Dopartmont of Mathomatics English 1 By Dr. Bellaouar Djamel	Master 1	2019-2020
 Problem. Complete the follow mathematical notions. 1) N The set of	ving sentences by usin	g the correspondant
3) \mathbb{R} The set of	numbers	
5) $ x $ the	of a real or complex numbers	oers x.
6)] <i>a</i> , <i>b</i> [an open	, [<i>a</i> , <i>b</i>] a closed	
7) \overline{z} The of a . 8) \mathbb{R}^n The real euclidean space	of	nber <i>z</i> .
9) $C([a,b])$ space of real or complex	on	the interval [<i>a</i> , <i>b</i>].
10) $C^m([a,b])$ Space of <i>m</i> -time 11) $L^2[a,b]$ Space of real- or compl	S lex	· · · · · · · · · · · · · · · · · · ·
12) $\{\alpha_1, \alpha_2,, \alpha_m\}$: The set of <i>m</i> .		
A mapping with	<i>X</i> and	in <i>Y</i>
	$f: X \longrightarrow Y$	
What the meaning of these symbols ?	,	
\in	$\subset \cup \cap$	
The , the	and	
We denote by $A^t A^* A^{-1} \mathrm{d}$	let (A) Cond (A)	$\rho(A)$
The, and the of a ma	atrix A.	,

<,> : on a linear space or

 $\langle x, y \rangle$: between x and y and for the space C([a,b]) the between f and g is given by

$$\langle f,g \rangle = \int_{a}^{b} f(x) g(x) dx$$

$$p_A(\lambda) = (\lambda - 2)^3$$

...Binomial....

 $(a+b)^{n} = a^{n} + na^{n-1}b + \frac{n(n-1)}{2!}a^{n-2}b^{2} + \dots + nab^{n-1} + b^{n}$

Integration by Integration by

The of x^2 in $(2+3x)^2$ is 9.

Factorizing a polynomial is the opposite of the

..... and ...

(a + b) (c + d) = ac + ad + bc + bd $(a - b) (a + b) = a^2 - b^2$ $(a \pm b)^2 = a^2 \pm 2ab + b^2$

A equation is of the form :

 $y = ax^2 + bx + c$

Where *a*, *b* and *c* are constants.

A has the general form :

$$p_n(x) = a_0 + a_1 x + \dots + a_n x^n$$

The polynomial has is x^n if its highest is x^n

Thesign is defined as

$$\sum_{i=1}^{n} f(i) = f(1) + f(2) + \dots + f(n-1) + f(n)$$

The notation is defined as follows

n! = n.(n-1).(n-2)...3.2.1, where *n* is an integer

The of a function is denoted $f^{-1}(x)$ and has the property that

 $f^{-1}(f(x)) = f(f^{-1}(x)) = x.$

The or (.........).. of a function f(x) are the values of x when f(x) = 0.

A function is if f(-x) = f(x) and if f(-x) = -f(x)

A has the general form

$$y = mx + a,$$

A fundamental identity is

 $\cos^2 x + \sin^2 x = 1$

..... functions:

$$chx = \frac{e^x + e^{-x}}{2}$$
 $shx = \frac{e^x - e^{-x}}{2}$

..... rule

$$[f(g(x))]' = g'(x) f'(g(x))$$

The of an equation or inequality in one unknown, say x, is the collection of all numbers that make the equation or inequality a true statement. Some times this set of numbers is called the set.

Any set T of natural numbers contains a smallest element.

Theorem. The product of finitely many compact spaces is Theorem • Any nonempty subset of the numbers is countable. • Any subset of a countable set is **Theorem :** The set of real numbers R is not **Theorem :** An set in R is the union of a countable family of disjoint intervals. Every of a convergent sequence converges to the same limit. _____ _____ - A product is if and only if both factors are of like • x < y : x is than y, x > y : x is than y. $(x-1)^2 + (y-1)^2 = 9$ 4

Lemma : A convergent is bounded.

Definitions

Thefunction, denoted by *log*, is defined by the following

$$\log x = \int_{1}^{x} \frac{1}{t} dt, \ x > 0$$

The of the logarithm function is called the and is denoted by *exp*.

