# On the the correct pronunciation of certain mathematical statements

By Bellaouar Djamel January 2012

## Inequalities, operators, calculus, ...

| x > y     | x is greater than y (x is larger than y). |
|-----------|-------------------------------------------|
| $x \ge y$ | x is greater (than) or equal to y.        |
| x < y     | x is smaller than y.                      |
| $x \le y$ | x is smaller (than) or equal to y.        |
| x > 0     | x is positive.                            |
| $x \ge 0$ | x is positive or zero; x is non-negative. |
| x < 0     | x is negative.                            |
| $x \le 0$ | x is negative or zero.                    |

#### Small Greek letters used in mathematics

### **Greek alphabet notations**

| Lower case Greek alphabet |                         |         |                         |              |        |
|---------------------------|-------------------------|---------|-------------------------|--------------|--------|
| $\operatorname{name}$     | $\operatorname{symbol}$ | name    | $\operatorname{symbol}$ | name         | symbol |
| alpha                     | α                       | iota    | ι                       | rho          | ρ      |
| beta                      | $\beta$                 | kappa   | $\kappa$                | sigma        | σ      |
| gamma                     | $\gamma$                | lambda  | $\lambda$               | tau          | au     |
| delta                     | $\delta$                | mu      | $\mu$                   | upsilon      | v      |
| epsilon                   | $\epsilon$              | nu      | ν                       | $_{\rm phi}$ | $\phi$ |
| zeta                      | ζ                       | xi      | ξ                       | chi          | X      |
| eta                       | $\eta$                  | omicron | 0                       | $_{\rm psi}$ | $\psi$ |
| theta                     | $\theta$                | pi      | $\pi$                   | omega        | ω      |

Greek Alphabet [gri:k] ['ælfəbet]

| ]                     |                              |                                                                                           | iota [au'arsta]                                                                 |                                                |                                     | [!#0]                                         |              |              |
|-----------------------|------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------|-----------------------------------------------|--------------|--------------|
|                       |                              |                                                                                           |                                                                                 |                                                |                                     | [ ้าจช]                                       |              |              |
|                       | beta ['biːtə]                |                                                                                           | kappa                                                                           |                                                |                                     | sigma                                         | [\$1§        | gmə]         |
|                       | gamma                        | l [ˈgæmə]                                                                                 | la                                                                              | mbda                                           | a                                   | tau                                           | l [təː]      |              |
|                       | delta                        | ['deltə]                                                                                  | mu                                                                              | [mju                                           | <b>x</b> ]                          | up                                            | silon        | Ì            |
|                       |                              |                                                                                           |                                                                                 |                                                |                                     | ['ʌp                                          | s 1, lor     | 1]           |
|                       | epsilon                      | [eps1lən]                                                                                 | nu                                                                              | [njuː                                          | ]                                   | phi                                           | [fa1         | ]            |
|                       | zeta                         | ['ziːtə]                                                                                  | xi                                                                              | [zaı]                                          |                                     | cł                                            | ni []        |              |
|                       | eta                          | ['iːtə]                                                                                   | om                                                                              | icror                                          | ו                                   | psi                                           | ['psı        | :]           |
|                       |                              |                                                                                           | [ຈʊ'n                                                                           | naikrt                                         | on]                                 | -                                             |              | -            |
|                       | Theta                        | [ˈθiːtə]                                                                                  | pi                                                                              | [pa1]                                          |                                     | omega                                         | ['ຈຫ         | mīgə]        |
| $\alpha$              | alpha                        | βI                                                                                        | peta                                                                            | $\gamma$                                       | gamma                               |                                               | δ            | delta        |
| $\epsilon, arepsilon$ | epsilon                      | $\zeta$ :                                                                                 | zeta                                                                            | $\eta$                                         | eta                                 |                                               | heta,artheta | theta        |
| ι                     | iota                         | $\kappa$ ]                                                                                | kappa                                                                           | $\lambda$                                      | lambd                               | a                                             | $\mu$        | mu           |
| ν                     | nu                           | $\xi$ :                                                                                   | xi                                                                              | 0                                              | omicr                               | on                                            | $\pi, arpi$  | pi           |
| ho, arrho             | rho                          | $\sigma$ :                                                                                | sigma                                                                           | au                                             | tau                                 |                                               | v            | upsilon      |
| $\phi, arphi$         | phi                          | $\chi$ (                                                                                  | chi                                                                             | $\psi$                                         | psi                                 |                                               | ω            | omega        |
| $\mathbf{C}$          | apital Gre                   | ek letters                                                                                | used in                                                                         | math                                           | ematio                              | cs                                            |              |              |
| В                     | Beta                         | Γ                                                                                         | Gamma                                                                           |                                                | $\Delta$ De                         | elta                                          | Θ            | Theta        |
| Λ                     | Lambda                       | Ξ                                                                                         | Xi                                                                              |                                                | Π P:                                | i                                             | $\Sigma$     | Sigma        |
| Υ                     | Upsilon                      | $\Phi$                                                                                    | Phi                                                                             |                                                | Ψ Pa                                | si                                            | $\Omega$     | Omega        |
| n.                    | $x_n \longrightarrow \infty$ | <ol> <li>1. The linzero.</li> <li>2. The set</li> <li>3. <i>x</i>, <i>n</i> te</li> </ol> | nit of <i>x</i> , <i>n</i> as<br>quence <i>x</i> , <i>n</i> t<br>ends to zero a | <i>n</i> tends<br>cends to<br>as <i>n</i> tend | to the in<br>zero as a<br>ls to the | ifinity equals<br>n tends to the<br>infinity. | (is equ      | al to)<br>y. |

$$\frac{x}{y} = x \cdot (y^{-1}), \quad x \text{ over } y \text{ equals } x \text{ times } y \text{ minus one.}$$

