
1 Cayley-Hamilton Theorem

The goal of this section is to prove the famous Cayley-Hamilton Theorem, which asserts that
if p(x) is the characteristic polynomial of an n by n matrix A, then p(A) = 0.

De�nition 1 Let p (x) = a0 + a1x + ::: + akx
k 2 K [X], and let A 2 Mn (K). De�ne the

matrix p (A) by
p (A) = a0In + a1A+ :::+ akA

k:

In other words, p (A) is the matrix obtained by replacing xi by Ai, for each i = 0; 1; :::; k, in
the expression of p, with the convention A0 = In.

Remark 2 If we replace x by A in the formula of the characteristic polynomial pA (x), which
gives

pA (A) = det (A� A) = det (0) = 0.
This is impossible since pA (A) 2Mn (K) and det (A� A) = det (0) 2 K.

Let us recall the statement of one of the very classical theorem.

Theorem 3 (Cayley-Hamilton Theorem) Let A 2Mn (R) and let pA (x) be its charac-
teristic polynomial. Then pA (A) = 0:

In the proof, we need to use the following lemma.

Lemma 4 For each A 2Mn (R), we have

A (com (A))t = (com (A))tA = detAIn. (1)

In particular, if A is invertible, its inverse is given by

A�1 =
1

det (A)
(com (A))t .

For example, if A =
�
a b
c d

�
2M2 (R), we have

A: (com (A))t =

�
a b
c d

��
d �b
�c a

�
=

�
ad� bc 0
0 ad� bc

�
= (ad� bc)

�
1 0
0 1

�
= det (A) I2:

Proof of Cayley-Hamilton Theorem. Let

A =

0BBB@
a11 a12 : : : a1n
a21 a22 : : : a2n
...

...
. . .

...
an1 an2 : : : ann

1CCCA 2Mn (R) .
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Assume further that pA (x) = xn + cn�1xn�1 + cn�2xn�2 + :::+ c1x+ c0. Applying Lemma 4
using the matrix xIn � A, we obtain

(xIn � A) com (xI � A)t = det (xIn � A) In,

where

xI � A =

0BBB@
x� a11 a12 : : : a1n
a21 x� a22 : : : a2n
...

... : : :
...

an1 an2 : : : x� ann

1CCCA .
Hence

com (xI � A) =

0BBB@
p
(1;1)
n�1 (x) p

(1;2)
n�1 (x) : : : p

(1;n)
n�1 (x)

p
(2;1)
n�1 (x) p

(2;2)
n�1 (x) : : : p

(2;n)
n�1 (x)

...
...

...
...

p
(n;1)
n�1 (x) p

(n;2)
n�1 (x) : : : p

(n;n)
n�1 (x)

1CCCA ,
where p(i;j)n�1 are polynomials of degree n� 1. Setting

com (xI � A)t = B0 + xB1 + x2B2 + :::+ xn�1Bn�1, where (Bi)i=0;1;:::;n�1 2Mn (R) .

We deduce that

(xI � A)
�
B0 + xB1 + x

2B2 + :::+ x
n�1Bn�1

�
= det (xIn � A) :In
= xnIn + cn�1x

n�1In + :::+ c1xIn + c0In:

It follows that

xnBn�1 + x
n�1 (Bn�2 � ABn�1) + :::+ x (B0 � AB1)� AB0

= xnIn + cn�1x
n�1In + :::+ c1xIn + c0In.

Then 8>>>>><>>>>>:

Bn�1 = In
Bn�2 � ABn�1 = cn�1xn�1In

...
B0 � AB1 = c1In
�AB0 = c0In.

Which gives

pA (A) = c0In + c1A+ :::+ cn�1A
n�1 + An

= �AB0 + A (B0 � AB1) + :::+ An�1 (Bn�2 � ABn�1) + AnBn�1
= 0:

This completes the proof.

Example 5 Let A =

�
0 1
2 3

�
. Find a polynomial p(x) of degree 2 such that p(A) = 0.

Ans. p(x) = x2 � 3x� 2:
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Corollary 6 Let A 2Mn (R) with

pA (x) = x
n + cn�1x

n�1 + cn�2x
n�2 + :::+ c1x+ c0,

where c0 2 R� and c1; c2; :::; cn�1 2 R. Then

A�1 =
�1
c0

 
n�1X
i=1

ciA
i�1 + An�1

!
:

Proof. Since
pA (A) = c0I + c1A+ c2A

2 + :::+ cn�1A
n�1 + An = 0;

it follows that �
c1I + c2A+ :::+ cn�1A

n�2 + An�1
�
A = �c0I;

and so
A�1 =

�1
c0

�
c1I + c2A+ :::+ cn�1A

n�2 + An�1
�
:

This completes the proof.

Example 7 Using Cayley-Hamilton Theorem, calculate the inverse of the matrix

A =

0@ 1 1 0
�1 0 0
2 0 �1

1A :
Solution. First, let us calculate pA (x) :

pA (x) =

�������
+

x� 1
�
1

+

0
�1 x 0
2 0 x+ 1

�������
= (x� 1) [x (x+ 1)] + (x+ 1)
= (x� 1)

�
x2 � x+ 1

�
= x3 + 1:

Therefore, pA (x) = x3 + 1, and hence

pA (A) = 0) A3 + I3 = 0

) A�1 = �A2:

Finally, we get

A�1 = �

0@ 1 1 0
�1 0 0
2 0 �1

1A0@ 1 1 0
�1 0 0
2 0 �1

1A =

0@ 0 �1 0
1 1 0
0 �2 �1

1A :
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