Five laws

The limit of a sum is the of the limits.
 The limit of a difference is the of the limits.
 The limit of a constant times a function is the the limit of the function.
 The limit of a product is the of the limits.
 The limit of a quotient is the of the limits (provided that the limit of the denominator is not 0)

Direct property If f is a polynomial or a rational function and a is in the domain of f, then

$$\lim_{x \longrightarrow a} f\left(x\right) = f\left(a\right)$$

Definition A function *f* is from the at a number *a* if

$$\lim_{x \to a^+} f(x) = f(a)$$

and is from the at *a* if :

$$\lim_{x \to a^{-}} f(x) = f(a)$$

Definition A function *f* is on an interval if it isat every number in the interval.

The Product Rule If f and g are both, then (f.g)' = f'g + g'f

Prove that the area of a with r is $S = \pi r^2$

Find the of convergence and the of convergence of the series

$\sum_{i=1}^{\infty}$	$(-3)^n x^n$
$\sum_{n=0}$	$\sqrt{n+1}$

Find a series representation for the function and determine the interval of convergence.

$$f\left(x\right) = \frac{x}{1-x}$$

Use differentiation to find a series representation for

$$f\left(x\right) = \frac{1}{\left(1+x\right)^2}$$

What is the of convergence?

Definition A *E* is called if and only if every Cauchy sequence in *E* converges to an element *x* of the space *E*.

Definition. In an ordered we define the $\dots /a/of a$ as :

$$|a| = \begin{cases} a ; a > 0 \\ -a ; a < 0 \\ 0 ; a = 0 \end{cases}$$

Each real number *x* has a corresponding, defined as

$$|x| = \max\{x, -x\}$$

• $|x + y| \le |x| + |y|$ is called the

The of *z* is

$$|z| = \sqrt{x^2 + y^2}$$

and then we have the d(a, b) = |a - b| between *a* and *b*.

$$\lim_{n \longrightarrow \infty} a_n = a$$

and also we say :

 $a_n \longrightarrow a \ (a_n \text{ tends to } a)$

as n to ∞

Prove that a convergent of real numbers is a Cauchy sequence.

Prove that if $p \ge 2$, then the series

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

is Discuss the of the series

$$\sum_{n=1}^{\infty} \frac{n^n}{n!}$$

Theorem (Least Upper Bound Principle). *A set of reals which is bounded above has the*

The satisfies

$$\begin{aligned} \|x\| \ge 0, \qquad \|x\| = 0 \Leftrightarrow x = 0 \in \mathbb{R}^n \\ \|\lambda x\| = |\lambda| \|x\| \\ \|x + y\| \le \|x\| + \|y\| \end{aligned}$$

and the satisfies

$$\begin{aligned} d(x,y) &\geq 0, \qquad d(x,y) = 0 \Leftrightarrow x = y \\ d(x,y) &= d(y,x) \\ d(x,z) &\leq d(x,y) + d(y,z). \end{aligned}$$
$$\begin{aligned} x^{(n)} &\longrightarrow x \text{ in } \mathbb{R}^p \text{ iff } \left\| x^{(n)} - x \right\| \longrightarrow 0 \text{ in } \mathbb{R} \end{aligned}$$

Definition. A map $T : (X, d) \rightarrow (X, d)$ on a metric space (X, d) is a if and only if for some $k, 0 \le k < 1$

$$\forall x, y \in X : d(Tx, Ty) \le kd(x, y)$$

Theorem (...... Mapping Theorem). Suppose that $T : (X, d) \rightarrow (X, d)$ is a on a (non-empty) complete metric space (X, d). Then *T* has a fixed point.