| $X \cup Y = \{x : x \in X \text{ or } x \in Y\}.$ | The union of $X$ and $Y$ equals the set of $x$ such that $x$ belongs big $X$ |
|---------------------------------------------------|------------------------------------------------------------------------------|
|                                                   | or $x$ belongs big $Y$                                                       |

| $2^x 3^y$ | two to the $x$ times three to the $y$ .  |
|-----------|------------------------------------------|
|           | two to the power of x times three to the |
|           | power of y.                              |

| $A = A^* \iff \forall \ (i,j) : a_{ij} = \overline{a_{ji}}$ | The matrix $A$ is Hermitian if and only if,<br>for all $i, j$ we have $a, i, j$ equals $a, j, i$ bar.      |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
|                                                             | The matrix $A$ is equal to $A$ star if and only if, for all $i, j$ we have $a, i, j$ equals $a, j, i$ bar. |

| $S \Rightarrow T$     | S implies T; if S then T      |
|-----------------------|-------------------------------|
| $S \Leftrightarrow T$ | S is equivalent to T; S iff T |
|                       |                               |

| $(1+2)^{2+2}$ | one | plus | two, | all | to | the | power | of | two | plus | two |  |
|---------------|-----|------|------|-----|----|-----|-------|----|-----|------|-----|--|

| $x^2$     | x squared                   |
|-----------|-----------------------------|
| $x^3$     | x cubed                     |
| $x^n$     | x to the (power of) $n$     |
|           |                             |
| 5 - 2 = 3 | Five minus two equals three |
| $5^{-2}$  | five to the minus two       |
| $x_{-2}$  | x minus two                 |

| $\forall \ x \in A \ \dots$ | for each [= for every] x in A |
|-----------------------------|-------------------------------|
|                             | for every x belongs to A      |

| $\frac{1}{2}$   | one half                   |
|-----------------|----------------------------|
| $\frac{1}{3}$   | one third                  |
| $\frac{1}{4}$   | one quarter [= one fourth] |
| $\frac{1}{5}$   | one fifth                  |
| $-\frac{1}{17}$ | minus one seventeenth      |

| -0.067 | minus nought point zero six seven |
|--------|-----------------------------------|
|        |                                   |
| 81.59  | eighty-one point five nine        |

| $-2.3 \cdot 10^{6}$ | minus | two | point  | three   | times  | ten  | to the  | six |
|---------------------|-------|-----|--------|---------|--------|------|---------|-----|
| $= -2 \ 300 \ 000$  | minus | two | millic | on thre | e hund | dred | thousan | d   |

| $4 \cdot 10^{-3}$ | four | times  | ten   | to | the | minus | three |  |
|-------------------|------|--------|-------|----|-----|-------|-------|--|
| = 0.004 = 4/1000  | four | thousa | andtł | າຣ |     |       |       |  |

| $\{x \mid \ldots\}$ the set of all x such that |
|------------------------------------------------|
|------------------------------------------------|

| $A \cup B$                                                                        | the union of (the sets) A and B; A union B                                |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------|
|                                                                                   |                                                                           |
| $A \cap B$                                                                        | the intersection of (the sets) A and B; A intersection B                  |
|                                                                                   |                                                                           |
| $A \times B$                                                                      | the product of (the sets) A and B; A times B                              |
|                                                                                   |                                                                           |
| $x, y \in A$ (both) x and y are elements of A; lie in A;<br>belong to A; are in A |                                                                           |
|                                                                                   |                                                                           |
| $x,y\not\in A$                                                                    | (neither) x nor y is an element of A; lies in A;<br>belongs to A; is in A |

| $A\cap B=\emptyset$ | A is disjoint from $B$ ; the intersection of | Α |
|---------------------|----------------------------------------------|---|
|                     | and B is empty.                              |   |

| $x \in A$                                              | x is an element of A                                                |  |
|--------------------------------------------------------|---------------------------------------------------------------------|--|
| ~~ C 11                                                | x lies in A                                                         |  |
|                                                        | x belongs to A                                                      |  |
|                                                        | x is in A                                                           |  |
| 3 + 5 = 8 three plus five equals [= is equal to] eight |                                                                     |  |
| 3-5=-2 three minus five equals [= ] minus two          |                                                                     |  |
| $3 \cdot 5 = 15$ three times five equals [= ] fifteen  |                                                                     |  |
| $(2-3) \cdot 6 + 1 =$                                  | -5 two minus three in brackets times six plus one equals minus five |  |

4!  $[= 1 \cdot 2 \cdot 3 \cdot 4]$  four factorial.

| 3                           | three divided by five equals zero point six.          |  |  |  |
|-----------------------------|-------------------------------------------------------|--|--|--|
| $\frac{1}{5} = 0.6$         |                                                       |  |  |  |
| $\exists x \in A \dots$     | there exists [= there is] an x in A (such that)       |  |  |  |
| $\exists ! x \in A \dots$   | there exists [= there is] a unique x in A (such that) |  |  |  |
| $\not\exists x \in A \dots$ | there is no x in A (such that)                        |  |  |  |

| 3three eighths |  |
|----------------|--|
|----------------|--|

| 26 | twenty-six ninths |
|----|-------------------|
| 9  |                   |

| $-\frac{5}{34}$ | minus five thirty-fourths        |
|-----------------|----------------------------------|
| -245            | minus two hundred and forty-five |

| $1 - 3 \qquad 1$               | one minus three over two plus four equals minus one third. |
|--------------------------------|------------------------------------------------------------|
| $\frac{1}{2+4} = -\frac{1}{3}$ |                                                            |

| $r > 0 \land u > 0 \Longrightarrow r + u > 0$               | if both $x$ and $y$ are positive, |
|-------------------------------------------------------------|-----------------------------------|
| $x \ge 0 \land \langle g \ge 0 \longrightarrow x + g \ge 0$ | so is $x + y$                     |

| J m c O                         | $m^2 - 2$ | no | rational | number | has | a | square | equal |  |
|---------------------------------|-----------|----|----------|--------|-----|---|--------|-------|--|
| $\not \exists x \in \mathbf{Q}$ | x = z     | to | two      |        |     |   |        |       |  |

| $\forall x \in \mathbf{R} \; \exists  y \in \mathbf{Q}$ | x-y  < 2/3 | for every real number x<br>there exists a rational<br>number y such that the<br>absolute value of x minus<br>yis smaller than two third. |
|---------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------|
|                                                         |            |                                                                                                                                          |

| $\sin(x)$ | sine x |
|-----------|--------|
|           |        |

| $\cos(x)$ | $\cos(x)$ c | cosine x |
|-----------|-------------|----------|
|-----------|-------------|----------|

