonalizable, and so there exists an invertible matrix $P \in$ $\mathbb{GL}_{n}\left(\mathbb{C}\right)$ and an upper triangular matrix T such that

$$
A = PTP^{-1} (T = (t_{ij}) \text{ with } t_{ii} \in Sp(A)).
$$

Therefore,

$$
\det(A) = \det(PTP^{-1})
$$

=
$$
\det(P) \det(T) \det(P^{-1})
$$

=
$$
\det(T) = t_{11}t_{22}...t_{nn}
$$

=
$$
\prod_{\lambda_i \in Sp(A)} \lambda_i.
$$

This completes the proof. \blacksquare

Corollary 5 Let $A \in \mathcal{M}_n(\mathbb{C})$. Then

$$
0 \notin Sp(A) \Rightarrow A \text{ is invertible.}
$$

Proof. By Theorem [4,](#page-1-0) if we have $0 \notin Sp(A)$ then $\det(A) \neq 0$, and so A is invertible.