Let *A* and *B* be nonempty subsets of a space *X*, and define

$$A + B = \{x + y; x \in A \text{ and } y \in B\}$$

Prove that

(*i*) if A is open, then A + B is,

(*ii*) if A is compact and B is closed, then A + B is

The real number θ satisfying the equations

$$x = r \cos \theta$$
 and $y = r \sin \theta$

is called an of *z*, and denoted by *arg z*. Hence we can write *z* in form :

$$z = r(\cos \theta + i \sin \theta).$$

.....formula:

 $(\cos heta+i\sin heta)^n=\cos n heta+i\sin n heta$ for every $n\in\mathbb{N}$ and $heta\in\mathbb{R}$

Find all the roots of the:

$$z^n = a + ib; a, b \in \mathbb{R}$$

Suppose that z = x + iy, where x, y are Then the function exp(z) is defined for every number z by

$$e^z = e^x \left(\cos y + i \sin y\right)$$

The fraction expansion :

$$\sqrt{2} = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \dots}}}$$

Show that the series $\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$

is

$\mathbf{A}^n = \underbrace{\mathbf{A}\mathbf{A}\cdots\mathbf{A}}_{n \text{ times}}.$

Matrix Inversion

• A matrix A is said to be if there exists B such that $A.B = B.A = I_n$

B is denoted A^{-1} and is unique.

• If *det*(*A*) = 0, then the matrix is not(is)

$$A^{-1} = \frac{1}{\det\left(A\right)}C^{t}$$

A vector *v* is a of the vectors *x*, *y* and *z* if it can be written as :

$$v = \alpha x + \beta y + \gamma z ;$$

where α, β, γ are constants

A set of vectors *u*, *v*, *w* are linearly if the only constants α , β , γ that satisfy

$$\alpha u + \beta v + \gamma w = 0$$

are $\alpha = \beta = \gamma = 0$.

Determine whether or not the set *B* is linearly

• When *A* is a square matrix, each of the following statements is equivalent to saying that *A* is

- The columns of *A* form a linearly independent set.
- The rows of A form a linearly independent set.

The set

$$\left\{1, x, x^2, \dots, x^n\right\}$$

is a for the vector space of having degree *n* or less.

The of a vector space V is defined by : dim V = number of vectors in any basis for V.

The defined by :

$$\mathbf{x}^T \mathbf{y} = \sum_{i=1}^n x_i y_i \in \Re$$
 and $\mathbf{x}^* \mathbf{y} = \sum_{i=1}^n \bar{x}_i y_i \in \mathcal{C}$

Determine the (......) polynomial for the matrix

$$\mathbf{A} = \begin{pmatrix} 5 & 1 & 2 \\ -4 & 0 & -2 \\ -4 & -1 & -1 \end{pmatrix}$$

• The base of the, named in honor of Euler. It appears in many mathematical contexts involving, and, and can be defined by

$$e = \lim_{n \longrightarrow +\infty} \left(1 + \frac{1}{n} \right)^{r}$$

The mean value Theorem

The Fundamental Theorem of Algebra

Every of degree *n*, with $n \ge 1$, has at least one zero in the system of numbers.

...... Set

A set of a H satisfying :

$$\langle e_i, e_j \rangle = \begin{cases} 1 \ ; i = j \\ 0 \ ; \ i \neq j \end{cases}$$

- equation :

A *differential equation* involving a function of more than one variable, and hence partial derivatives.

-: A linear combination of nonnegative, integer powers of a variable (or unknown) *x*,

$$p(x) = a_0 + a_1 x + \dots + a_n x^n$$

Given two sets, A and B, their, D = A - B, is the set of all elements of A not found in B.

Given two sets, A and B, their is defined as $A \setminus B = (A - B) \cup (B - A)$ - function : The *characteristic function* of a set A is defined by

 $x_A(x) = \begin{cases} 1 ; x \in A \\ 0 ; x \notin A \end{cases}$

Matrix Decomposition Theorem

$$A = PDP^{-1}$$

where *D* is a matrix.

Absolute value of an operator

Let *A* be a bounded linear operator on a Hilbert space, *H*. Then thevalue of *A* is given by :

$$|A| = \sqrt{A^*A}$$

where A^* is the of A.

$$\Delta_a = |x - a|$$

The quotient

$$\delta_a = \frac{\Delta_a}{|a|}$$

is called the error.

- series : A series that alternates signs, *i.e.*, of the form $\sum (-1)^n a_n \ ; a_n \ge 0$

Banach space : A *vector space* which is *complete* in the *metric* defined by its norm.