 $\tan(x)$ 

| $\arcsin(x)$            | arc sine x                                      |
|-------------------------|-------------------------------------------------|
| $\arccos(x)$            | arc cosine x                                    |
| $\arctan(x)$            | arc tan x                                       |
| $\sinh(x)$              | hyperbolic sine x                               |
| $\cosh(x)$              | hyperbolic cosine x                             |
| $\tanh(x)$              | hyperbolic tan x                                |
| $\sin(x^2)$             | sine of x squared                               |
| $\sin(x)^2$             | sine squared of x; sine x, all squared          |
| $\frac{x+1}{\tan(y^4)}$ | x plus one, all over over tan of y to the four  |
| $3^{x-\cos(2x)}$        | three to the (power of) x minus cosine of two x |
| $\exp(x^3 + y^3)$       | exponential of x cubed plus y cubed             |
|                         |                                                 |
|                         |                                                 |

| $p \notin R.$ | <i>p</i> does not belong to (the set) <b>R</b> .<br><i>p</i> is not in <b>R</b> .         |
|---------------|-------------------------------------------------------------------------------------------|
|               | <ul> <li><i>p</i> is not an element of R.</li> <li><i>p</i> does not lie in R.</li> </ul> |

$$(x + y) z + xy$$
 x plus y in brackets times z plus x, y

$$x^2 + y^3 + z^5$$
 x saquared plus y cubed plus z to the power of five.

| $\overline{1-2i} = 1+2i$ | The complex conjugate of one minus two $i$ equals one plus two $i$ . |
|--------------------------|----------------------------------------------------------------------|
|                          | One minus two <i>i</i> bar equals one plus two <i>i</i> .            |
| $\overline{z}$           | The conjugate of a complex number <i>z</i> .                         |

 $x \le 0$ : *x* is negative or zero. x < 0: *x* is negative.  $x \le y$ : *x* is smaller or equal to *y* or *x* is smaller than or equal to *y*.

$$x - y = x + (-y)$$
. x minus y is equal to x plus, minus y

| $ax^2 + 2hxy + by^2 = 0$ | $\dots(*)$ | We consider the equation star: a, x squared<br>plus two h, x y plus h (times), y, squared is |
|--------------------------|------------|----------------------------------------------------------------------------------------------|
|                          |            | equal to zero.                                                                               |
|                          |            |                                                                                              |

| $B = A - (A - B) = A \left[ I - A^{-1}(A - B) \right]$ | I minus A minus one times ]<br>B equals A [(A minus B)<br>minus (A minus B) equals<br>A times |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------|

| $\lim_{x \to 0} \frac{f''(x)}{F''(x)} = \lim_{x \to 0} \frac{-e^x}{4} = -\frac{1}{4}.$ | The limit as x tends to zero of f two primes of x<br>over big f two primes of x is equal to the limit<br>as x tends to zero of minus exponential x over<br>four which is equal to minus one over four. |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| $u_{n_1}, u_{n_2}, u_{n_3}, \ldots$ | We consider the <b>subsequence</b> u,n one, u,n, two,<br>and so on. |
|-------------------------------------|---------------------------------------------------------------------|
|                                     |                                                                     |

| $A \sim B \Longrightarrow e^A \sim e^B$ | If A is similar to B, then exponential A is also similar to exponential B. |
|-----------------------------------------|----------------------------------------------------------------------------|
|                                         | A is similar to B, implies exponential A is similar to exponential B.      |

# $r = \sqrt{x^2 + y^2}$ R equals the square root of x squared plus y squared.

$$\begin{array}{c|c} x^n + y^n = z^n & \text{x to the n plus y to the n equals z to the n} \\ \hline (x+y)z + xy & \text{x plus y in brackets times z plus x y} \\ \hline cA = \{cx \mid x \in A\}. & \begin{array}{c} c, A \text{ equals the set c times x such that x belongs to} \\ A \end{array}$$

$$A_n = \{x \in A \mid x \le n\} | A_n \text{ equals to the set of x belongs to A}$$
such that x is less or equal to n.

| f(x) | f of x |  |
|------|--------|--|
|------|--------|--|

| (a,b) | open interval a b. |  |
|-------|--------------------|--|

| [a, b] | closed interval a b.                                            |
|--------|-----------------------------------------------------------------|
| (a,b]  | half open interval a b (open on the left, closed on the right)  |
| [a,b)  | half open interval a b (open on the right, closed on the left). |

| $x \le y$ | x is smaller (than) or equal to y.         |
|-----------|--------------------------------------------|
| f'        | f dash; f prime; the first derivative of f |

| f'' derivative of f |
|---------------------|
|---------------------|

| $f^{(3)}$ the third derivative of f |
|-------------------------------------|
|-------------------------------------|

| $f^{(n)}$ | the n-th derivative of f |  |
|-----------|--------------------------|--|
|-----------|--------------------------|--|



| $n \le x < n+1.$ | n is less or equal to $x$ which is strictly less than n plus one. |  |
|------------------|-------------------------------------------------------------------|--|
|                  |                                                                   |  |
|                  |                                                                   |  |

| - x  < x <  x           | Minus the absolute value of x is less or equal to x which is less |
|-------------------------|-------------------------------------------------------------------|
| $ w  \leq w \leq  w $ . | or equal to the absolute value of x.                              |

