1 Cayley-Hamilton Theorem

The goal of this section is to prove the famous Cayley-Hamilton Theorem, which asserts that if $p(x)$ is the characteristic polynomial of an n by n matrix A, then $p(A) = 0$.

Definition 1 Let $p(x) = a_0 + a_1x + ... + a_kx^k \in \mathbb{K}[X]$, and let $A \in \mathcal{M}_n(\mathbb{K})$. Define the matrix $p(A)$ by

$$
p(A) = a_0 I_n + a_1 A + \dots + a_k A^k.
$$

In other words, $p(A)$ is the matrix obtained by replacing x^i by A^i , for each $i = 0, 1, ..., k$, in the expression of p, with the convention $A^0 = I_n$.

Remark 2 If we replace x by A in the formula of the characteristic polynomial $p_A(x)$, which gives

 $p_A(A) = \det(A - A) = \det(0) = 0.$

This is impossible since $p_A(A) \in \mathcal{M}_n(\mathbb{K})$ and $\det(A - A) = \det(0) \in \mathbb{K}$.

Let us recall the statement of one of the very classical theorem.

Theorem 3 (Cayley-Hamilton Theorem) Let $A \in \mathcal{M}_n(\mathbb{R})$ and let $p_A(x)$ be its characteristic polynomial. Then $p_A(A) = 0$.

In the proof, we need to use the following lemma.

Lemma 4 For each $A \in \mathcal{M}_n(\mathbb{R})$, we have

$$
A\left(\text{com}\left(A\right)\right)^{t} = \left(\text{com}\left(A\right)\right)^{t} A = \det A I_{n}.
$$
\n⁽¹⁾

In particular, if A is invertible, its inverse is given by

$$
A^{-1} = \frac{1}{\det(A)} \left(\text{com}(A)\right)^t.
$$

For example, if $A =$ $\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \in \mathcal{M}_2(\mathbb{R})$, we have

$$
A. (com (A))^{t} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} ad - bc & 0 \\ 0 & ad - bc \end{pmatrix}
$$

$$
= (ad - bc) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = det (A) I_2.
$$

Proof of Cayley-Hamilton Theorem. Let

$$
A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \in M_n(\mathbb{R}).
$$

Assume further that $p_A(x) = x^n + c_{n-1}x^{n-1} + c_{n-2}x^{n-2} + ... + c_1x + c_0$. Applying Lemma [4](#page-0-0) using the matrix $xI_n - A$, we obtain

$$
(xI_n - A) com (xI - A)t = det (xI_n - A) I_n,
$$

where

$$
xI - A = \begin{pmatrix} x - a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & x - a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \dots & \vdots \\ a_{n1} & a_{n2} & \dots & x - a_{nn} \end{pmatrix}.
$$

Hence

$$
com(xI - A) = \begin{pmatrix} p_{n-1}^{(1,1)}(x) & p_{n-1}^{(1,2)}(x) & \dots & p_{n-1}^{(1,n)}(x) \\ p_{n-1}^{(2,1)}(x) & p_{n-1}^{(2,2)}(x) & \dots & p_{n-1}^{(2,n)}(x) \\ \vdots & \vdots & \vdots & \vdots \\ p_{n-1}^{(n,1)}(x) & p_{n-1}^{(n,2)}(x) & \dots & p_{n-1}^{(n,n)}(x) \end{pmatrix},
$$

where $p_{n-1}^{(i,j)}$ are polynomials of degree $n-1$. Setting

com
$$
(xI - A)^t = B_0 + xB_1 + x^2B_2 + ... + x^{n-1}B_{n-1}
$$
, where $(B_i)_{i=0,1,...,n-1} \in M_n(\mathbb{R})$.

We deduce that

$$
(xI - A) (B_0 + xB_1 + x^2B_2 + ... + x^{n-1}B_{n-1}) = \det (xI_n - A) . I_n
$$

= $x^n I_n + c_{n-1}x^{n-1}I_n + ... + c_1xI_n + c_0I_n.$

It follows that

$$
x^{n}B_{n-1} + x^{n-1}(B_{n-2} - AB_{n-1}) + \dots + x(B_0 - AB_1) - AB_0
$$

= $x^{n}I_n + c_{n-1}x^{n-1}I_n + \dots + c_1xI_n + c_0I_n.$

Then

$$
\begin{cases}\nB_{n-1} = I_n \\
B_{n-2} - AB_{n-1} = c_{n-1} x^{n-1} I_n \\
\vdots \\
B_0 - AB_1 = c_1 I_n \\
-AB_0 = c_0 I_n.\n\end{cases}
$$

Which gives

$$
p_A(A) = c_0I_n + c_1A + ... + c_{n-1}A^{n-1} + A^n
$$

= -AB₀ + A (B₀ - AB₁) + ... + Aⁿ⁻¹ (B_{n-2} - AB_{n-1}) + AⁿB_{n-1}
= 0.

This completes the proof. ■

 $\bf{Example\ 5}$ Let $A =$ $\begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix}$. Find a polynomial $p(x)$ of degree 2 such that $p(A) = 0$. Ans. $p(x) = x^2 - 3x - 2$.

Corollary 6 Let $A \in \mathcal{M}_n(\mathbb{R})$ with

$$
p_A(x) = x^n + c_{n-1}x^{n-1} + c_{n-2}x^{n-2} + \dots + c_1x + c_0,
$$

where $c_0 \in \mathbb{R}^*$ and $c_1, c_2, ..., c_{n-1} \in \mathbb{R}$. Then

$$
A^{-1} = \frac{-1}{c_0} \left(\sum_{i=1}^{n-1} c_i A^{i-1} + A^{n-1} \right).
$$

Proof. Since

$$
p_A(A) = c_0 I + c_1 A + c_2 A^2 + \dots + c_{n-1} A^{n-1} + A^n = 0,
$$

it follows that

$$
(c_1I + c_2A + \dots + c_{n-1}A^{n-2} + A^{n-1})A = -c_0I,
$$

and so

$$
A^{-1} = \frac{-1}{c_0} \left(c_1 I + c_2 A + \dots + c_{n-1} A^{n-2} + A^{n-1} \right).
$$

This completes the proof. \blacksquare

Example 7 Using Cayley-Hamilton Theorem, calculate the inverse of the matrix

$$
A = \left(\begin{array}{rrr} 1 & 1 & 0 \\ -1 & 0 & 0 \\ 2 & 0 & -1 \end{array} \right).
$$

Solution. First, let us calculate $p_A(x)$:

$$
p_A(x) = \begin{vmatrix} x+1 & 1 & 0 \\ -1 & x & 0 \\ 2 & 0 & x+1 \end{vmatrix}
$$

= $(x-1)[x(x+1)] + (x+1)$
= $(x-1)(x^2 - x + 1)$
= $x^3 + 1$.

Therefore, $p_A(x) = x^3 + 1$, and hence

$$
p_A(A) = 0 \Rightarrow A^3 + I_3 = 0
$$

$$
\Rightarrow A^{-1} = -A^2.
$$

Finally, we get

$$
A^{-1} = -\begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & 0 \\ 2 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & 0 \\ 2 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & -2 & -1 \end{pmatrix}.
$$