A subset *E* of a *vector space V* is called a of *V* if each *vector* $x \in V$ can be uniquely written in the form :

$$x = \sum_{i=1}^{n} \alpha_i e_i \; ; e_i \in E$$

Bounded linear from a *normed* linear space *E* to another *normed* linear space *F* is a map $T: E \rightarrow F$ which satisfies

(i) $T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$; for all $x, y \in E, \alpha, \beta \in \mathbb{R}$; (ii) $||T(x)||_F \leq c ||x||_E$

for some constant $c \ge 0$, for all $x \in E$;

Boundedness is equivalent to

Complete space

The: f * g of two functions f and g is given by :

$$(f * g)(x) = \int f(x - y) g(y) dy$$

Let { $e_1, e_2, ...$ } be an *orthonormal basis* in a *Hilbert space* (*H*,<,>). Then every $x \in H$ can be written as a series

$$x = \sum_{i \in I} \langle x, e_i \rangle e_i$$

The coefficients $\langle x, e_i \rangle$ are called the *Fourier* of *x*.

The norm satisfies

$$\|Ax\| \le \|A\| \cdot \|x\|; \forall x \in \mathbb{R}^n$$

Theorem : Every complex is similar to an upper triangular matrix

Algebraic number : A complex number which is a zero of a with rational coefficients

An	bound on a set <i>S</i> of real numbers is a number <i>u</i> so that $u \ge s$	for all
$s \in S$. If such a u exis	ts, S is said to be bounded by u.	

..... set : A set denoted Ø which has no elements.

.....: Two sets *A* and *B* which have the **same** elements; that is, if for all $x, x \in A$ $x \in B$.

.....sets : Two sets A and B such that there exists a bijection $f: A \rightarrow B$.

The differential equation :

$$ay'' + by' + cy = f(x)$$

has the solution

$$y\left(x\right) = y_{h}\left(x\right) + y_{p}\left(x\right)$$

where $y_h(x)$ is the solution to the homogeneous equation and $y_p(x)$ is a solution to the complete equation.

Solution

- 1) \mathbb{N} The set of natural numbers
- 2) \mathbb{Z} The set of integers.
- 3) \mathbb{R} The set of ... real. numbers
- 4) \mathbb{C} The set of ... complex numbers
- 5) |x| ... the absolute value of a real or complex numbers x.
- 6)]*a*,*b*[an open ... interval., [*a*,*b*] a closed ... interval
- 7) \overline{z} The ... Conjugate ... of a ... complex ... number z.
- 8) \mathbb{R}^n The real euclidean space of ... *n*-dimensional....
- 9) C([a,b]) space of real or complex ... continuous functions...on the interval [a,b].
- 10) $C^{m}([a,b])$ Space of *m*-times ... continuously differentiable functions.
- 11) $L^{2}[a, b]$ Space of real- or complex ... square-integrable functions
- 12) $\{\alpha_1, \alpha_2, ..., \alpha_m\}$: The set of m elements....

A mapping with domain X and range in Y

What the meaning of these symbols ?

The ...element inclusion... and the ...set inclusion..., ... union... and ... intersection ...

We denote by

 $A^{t} A^{*} A^{-1} \det(A) Cond(A) \rho(A)$

The transpose, adjoint, inverse, determinant, condition number and the spectral radius of a matrix *A*.

<,> :scalar product.... on a linear space orinner product...

 $\langle x, y \rangle$: is the inner product between x and y and for the space C([a,b]) the inner product between f and g is given by

$$\langle f,g \rangle = \int_{a}^{b} f(x) g(x) dx$$

...Binomial..... coefficients :

$$\left(\begin{array}{c}m\\n\end{array}\right) = \frac{m!}{n! \left(m-n\right)!}$$

The opposite of a derivative is the indefinite integral..... The indefinite integral of a function f(x) is denoted,

$$\int f(x) \, \mathrm{d}x.$$

integration.... is linear, that means :

$$\int \left[\alpha f(x) + \beta g(x)\right] dx = \alpha \int f(x) dx + \beta \int g(x) dx$$

Eigenvalues and Eigenvectors. Consider a square matrix *A*. A nonzero **vector**... *x* is an ...**Eigenvector**... of the matrix with ...**Eigenvalue**... λ if $Ax = \lambda x$

$$p_A(\lambda) = (\lambda - 2)^3$$

We see that $\lambda = 2$ is an **Eigenvalue**.... of ...**multiplicity**.... 3.