|  | $ ab  =  a  \cdot  b .$ | The absolute value of $a, b$ is equal to the absolute value of $a$ times the absolute value of $b$ . |
|--|-------------------------|------------------------------------------------------------------------------------------------------|
|--|-------------------------|------------------------------------------------------------------------------------------------------|

| b=x-y:    | <i>b</i> equals <i>x</i> minus <i>y</i> . |
|-----------|-------------------------------------------|
| a = x + y | <i>a</i> equals <i>x</i> plus <i>y</i> .  |

| $A \neq \emptyset$ | <i>A</i> is different from the empty set. |
|--------------------|-------------------------------------------|
| <b>11</b> / Ø      | A is non-empty.                           |

| $c = x \cdot y \cdot z$ | c equals x times y times z                     |
|-------------------------|------------------------------------------------|
| c = x y z               | <i>c</i> equals <i>x</i> , <i>y</i> , <i>z</i> |

| $\sum_{k=1}^{n} cr^{k},  n = 1, 2, \dots$ | The sum for $k$ from one to $n$ of $c$ times $r$ to the power of $k$ . |
|-------------------------------------------|------------------------------------------------------------------------|
| $\overline{k=1}$                          | The sum of $c$ times $r$ to the power of $k$ , for $k$ from one to $n$ |

| $\left\ \frac{A^k}{k!}\right\  \le \frac{\left\ A\right\ ^k}{k!}$ | The norm of $A$ to the power of $k$ over $k$ factorial is less or equal to the norm of $A$ to the power of $k$ over $k$ factorial. |
|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|

$$\left|\sum_{k=1}^{n} x_{k}\right| \leq \sum_{k=1}^{n} |x_{k}|.$$
 The absolute value of the sum for k from one to n of x,k is less or equal to the sum for k from one to n of the absolute value of x,k.

$$\lim_{x \to 1} f(x) = 2 \left| \begin{array}{c} \text{The limit of } f \text{ of } x \text{ as } x \text{ tends to one is equal} \\ \text{to two.} \end{array} \right|$$

$$a^{n+1} - b^{n+1} = (a-b) \cdot \sum_{k=0}^{n} a^k b^{n-k}, \quad n = 1, 2, \dots$$
 a to the power of n pus one, minus b to the power of n plus one equals a minus b times the sum for k from zero to n, of a to the power of n minus k.

| $r^{-1}$ | x to the minus one          |
|----------|-----------------------------|
| Å        | x to the power of minus one |

| $\sqrt{\alpha}$ | the square root of x. |
|-----------------|-----------------------|
| $\sqrt{x}$      |                       |

| $\sqrt[3]{x}$ | the cube root of x. |  |
|---------------|---------------------|--|
|---------------|---------------------|--|

|  | $\sqrt[5]{x}$ | the fifth root of x. |  |
|--|---------------|----------------------|--|
|--|---------------|----------------------|--|

|--|

 $h\left(x,y\right)$ 

*h* of *x*, *y* 

$$\prod_{k=1}^{n} A_k = \left(\prod_{k=1}^{n-1} A_k\right) \times A_n$$
 The product of A,k for k from one to n is equal to the product of A,k for k from one to n minus one times A,n.

| ( <i>v</i> + 1). <i>v</i> . ( <i>v</i> + 1), <i>v</i> . 0, 1, 2, factorial times n plus one,<br>where n equals zero, one,<br>two,, and so on. | $(n+1)! = n! \cdot (n+1), n = 0, 1, 2, \dots$ | n plus one all factorial equals n<br>factorial times n plus one,<br>where n equals zero, one,<br>two,, and so on. |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------|

|--|

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$
 The binomial formula a plus b to the power of n is equal to the sum frok from zero to n of C,k,n (the binomial coefficient n over k) times a to the power of k times b to the power of n minus k.

$$\binom{n}{k} = \frac{n!}{k! (n-k)!}$$
C,k,n (the binomial coefficient n over k) equals n factorial over k factorial times n minus k factorial.  
(the binomial coefficient) n over k

| $\langle f,g \rangle = \int_{a}^{b} f(x) g(x) dx$ | The inner product of $f$ and $g$ equals the integral from $a$ to $b$ of $f$ of $x$ times $g$ of $x$ d, $x$ . |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
|                                                   |                                                                                                              |

| $\left(\frac{b}{a}\right)^n = \frac{b^r}{a^r}$ | b over a all to the power of n equals b to the power of n over a to the power of n.<br>b = b = a all to the power of n over a to the power of n. |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                |                                                                                                                                                  |

| $\frac{a^n}{a^m} = a^{n-m} \begin{vmatrix} a \text{ to the power of } n \text{ over } a \text{ to the power of } m \text{ equals } a \text{ to the power of } n \text{ minus } m. \end{vmatrix}$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

 $q = \sup M$  , q equals the sup of M.

$$\sum_{k=1}^{n} (x_k - x_{k-1}) = x_n - x_0.$$
 The sum for k from one to n of x,k minus x,k minus one equals x,n minus x, zero.

| $\bigcap_{n=1}^{\infty} [a_n, b_n] \neq \emptyset.$ | The intersection of the closed intervals a,n,b,n for n from one to the infinity is nonempty. |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------|
|-----------------------------------------------------|----------------------------------------------------------------------------------------------|

$$\frac{a-p^n}{(p+1)^n-p^n}$$
. *a* minus *p* to the power of *n* all over *p* plus one to the power of *n*.

