1 Trigonalization

Definition 1 Let $A \in \mathcal{M}_n(\mathbb{K})$. Then A is called **trigonalizable** if there exists an invertible matrix P, that is, $P \in \mathbb{GL}_n(\mathbb{K})$, such that $A = PTP^{-1}$, where T is an upper triangular matrix having the same eigenvalues of A. Or, equivalently, A is similar to a triangular matrix T.

Now, we present Schur Theorem decomposition of a square matrix $A \in \mathcal{M}_n(\mathbb{C})$.

Theorem 2 Any matrix with complex entries is trigonalizable over $\mathcal{M}_n(\mathbb{C})$.

Proof. Let $A \in \mathcal{M}_n(\mathbb{C})$. We will show that A is trigonalizable over $\mathcal{M}_n(\mathbb{C})$. We use induction on n. Indeed, for n = 1 we have

$$A = (a_{11})$$
, where $a_{11} \in \mathbb{C}$.

In this case, we write

$$A = I(a_{11})I^{-1} = PTP^{-1}$$
 with $P = I = (1)$ and $T = (a_{11}) = A$.

Assume that every matrix $A_1 \in M_n(\mathbb{C})$ is trigonalizable. Let (λ, x) be an eigenpair of A, and let $\{x, u_2, ..., u_n\}$ be a basis of \mathbb{C}^n . We put $U = (x, u_2, ..., u_n)$, it follows that

$$AU = (Ax Au_2 \dots Au_n) = (\lambda x Au_2 \dots Au_n).$$

Now, calculate $U^{-1}AU$. In fact, we have

$$U^{-1} = U^{-1}Ue_1 = e_1,$$

where $e_1 = (1, 0, ..., 0)$. Therefore,

$$U^{-1}AU = U^{-1} \left(\begin{array}{ccc} \lambda x & Au_2 & \dots & Au_n \end{array} \right) = \left(\begin{array}{ccc} \lambda e_1 & U^{-1}Au_2 & \dots & U^{-1}Au_n \end{array} \right).$$

Also we obtain

$$U^{-1}AU = \begin{pmatrix} \lambda & \times & \dots & \times \\ 0 & * & \dots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & * & \dots & * \end{pmatrix} = \begin{pmatrix} \lambda & C \\ 0 & A_1 \end{pmatrix} = T_1,$$

where $C \in M_{1,n-1}(\mathbb{C})$ and $A_1 \in M_{n-1}(\mathbb{C})$. From the hypothesis, there exists an invertible matrix W such that

$$\begin{pmatrix} 1 & C \\ 0 & W^{-1} \end{pmatrix} \begin{pmatrix} \lambda & C \\ 0 & A_1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & W \end{pmatrix} = \begin{pmatrix} \lambda & CW \\ 0 & W^{-1}A_1W \end{pmatrix} = \begin{pmatrix} \lambda & CW \\ 0 & T' \end{pmatrix}.$$

Hence

$$A \sim T_1 \sim \left(\begin{array}{cc} \lambda & CW \\ 0 & T' \end{array} \right) = T,$$

where T is upper triangular. That is, $A \sim T$.

Exercise 3 Trigonalize the following matrix:

$$A = \left(\begin{array}{cc} 2 & -1 \\ 1 & 4 \end{array}\right).$$

Then, calculate A^n , for $n \ge 0$.

1. From simple computation, we have

$$p_A(x) = (x-3)^2$$

This means that $\lambda = 3$ is an eigenvalue of A with multiplicity 2, and hence A is not diagonalizable since $A \neq 3I$.

Next, we find the corresponding eigenvectors. In fact, we have

$$E_{\lambda} = \left\{ (x, y) \in \mathbb{R}^{2}; \begin{array}{l} 2x - y = 3x \\ x + 4y = 3y \end{array} \right\}$$
$$= \left\{ (x, y) \in \mathbb{R}^{2}; y = -x \right\}$$
$$= Vect \left\{ (1, -1) \right\} = Vect \left\{ v_{1} \right\}.$$

Let v_2 be a nonzero vector for which $\{v_1, v_2\}$ is a basis of \mathbb{R}^2 . For example, we put $v_2 = (1, 1)$, and let

$$P = \left(\begin{array}{cc} 1 & 1\\ -1 & 1 \end{array}\right).$$

Therefore,

$$P^{-1}AP = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & -2 \\ 0 & 3 \end{pmatrix} = T$$

That is, $A \sim T$.

Next, we compute A^n : We have

$$A^n = PT^n P^{-1}.$$

It suffices to compute T^n : We write T in the form

$$T = \begin{pmatrix} 3 & -2 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}_D + \begin{pmatrix} 0 & -2 \\ 0 & 0 \end{pmatrix}_N, \text{ where } N^2 = 0.$$

Hence

$$T^{n} = D^{n} + nD^{n-1}N$$

= $\begin{pmatrix} 3^{n} & 0 \\ 0 & 3^{n} \end{pmatrix} + n \begin{pmatrix} 3^{n-1} & 0 \\ 0 & 3^{n-1} \end{pmatrix} \begin{pmatrix} 0 & -2 \\ 0 & 0 \end{pmatrix}$
= $\begin{pmatrix} 3^{n} & -2n \times 3^{n-1} \\ 0 & 3^{n} \end{pmatrix}$; $n \ge 0$.

Finally, we deduce that

$$A^{n} = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 3^{n} & -2n \cdot 3^{n-1} \\ 0 & 3^{n} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$
$$= \begin{pmatrix} 3^{n} - n \cdot 3^{n-1} & -n \cdot 3^{n-1} \\ n \cdot 3^{n-1} & n \cdot 3^{n-1} + 3^{n} \end{pmatrix}; n \ge 0.$$

Theorem 4 For any matrix $A \in \mathcal{M}_n(\mathbb{C})$, we have

$$\det\left(A\right) = \prod_{\lambda \in Sp(A)} \lambda.$$

Recall that Sp(A) consists of all eigenvalues of A.

Proof. We know that A is trigonalizable, and so there exists an invertible matrix $P \in \mathbb{GL}_n(\mathbb{C})$ and an upper triangular matrix T such that

$$A = PTP^{-1} \ (T = (t_{ij}) \ \text{with} \ t_{ii} \in Sp(A) \).$$

Therefore,

$$det (A) = det (PTP^{-1})$$

= det (P) det (T) det (P^{-1})
= det (T) = t_{11}t_{22}...t_{nn}
=
$$\prod_{\lambda_i \in Sp(A)} \lambda_i.$$

This completes the proof. \blacksquare

Corollary 5 Let $A \in \mathcal{M}_n(\mathbb{C})$. Then

$$0 \notin Sp(A) \Rightarrow A \text{ is invertible.}$$

Proof. By Theorem 4, if we have $0 \notin Sp(A)$ then det $(A) \neq 0$, and so A is invertible.