...Binomial.... Expansion

 $(a+b)^n = a^n + na^{n-1}b + \frac{n(n-1)}{2!}a^{n-2}b^2 + \dots + nab^{n-1} + b^n$

Integration by ...substitution..., Integration by ...parts

The coefficient of x^2 in $(2+3x)^2$ is 9.

Factorizing a polynomial is the opposite of the ... expansion...

expansion. and ... Factorization

$$(a + b) (c + d) = ac + ad + bc + bd$$

 $(a - b) (a + b) = a^2 - b^2$
 $(a \pm b)^2 = a^2 \pm 2ab + b^2$

A .. quadratic.. equation is of the form :

$$y = ax^2 + bx + c$$

Where *a*, *b* and *c* are constants.

A ... polynomial..... has the general form :

$$p_n(x) = a_0 + a_1 x + \dots + a_n x^n$$

The polynomial has ... degree... *n* if its highest power is x^n

Thesummation.....sign is defined as

$$\sum_{i=1}^{n} f(i) = f(1) + f(2) + \dots + f(n-1) + f(n)$$

The factorial. notation is defined as follows

n! = n.(n-1).(n-2)...3.2.1 where *n* is an integer

The ... inverse.. of a function is denoted $f^{-1}(x)$ and has the property that

$$f^{-1}(f(x)) = f(f^{-1}(x)) = x$$

The **roots** or (zeros).. of a function f(x) are the values of x when f(x) = 0.

A function is even if f(-x) = f(x) and ... odd.... if f(-x) = -f(x)

A ...line.... has the general form

$$y = mx + a$$

Where *a* and *m* are real numbers and *m* is the slope of the ...line.

A fundamental trigonometric identity is

$$\cos^2 x + \sin^2 x = 1$$

hyperbolic functions

$$chx = \frac{e^x + e^{-x}}{2}$$
 $shx = \frac{e^x - e^{-x}}{2}$

chain.. rule

$$[f(g(x))]' = g'(x) f'(g(x))$$

The **solution.** of an equation or inequality in one unknown, say x, is the collection of all numbers that make the equation or inequality a true statement. Some times this set of numbers is called the **...solution. set**.

Any nonempty set T of natural numbers contains a smallest element.

Theorem The product of finitely many compact spaces is **compact Theorem**

- Any nonempty subset of the ...natural... numbers is countable.
- Any subset of a countable set is ...countable.

Theorem : The set of real numbers R *is not countable.* **Theorem :** An **open** set in R is the union of a countable family of disjoint **open** intervals.

Every subsequence of a convergent sequence converges to the same limit.

- A product is **positive** if and only if both factors are of like **sign...**

- x < y : x is strictly less than y, x > y : x is strictly larger than y.
- $x \le y : x$ is less or equals $y, x \ge y : x$ is larger or equals y.

The circle.. with center (1,1) and radius 3 has the equation :

 $(x-1)^2 + (y-1)^2 = 9$

Lemma : A convergent ... sequence .. is bounded.

Definitions

The **natural logarithm function**, denoted by *log*, is defined by the following **formula**...:

$$\log x = \int_{1}^{x} \frac{1}{t} dt, \ x > 0$$

- The inverse.. of the logarithm function is called the **exponential function** and is denoted by *exp*.

five laws

1. Sum Law The limit of a sum is the sum. of the limits.

2. Difference Law The limit of a difference is the difference. of the limits.

3. Constant Multiple Law The limit of a constant times a function is the **constant times.** the limit of the function.

4. Product Law The limit of a product is the ... product of the limits.

5. Quotient Law The limit of a quotient is the quotient. of the limits (provided that the limit of the denominator is not 0)

Direct ... substitution.... property If f is a polynomial or a rational function and a is in the domain of f, then

$$\lim_{x \longrightarrow a} f\left(x\right) = f\left(a\right)$$

Definition A function f is continuous. from the **right**.. at a number a if

$$\lim_{x \to a^+} f(x) = f(a)$$

and is continuous from the ...left... at *a* if :

$$\lim_{-\to a^{-}} f(x) = f(a)$$

Definition A function f is **continuous..** on an interval if it is **continuous** at every number in the interval.