| $\kappa = 1$ |
|--------------|
|--------------|

$$\left\|\frac{e^{xA}-I}{x}-A\right\| \leq \frac{e^{\|xA\|}-1-\|xA\|}{|x|} = \left(\frac{e^{|x|\cdot\|A\|}-1}{|x|}-\|A\|\right) \longrightarrow 0 \quad \begin{array}{l} \text{The norm of exponential x,A} \\ \text{minus I over x} \\ \text{minus A is less} \\ \text{or equal to} \\ \text{exponential of } \\ \text{the norm of x,A} \\ \text{minus one minus} \\ \text{the norm of x,A} \\ \text{over the absolute} \\ \text{value of x which} \\ \text{is equal to} \\ \text{exponential of } \\ \text{the athe sum of } \\ \text{the athe sum of the absolute} \\ \text{value of a,k to} \\ \text{power of one} \\ \text{over the absolute} \\ \text{value of x minus} \\ \text{the norm of A} \\ \text{minus one more over the absolute} \\ \text{value of x imes the norm of A} \\ \text{which tends to} \\ \end{array}\right.$$

| $\det(A) = \lambda_1 \lambda_2 \dots \lambda_n = \prod_{\lambda_i \in Sp(A)} \lambda_i$ | The determinant of A equals the<br>product of lambda,i for i from one to n<br>which is equal to the product of |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
|                                                                                         | lambda,1, where lambda,1 belongs to                                                                            |
|                                                                                         | S,P (the spectre) of A.                                                                                        |

 $a > 1 \iff a^r > 1 \stackrel{a}{\Leftrightarrow} r > 1$  is strictly larger than one if and only if *a* to the power *r* is strictly larger than one.

| $\sqrt[n]{a}$ | The <i>n</i> -th root of <i>a</i> . |
|---------------|-------------------------------------|
| $\sqrt[5]{a}$ | The fifth root of <i>a</i> .        |

| $\left(\frac{1}{p^n}\right) < \frac{1}{a}$ | One over p to the power of n is strictly less than one over a. |
|--------------------------------------------|----------------------------------------------------------------|
|--------------------------------------------|----------------------------------------------------------------|

| $x_1 + y_i$ | x one plus y i                                                            |
|-------------|---------------------------------------------------------------------------|
|             |                                                                           |
| $R_{ij}$    | R, 1 J<br>capital R subscript i j                                         |
|             | capital R lower 1 j<br>(capital) R (subscript) i j; (capital) R lower i j |

| $M_{ij}^k$ (capital) M upper k lower i j;<br>(capital) M superscript k subscript i j |
|--------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------|

| sum over i (ranging) from zero to n of a i | $\sum_{i=0}^{n} a_i x^i$ | <pre>sum of a i x to the i for i from nought [= zero] to n;</pre> |
|--------------------------------------------|--------------------------|-------------------------------------------------------------------|
| (times) x to the i.                        |                          | sum over i (ranging) from zero to n of a i (times) x to the i.    |

| $\Pi^{\infty}$ 1      | product        | of b | m | for  | m   | from   | one  | to  | the  | infi | .nity;     |    |
|-----------------------|----------------|------|---|------|-----|--------|------|-----|------|------|------------|----|
| $\prod_{m=1}^{n} b_m$ | product<br>b m | over | m | (ran | ıgi | lng) t | from | one | e to | the  | infinity o | of |

$$\sum_{i=0}^{n} \binom{n}{i} x^{i} y^{n-i} \quad \text{sum of n over ix to the iy to the n} \\ \underset{n.}{\text{minus i for i from nought [= zero] to}}$$

| (m, n) $3m$             | x minus | y in | brackets  | to the | (power of) | ) three m |
|-------------------------|---------|------|-----------|--------|------------|-----------|
| $(x-y)^{\circ n \circ}$ | x minus | y, a | ll to the | (power | of) three  | m.        |

$$\left|\sum a_k b_k\right| \leq \left(\sum |a_k|^p\right)^{1/p} \left(\sum |b_k|^q\right)^{1/q}$$
The absolute value of the sum of a,k,b,k is less or equal to the sum of the absolute value of a,k to power of p all to power of one over p, times the sum of the absolute value of b,k to power of q all to power of one over q.

$$D(E) = \{x \mid ||x|| \le 1\},$$
 D of E is equal to the set of all x such that the norm of x is less or equal to one.

$$\frac{1}{p} + \frac{1}{q} = 1$$
 One over p plus one over q equals one.

$$e^{A} = I_{n} + A + \frac{A^{2}}{2!} + \frac{A^{3}}{3!} + \dots + \frac{A^{n}}{n!} + \dots$$

$$= \sum_{k=0}^{\infty} \frac{A^{k}}{k!}.$$
Exponential A  
equals I, n plus A  
plus A squared over  
two factorial plus A  
cubed over three  
factorial Plus plus  
A to th power of n  
over n factorial  
plus, and so on  
which is equal to  
the sum of A to the  
power of k over k  
factorial, for k from  
zero to the infinity.

$$||a + b||_p \le ||a||_p + ||b||_p$$
. The norm of *a* plus *b*, *p* is less or equal to the the norm of *a*, *p* plus the norm of *b*, *p*.

$$||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{1/p} < \infty.$$
 The norm of f,p equals the integral from a to b of the absolute value of f of x to the power of p d,x all to the power of one over p, is finite.

| $\sup  x_n(t) - x(t)  \to 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The sup, where t belongs to the closed interval     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$ | a,b, of the absolute value of x,n of t minus x of t |
| $\iota \subset [a, b]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tends to zero.                                      |

$$\lim_{n \to \infty} \|\sum_{1}^{n} \alpha_i e_i\| = \sqrt{\sum |\alpha_i|^2} \quad \begin{array}{l} \text{The limit as n tends to the infinity of the norm of the sum for I from one to n of alpha, i, e,i which equals the square root of the sum of the absolute value (the modulus) of alpha,i squared.} \end{array}$$

$$F^{-1}(C) = f^{-1}(C) \cup g^{-1}(C)$$
 Big f to the minus one of C equals f to  
the minus one of C union g to the minus  
one of C.

$$\overline{f^{-1}(B)} \subset f^{-1}(\overline{B}).$$
 f minus one of B bar is a proper subset of f minus one of B bar.