The Product Rule If f and g are both differentiable, then (f.g)' = f'g + g'f

Prove that the area of a circle . with radius r is $S = \pi r^2$

Find the radius of convergence and the domain of convergence of the series

$\sum_{i=1}^{\infty}$	$\underline{(-3)^n x^n}$
$\sum_{n=0}$	$\sqrt{n+1}$

Find a ... power . series representation for the function and determine the interval of convergence.

$$f\left(x\right) = \frac{x}{1-x}$$

Use differentiation to find a ... power series representation for

$$f(x) = \frac{1}{(1+x)^2}$$

What is the radius of convergence?

Definition A normed space *E* is called complete if and only if every Cauchy sequence in *E* converges to an element *x* of the space *E*.

Definition. In an ordered ... field we define the ... absolute value ... |a| of a as :

$$|a| = \begin{cases} a ; a > 0 \\ -a ; a < 0 \\ 0 ; a = 0 \end{cases}$$

Each real number x has a corresponding ... absolute value., defined as

$$|x| = \max\{x, -x\}.$$

• $|x + y| \le |x| + |y|$ is called the *...triangle inequality*.. The *modulus* of *z* is

$$|z| = \sqrt{x^2 + y^2}$$

And then we have the ...distance.... d(a, b) = |a - b| between a and b.

$$\lim_{n \longrightarrow \infty} a_n = a$$

And also we say :

$$a_n \longrightarrow a \ (a_n \text{ tends to } a)$$

as *n* tends.. to ∞

Prove that a convergent ... sequence.... of real numbers is a Cauchy sequence

Prove that if $p \ge 2$, then the series

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

is convergent..

Discuss the convergence of the series

$$\sum_{n=1}^{\infty} \frac{n^n}{n!}$$

Theorem (Least Upper Bound Principle). A nonempty... set of reals which is bounded above has the least upper bound.

The norm satisfies

$$\|x\| \ge 0, \qquad \|x\| = 0 \Leftrightarrow x = 0 \in \mathbb{R}^n$$
$$\|\lambda x\| = |\lambda| \|x\|$$
$$\|x + y\| \le \|x\| + \|y\|$$

And the ...distance... satisfies

$$\begin{aligned} d(x,y) &\geq 0, \qquad d(x,y) = 0 \Leftrightarrow x = y \\ d(x,y) &= d(y,x) \\ d(x,z) &\leq d(x,y) + d(y,z). \end{aligned}$$
$$\begin{aligned} x^{(n)} &\longrightarrow x \text{ in } \mathbb{R}^p \text{ iff } \|x^{(n)} - x\| \longrightarrow 0 \text{ in } \mathbb{R} \end{aligned}$$

The half open interval]a,b] is neither **open**. nor **closed**... *f* is ...**continuous**.... at *a* iff $f(x) \rightarrow f(a)$ as $x \rightarrow a$ in *E*.

A function $f: [a,b] \rightarrow \mathbf{R}$ is **increasing.** if and only if :

$$x \le y \Rightarrow f(x) \le f(y) \; ; x, y \in [a, b]$$

decreasing.. if and only if :

$$x \le y \Rightarrow f(x) \ge f(y) ; x, y \in [a, b]$$

monotonic.. if and only if it is either ...increasing. or decreasing...

Definition. A map $T: (X, d) \rightarrow (X, d)$ on a metric space (X, d) is a contraction if and only if for some $k, 0 \le k < 1$

$$\forall x, y \in X : d(Tx, Ty) \le kd(x, y)$$

Theorem (Contraction. Mapping Theorem). Suppose that $T : (X, d) \rightarrow (X, d)$ is a **Contraction** on a (non-empty) complete metric space (X, d). Then *T* has a **unique**. fixed point.

Let A and B be nonempty subsets of a normed. space X, and define

$$A + B = \{x + y; x \in A \text{ and } y \in B\}$$

Prove that

(*i*) if A is open, then A + B is ... open..;

(*ii*) if A is compact and B is closed, then A + B is closed.