$$\lim_{n\to\infty} f(x_n) \neq f(x)$$
. The limit, as n tends to the infinity, of f of x,n is different from f of x.

$$\lim_{n \to \infty} f(x_n) = f(x) | \text{The limit of f of x,n as n tends to the infinity equals f of x.}$$

| $ \rho(x,Y) - \rho(z,Y)  \le \rho(x,z)$ | The absolute value of <b>rho</b> of x,Y<br>minus <b>rho</b> of z,Y is less or equal to |
|-----------------------------------------|----------------------------------------------------------------------------------------|
|                                         | rno of x,z.                                                                            |

| $d^2$            | the second derivative of y by x; d squared y |  |
|------------------|----------------------------------------------|--|
| $\frac{d}{dx^2}$ | by d x squared                               |  |

| ðf                              | the partial derivative of f by x (with respect |
|---------------------------------|------------------------------------------------|
| $\frac{\partial f}{\partial x}$ | to x); partial d f by d x                      |

| $\frac{\partial^2 f}{\partial x^2}$ | the second partial derivative of f by $x$ (with respect to $x$ ) |
|-------------------------------------|------------------------------------------------------------------|
| 0 a                                 | partial d squared f by d x squared                               |

| $\nabla f$ | nabla | f; | the | gradient | of | f |
|------------|-------|----|-----|----------|----|---|
|------------|-------|----|-----|----------|----|---|

| $\Delta f$ | delta f |
|------------|---------|
|------------|---------|

 $A \subset Y \subset X$ . A is a subset of Y which is a subset of X.

 $\sum_{k=0}^{\infty} \frac{A^k}{k!}$  We consider the infinite series: The sum for k from zero to the infinity of A to the power k over k factorial.

| $\infty$ $\infty$ (1) $n$ 1 ( 1 )                                                                         | The sum for n from one   |
|-----------------------------------------------------------------------------------------------------------|--------------------------|
| $\sum \ w\  \leq \sum \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} = 1$  | to the infinity of the   |
| $\sum   x_n   \leq \sum \left(\frac{1}{2}\right) - \frac{1}{2} \left(\frac{1}{1-\frac{1}{2}}\right) - 1,$ | norm of x,n is strictly  |
| $n=1$ $n=1$ $\begin{pmatrix} 2 \end{pmatrix}$ $2$ $\begin{pmatrix} 1-\frac{1}{2} \end{pmatrix}$           | less than the sum for n  |
|                                                                                                           | from one to the infinity |
|                                                                                                           | of one half to the power |
|                                                                                                           | of n which is equal to   |
|                                                                                                           | one half times one over  |
|                                                                                                           | one minus one half       |
|                                                                                                           | which equals one.        |

$$\left\| (I-T)^{-1} \right\| \le \frac{1}{1-\|T\|}.$$
 The norm of I minus T to the minus one is less or equal to one over one minus the norm of T.

| $A {\in} \mathcal{A}$ |
|-----------------------|
|-----------------------|

$$\langle Tx, Y \rangle = \langle x, T^*Y \rangle \ \forall \ x, y \in H.$$

The inner product of T x,Y equals the inner product of x, T star Y, for every x,y belong to H.

$$A^{2} \ge \sum_{j=1}^{n} \int_{0}^{1} |f_{j}(x)|^{2} dx = \sum_{j=1}^{n} 1 = n$$

A squared is greater than or equal to the sum for j from one to n of the integral from zero to one of the absolute value of f,j of x squared d x, and this equals the sum for j from one to n of one which is equal to n.

 $\dim(\mathcal{M}) \leq A^2.$  The dimension of M is less or equal to A squared. Dim of M is less or equal to A squared.

| $f(x) = e_x(f) = \int_0^1 f(y)\overline{G(x,y)}dy \text{ for all } f \in \mathcal{M}.$<br>for all $f \in \mathcal{M}.$<br>for all $f \in \mathcal{M}.$<br>for all $f \in \mathcal{M}.$<br>for a equals $e, x$<br>of $f$ which is<br>equal to the<br>integral from<br>zero to one of $f$<br>of $y$ G of $x, y$ bar<br>d $y$ , for all $f$<br>belongs to $\mathcal{M}.$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                       |

$$||f||_{\infty} \le A ||f||_{p} \le A ||f||_{2}$$
 The norm of *f*, infinity, is less or equal to A times the norm of *f*, p which is less or equal to A times the norm of *f*, two.

The sum for n from one to the infinity of sup  $\sum_{n=1}^{\infty} \sup_{x \in E^c} |f_n(x)| \le \sum_{n=1}^{\infty} M_n < \infty$ of the absolute value of f,n of x, where x belongs to E,c is less or equal to the sum for n from one to the infinity of M,n which is finite.

$$\left\|\sum_{n=1}^{N} c_n f_n\right\|_{\infty}^2 \le B^2 \sum_{n=1}^{N} |c_n|^2 \le B^2 |c|^2$$

The norm of the sum for n from one to N of c,n,f,n infinity squared is less or equal to B squared times the sum for n from one to N of the absolute value of c,n squared which is less or equal to B squared times the absolute value of c squared.

| $  S - S_n  _{\infty} \to 0 \text{ as } n \to \infty.$ | The norm of S minus S,n in the infinity tends |
|--------------------------------------------------------|-----------------------------------------------|
|                                                        | to zero as n tends to the infinity.           |

| $\int f(x)  dx$          | integral of f of x d x                      |
|--------------------------|---------------------------------------------|
| $\int_{a}^{b} t^2 dt$    | integral from a to b of t squared d t       |
| $\iint_S h(x,y)  dx  dy$ | double integral over S of h of x y d x d y. |

| $\ f\  = \left(\int_X  f ^p  d\mu\right)^{1/p}$ | The norm of f equals the integral over X of the absolute value of f to the power of p d,mu all to the power of one over p. |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|

$$|gf| = gf$$
 and  $\left(\frac{|g|}{||g||_q}\right)^q = \left(\frac{|f|}{||f||_p}\right)^p$  a.e. The absolute value of g, f equals g, f and the absolute value of g over the norm of g, q to the power of q equals the absolute value of f over the norm of f, p to the power of p, **about every**.

|--|

| $e^{-i\theta}$ Exponential minus 1, theta. |
|--------------------------------------------|
|--------------------------------------------|

| $A = \begin{pmatrix} -\sin\theta & \cos\theta \\ -\sin\theta & \cos\theta \end{pmatrix}   $ equals cosine theta, sine theta, minus sine theta and cosine theta. |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|

| $A^{-1} = \frac{1}{\det(A)} \left( Com(A) \right)^t$ The inverse of A (A to the minus one) equation on a constraint of A times the comatrix of a transpose. |                                                                                 |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|
| $\mathbf{P} \wedge \mathbf{P}$ of lambda is equal to $\mathbf{P} \mathbf{P} \wedge \mathbf{o}$ flambda, we have $\mathbf{p}$                                |                                                                                 |  |  |
| $p_{AB}(\lambda) = p_{BA}(\lambda)$ is characteristic polynomial.                                                                                           |                                                                                 |  |  |
|                                                                                                                                                             | <b>TT</b> 1                                                                     |  |  |
| $E_{\lambda} = \{x \in \mathbb{R}^n ; Ax =$                                                                                                                 | = $\lambda x$ {   Ine eigenspace associated with lambda equals the set of all x |  |  |
| $-1$ rom $(A \to T)$                                                                                                                                        | belongs to R,n such that A,x equals                                             |  |  |
| $-$ Ker $(A - \lambda I)$ .                                                                                                                                 | lambda x, which is equal to the<br>kernel of A minus lambda I                   |  |  |
| Kenner of A finnus famoda 1.                                                                                                                                |                                                                                 |  |  |
| $f \cdot \mathbb{P}_{r}[r] \longrightarrow \mathbb{P}_{r}[r]$ f is an Endomorphism defined on the                                                           |                                                                                 |  |  |
| J $\frac{1}{n} \begin{bmatrix} \omega \end{bmatrix}$ $\frac{1}{n} \begin{bmatrix} \omega \end{bmatrix}$ vector space P,n of x by f of p equals p            |                                                                                 |  |  |
| $p \longmapsto f(p) = p'$ prime.                                                                                                                            |                                                                                 |  |  |
|                                                                                                                                                             |                                                                                 |  |  |
| $f^2 + 3f + 4id_E = 0$ squared plus three f plus four times the identity mapping of E (plus four i,d,E) equals zero.                                        |                                                                                 |  |  |
| ·                                                                                                                                                           |                                                                                 |  |  |

| $( \bullet )  \forall \ x \in E :   x   > 0, \text{ et }   x   = 0 \Leftrightarrow x = 0$                                       | For every x in E: the norm   |
|---------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| $ \begin{array}{c} \bullet \\ \bullet $ | the norm of x equals zero    |
| $\checkmark)  \forall \ \lambda \in \mathbb{R}, \ \forall \ x \in E : \ \lambda x\  =  \lambda  \cdot \ x\ $                    | if and only if x equals zero |
| (♦) $\forall x, y \in E :   x + y   \le   x   +   y  $ .                                                                        |                              |
|                                                                                                                                 | For ecery lambda in K and    |
|                                                                                                                                 | for every x in E: the norm   |
|                                                                                                                                 | of lambda x equals the       |
|                                                                                                                                 | absolute value (the          |
|                                                                                                                                 | modulus) of lambda times     |
|                                                                                                                                 | the norm of x.               |
|                                                                                                                                 |                              |
|                                                                                                                                 | For every x,y in E: the      |
|                                                                                                                                 | norm of x plus y is less or  |
|                                                                                                                                 | equal to the norm of x plus  |
|                                                                                                                                 | the norm of y.               |

| $\ x\ _1$        | _ | $\sum_{i=1}^{n}  x_i , \ \ x\ _2 =$ | $\left(\sum_{i=1}^{n}  x_i ^2\right)^{\frac{1}{2}}$ | , | Let x be a vector. The norm<br>of x, one equals the sum for<br>i from one to n of the<br>absolute value of x,i.                     |
|------------------|---|-------------------------------------|-----------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------|
| $  x  _{\infty}$ | = | $\max_{1 \le i \le n}  x_i   .$     |                                                     |   | The square root of the norm<br>of x, two equals the sum for<br>i from one to n of x,i<br>squared (of the modulus of<br>x.i squared) |
|                  |   |                                     |                                                     |   | The norm of x infinity is<br>equal to the max for i from<br>one to n of the absolute<br>value of x,I (of the modulus<br>of x,i).    |

| $  A  _1 = \max_j \sum_{i=1}^n  a_{ij} ,   A  _{\infty} = \max_i \sum_{j=1}^n  a_{ij} $            | The norm of the matrix A,<br>one equals the max over j of<br>the sum for I from one to n<br>of the absolute value of a,i j.        |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                    | The norm of the matrix A<br>infinity equals the max over i<br>of the sum for j from one to<br>n of the absolute value of a<br>i,j. |
|                                                                                                    | n The norm of A,x is less                                                                                                          |
| $  Ax   \le   A      x    ;  \forall A \in \mathbb{M}_n (\mathbb{K})  ,  \forall x \in \mathbb{K}$ | • or equal to the norm of<br>A times the norm of x,<br>for all A belongs to M,n<br>of k and for all x                              |

belongs to k,n.