The real number θ satisfying the equations

 $x = r \cos \theta$ and $y = r \sin \theta$

is called an argument of *z*, and denoted by *arg z*. Hence we can write *z* in polar form :

$$z = r(\cos\theta + i\sin\theta).$$

De Moivre's formula.,

 $(\cos heta + i \sin heta)^n = \cos n heta + i \sin n heta$ for every $n \in \mathbb{N}$ and $heta \in \mathbb{R}$

Find all the roots of the equation :

$$z^n = a + ib; a, b \in \mathbb{R}$$

Suppose that z = x + iy, where x, y are reals. Then the **exponential** function exp(z) is defined for every complex number z by

 $e^z = e^{\check{x}} \left(\cos y + i \sin y \right)$

The continued fraction expansion :

$$\sqrt{2} = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \dots}}}$$

Show that the harmonic.. series

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$$

is ...divergent.

Let R be an equivalence relation on a set E. That means R (1) is reflexive, (2) is symmetric, (3) is transitive.

A to the power of n, A to the n

$$\mathbf{A}^n = \underbrace{\mathbf{A}\mathbf{A}\cdots\mathbf{A}}_{n \text{ times}}$$

Matrix Inversion

• A matrix A is said to be **invertible** if there exists B such that $A.B = B.A = I_n$

B is denoted A^{-1} and is unique.

• If det(A) = 0, then the matrix is not **invertible**.

The inverse. of *n* matrix *A* can be found by considering the transpose of the cofactors matrix divided by the determinant of *A*.

$$A^{-1} = \frac{1}{\det\left(A\right)}C^{t}$$

A vector v is a **combination** of the vectors x, y and z if it can be written as :

$$v = \alpha x + \beta y + \gamma z ;$$

where α, β, γ are constants

A set of vectors u, v, w are linearly independent if the only constants α, β, γ that satisfy

 $\alpha u + \beta v + \gamma w = 0$

Are $\alpha = \beta = \gamma = 0$.

Determine whether or not the set *B* is linearly independent.

• When *A* is a square matrix, each of the following statements is equivalent to saying that *A* is invertible

- The columns of A form a linearly independent set.
- The rows of A form a linearly independent set.

The set

$$\{1, x, x^2, \ldots, x^n\}$$

is a ... basis. for the vector space of **polynomial....** having degree *n* or less.

The **dimension** of a vector space V is defined by : dim V = number of vectors in any basis for V.

The ...inner product.. defined by :

$$\mathbf{x}^T \mathbf{y} = \sum_{i=1}^n x_i y_i \in \Re$$
 and $\mathbf{x}^* \mathbf{y} = \sum_{i=1}^n \bar{x}_i y_i \in \mathcal{C}$

Determine the **minimum** (**characteristic**) polynomial for the matrix

$$\mathbf{A} = \begin{pmatrix} 5 & 1 & 2\\ -4 & 0 & -2\\ -4 & -1 & -1 \end{pmatrix}$$

• The base of the NATURAL LOGARITHM, named in honor of Euler. it appears in many mathematical contexts involving LIMITS and DERIVATIVES, and can be defined by

$$e = \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n$$

The mean value Theorem

For any polynomial function p(x) with real coefficients, suppose that for $a \neq b$, p(a) and p(b) are of opposite signs. Then the function has a real zero between *a* and *b*.

The Fundamental Theorem of Algebra

Every **polynomial**. of degree *n*, with $n \ge 1$, has at least one zero in the system of **complex** numbers.

orthonormal. Set

A set of a *Hilbert space* H satisfying :

$$\langle e_i, e_j \rangle = \begin{cases} 1 \ ; i = j \\ 0 \ ; i \neq j \end{cases}$$

partial differential equation :

A *differential equation* involving a function of more than one variable, and hence partial derivatives.

- **polynomial** : A linear combination of nonnegative, integer powers of a variable (or unknown) *x*,

$$p(x) = a_0 + a_1 x + \dots + a_n x^n$$

Given two sets, A and B, their *difference*, D = A - B, is the set of all elements of A not found in B.

- symmetric difference

Given two sets, A and B, their symmetric difference is defined as

$$A \setminus B = (A - B) \cup (B - A)$$

- characteristic function : The characteristic function of a set A is defined by

$$x_A(x) = \begin{cases} 1 \ ; x \in A \\ 0 \ ; x \notin A \end{cases}$$

Definition : For a *linear* operator $A : X \to X$ a scalar λ is called *eigenvalue*. of A if there is a nontrivial solution x to the equation $Ax = \lambda x$. Such an x is called *eigenvector* .corresponding to λ . The subspace of all solutions of the equation $(A - \lambda I) x = 0$ is called the *eigenspace* of A corresponding to λ .

Matrix Decomposition Theorem

Let *P* be a matrix of **eigenvectors**. of a given matrix *A* and *D* a matrix of the corresponding **eigenvalues**. Then *A* can be written as

$$A = PDP^{-1}$$

Where *D* is a **diagonal** matrix.

Absolute value of an operator

Let *A* be a *bounded linear operator* on a Hilbert space, *H*. Then the *absolute value* of *A* is given by :

$$A| = \sqrt{A^*A}$$

where A^* is the **adjoint** of A.

The difference between the **exact**. value of a number *x* and an **approach** value *a* is called the *absolute error* of the **approach** value, *i.e*

$$\Delta_a = |x - a|$$
$$\delta_a = \frac{\Delta_a}{|a|}$$

The quotient

- alternating series : A series that alternates signs, *i.e.*, of the form

$$\sum \left(-1\right)^n a_n \; ; a_n \ge 0$$

Banach space : A *normed*. *vector space* which is *complete* in the *metric* defined by its norm.

A subset *E* of a *vector space V* is called a **basis**. of *V* if each *vector* $x \in V$ can be uniquely written in the form :

$$x = \sum_{i=1}^{n} \alpha_i e_i \; ; e_i \in E$$

Bounded linear operator : A *bounded linear* ... **operator** from a *normed* linear space *E* to another *normed* linear space *F* is a map $T : E \to F$ which satisfies

(*ii*) $T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$; for all $x, y \in E, \alpha, \beta \in \mathbb{R}$; **linearity** (*ii*) $||T(x)||_F \leq c ||x||_E$

for some constant $c \ge 0$, for all $x \in E$; **boundedness.**

Boundedness is equivalent to continuity.

Characteristic equation : For an operator. A the equation $det(A - \lambda I) = 0$.

Complete space

A *metric space* (*M*, *d*) is *complete* if every *cauchy. sequence* { X_n } in *M* converges in *M*. That is, there is $x \in M$ such that $d(X_n, x) \to 0$, as $n \to \infty$.

The *convolution product* : f * g of two functions f and g is given by :

$$(f * g)(x) = \int f(x - y) g(y) dy$$

Let { $e_1, e_2, ...$ } be an *orthonormal basis* in a *Hilbert space* (*H*,<,>). Then every $x \in H$ can be written as a **fourier**. series

$$x = \sum_{i \in I} \langle x, e_i \rangle e_i$$

The coefficients $\langle x, e_i \rangle$ are called the *fourier coefficients* of x.

The matrix norm satisfies

$$\|Ax\| \le \|A\| \, . \, \|x\| \, ; \, \forall \, x \in \mathbb{R}^n$$

Theorem : Every complex square matrix is similar to an upper triangular matrix

Algebraic number : A complex number which is a zero of a **polynomial**. with rational coefficients

An **upper** bound on a set *S* of real numbers is a number *u* so that $u \ge s$ for all $s \in S$. If such a *u* exists, *S* is said to be bounded **above** by *u*.

Nonempty set : A set denoted Ø which has no elements.

Equal sets : Two sets *A* and *B* which have the same elements; that is, if for all $x, x \in A$ if and only if $x \in B$.

equivalent sets : Two sets A and B such that there exists a bijection $f: A \rightarrow B$.

The differential equation :

$$ay'' + by' + cy = f(x)$$

has the solution

$$y\left(x\right) = y_{h}\left(x\right) + y_{p}\left(x\right)$$

where $y_h(x)$ is the general solution to the homogeneous equation and $y_p(x)$ is aparticular solution to the complete equation.