| $\langle \rangle \ \langle x, x \rangle \ge 0 \text{ et } \langle x, x \rangle = 0 \iff x = 0$                                                 | The scalar product of x,x is                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| $\langle \rangle \ \langle x, y \rangle = \langle y, x \rangle \ \forall \ x, y \in E$                                                         | scalar product of x,x                                                                                                          |
| $\Diamond) \ \langle \lambda x, y \rangle = \lambda  \langle x, y \rangle \ \forall \ x, y \in E \text{ et } \forall \ \lambda \in \mathbb{R}$ | equals zero if and only if x equals zero.                                                                                      |
|                                                                                                                                                | The scalar product of x,y                                                                                                      |
|                                                                                                                                                | equals the scalar product<br>of y,x for every x and y in<br>E.                                                                 |
|                                                                                                                                                | The scalar product of<br>lambda x, y equals lambda<br>times the scalar product of<br>x,y for every x,y in E and<br>lambda in R |

| The scalar product of x    |
|----------------------------|
| and y plus z equals the    |
| scalar product of x,y plus |
| the scalar product of y,z  |
| for every x,y,z in E.      |
|                            |

| $\langle x, y  angle = \sum_{i=1}^{n} x_i y_i$ | The inner product of x and y is equal to the sum, for i from one to n, of x,i (times) y,i. |
|------------------------------------------------|--------------------------------------------------------------------------------------------|
| i=1                                            |                                                                                            |

| $p_A(x)$ | — | $\det\left(A - xI\right)$     | The characteristic polynomial of A: p,A of x is equal to the determinant of A minus x,I. |
|----------|---|-------------------------------|------------------------------------------------------------------------------------------|
|          | = | $\det\left((A - xI)^t\right)$ |                                                                                          |
|          | = | $\det\left(A^t - xI\right)$   | Equals                                                                                   |
|          | = | $p_{A^{t}}\left( x ight) .$   | Equals p, A transpose of x.                                                              |
|          |   |                               |                                                                                          |

| f      | :             | $\mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ | f is a mapping from R, n times R, n to R<br>defined by $f$ of x, y equals x transpose A, y. |
|--------|---------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| (x, y) | $\longmapsto$ | $x^t A y$                                                     |                                                                                             |

| $\Delta f = 0$                             | the Laplace equation   |
|--------------------------------------------|------------------------|
| $\Delta f = \lambda f$                     | the Helmholtz equation |
| $\Delta g = \frac{\partial g}{\partial t}$ | the heat equation      |

| $\Delta g = \frac{\partial^2 g}{\partial t^2}$ | the wave equation |
|------------------------------------------------|-------------------|
|------------------------------------------------|-------------------|

| $\lambda \left\langle x, y \right\rangle$ | = | $\langle \lambda x, y \rangle = \langle Ax, y \rangle$           | Lambda times the inner product of x,y<br>equals the inner product of lambda x,y<br>and this equals the inner product of A |
|-------------------------------------------|---|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
|                                           | — | $\left\langle x,A^{t}y ight angle =\left\langle x,Ay ight angle$ | x,y                                                                                                                       |
|                                           | = | $\langle x, \beta y \rangle = \beta \langle x, y \rangle$        | which equals beta times the inner product of x,y.                                                                         |
|                                           |   |                                                                  |                                                                                                                           |

$$(A^{t}A)^{t} = A^{t} (A^{t})^{t} = A^{t}A.$$
 A transpose A, all transpose equals A transpose A transpose, transpose which equals A transpose, A.

$$\alpha_0 A^m + \alpha_1 A^{m-1} + \ldots + \alpha_m I \quad \begin{array}{l} \text{Alpha zero times A to the m plus} \\ \text{alpha one times A to the m inus one} \\ \text{plus} \ldots \text{plus alpha m time I.} \end{array}$$

$$M = \underbrace{\frac{1}{2} \left( M - M^t \right)}_{A} + \underbrace{\frac{1}{2} \left( M + M^t \right)}_{B}$$
 The matrix M is always written as the sum of two matrices A and B, where A equals M minus M transpose over two and B equals M plus M transpose over two.

$$\mathbb{M}_{n}(\mathbb{R}) = S_{n}(\mathbb{R}) \oplus A_{n}(\mathbb{R}) | \begin{array}{c} \text{M,n of } \mathbb{R} \text{ is equal to the direct sum of } S, \text{n of } \mathbb{R} \text{ and} \\ A, \text{n of } \mathbb{R}. \end{array}$$

$$(B^t = -B)$$
 B transpose equals (is equal to) minus B.



A to the minus one equals A star. The inverse of A is equal to A star. The inverse of A equals A star.

$$A^{-1} = \frac{-1}{c_0} \sum_{k=1}^n c_k A^{k-1} \bigg|_{c_0}^{c_0}$$

A minus one equals minus one over c,zero times the sum for k from one to n of c,k,A to the power k minus one.

 $A^k = PB^kP^{-1}$  A to the power of k equals P times B to the power of k times P minus one.

| $A^t A = A A^t = I_n$                                                                                       | A transpose, A, equals A, A transpose<br>which is equal to I,n.         |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| $A^t = A^{-1}$                                                                                              | A transpose equals A to the minus one.                                  |
| $  Ax   =   x  ; \ \forall \ x \in \mathbb{R}^n.$ $(Ax)^t (Ay) = x^t y; \ \forall \ x, y \in \mathbb{R}^n.$ | The norm of A,x is equal to the norm of x, for all x belongs to R,n.    |
|                                                                                                             | A x transpose A,y equals x transpose, y, for all x and y belong to R,n. |

$$ax^2 + bx + c$$
   
  $a x$  squared plus  $b x$  plus  $c$ 

| $\sqrt{x} + \sqrt[3]{y}$ | UIIE | square | IOOU | 01 | x pro | Сцре | 1000 | 01 | У |
|--------------------------|------|--------|------|----|-------|------|------|----|---|
|                          |      |        |      |    |       |      |      |    |   |

| $\sqrt[n]{x+y}$   | the <i>n</i> -th root of <i>x</i> plus <i>y</i> |
|-------------------|-------------------------------------------------|
| $\frac{a+b}{c-d}$ | a plus b over c minus d                         |
| (n)               | (the binomial coefficient) $n$ over $m$         |

| $\binom{n}{m}$ |
|----------------|
|----------------|