1 The Matrix Exponential

By Bellaouar D.

Note that the exponential of a matrix deals in particular in solving systems of linear differential equations. In the following section, we present some remarkable definitions and properties on the exponential of a square matrix which may or may not be diagonalizable.

Definition 1 For each $n \times n$ complex matrix A, define the exponential of A to be the matrix

$$
e^{A} = \sum_{k=0}^{\infty} \frac{A^{k}}{k!} = I_{n} + \frac{A}{1!} + \frac{A^{2}}{2!} + \dots + \frac{A^{k}}{k!} + \dots
$$

This is the matrix exponential of A.

Note that if $A = 0$ (the zero matrix); we have $e^0 = I_n$. Indeed, we see that

$$
e^{0} = I_{n} + \frac{0}{1!} + \frac{0}{2!} + \dots + \frac{0}{k!} + \dots = I_{n}.
$$

We also have for every $k \in \mathbb{Z}$, $e^{kA} = (e^A)^k$.

Example 2 Consider the matrix

$$
A = \left(\begin{array}{rrr} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{array}\right).
$$

Calculate A^2 and A^3 . Deduce e^A .

Indeed, according computation, we have

$$
A^{2} = \begin{pmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{pmatrix} \begin{pmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 3 & 3 & 9 \\ -1 & -1 & -3 \end{pmatrix}
$$

Moreover,

$$
A^{3} = \begin{pmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 3 & 3 & 9 \\ -1 & -1 & -3 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.
$$

Using Definition [1,](#page-0-0) we obtain

$$
e^{A} = I_{3} + \frac{A}{1!} + \frac{A^{2}}{2!}
$$

= $I_{3} + A + \frac{A^{2}}{2}$
= $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 \\ 3 & 3 & 9 \\ -1 & -1 & -3 \end{pmatrix}$
= $\begin{pmatrix} 2 & 1 & 3 \\ \frac{13}{2} & \frac{9}{2} & \frac{21}{2} \\ -\frac{5}{2} & -\frac{3}{2} & -\frac{7}{2} \end{pmatrix}.$

It is easy to calculate the exponential of a diagonal matrix. We have

Corollary 3 Let D be a diagonal matrix, i.e.,

$$
D = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} = diag \{ \lambda_1, \lambda_2, ..., \lambda_n \}.
$$

Then

$$
e^D = \begin{pmatrix} e^{\lambda_1} & & & \\ & e^{\lambda_2} & & \\ & & \ddots & \\ & & & e^{\lambda_n} \end{pmatrix} = diag\left\{e^{\lambda_1}, e^{\lambda_2}, ..., e^{\lambda_n}\right\}.
$$
 (1)

Proof. In fact, for each $k \geq 0$ we have

$$
D^k = \left(\begin{array}{cccc} \lambda_1^k & & & \\ & \lambda_2^k & & \\ & & \ddots & \\ & & & \lambda_n^k \end{array}\right).
$$

From definition [1,](#page-0-0) we get

$$
e^{D} = \sum_{k=0}^{+\infty} \frac{D^{k}}{k!}
$$

\n
$$
= \sum_{k=0}^{+\infty} \frac{1}{k!} \begin{pmatrix} \lambda_{1}^{k} & & & \\ & \lambda_{2}^{k} & & \\ & & \ddots & \\ & & & \lambda_{n}^{k} \end{pmatrix}
$$

\n
$$
= \begin{pmatrix} \sum_{k=0}^{+\infty} \frac{\lambda_{1}^{k}}{k!} & & & \\ & \sum_{k=0}^{+\infty} \frac{\lambda_{2}^{k}}{k!} & & \\ & & \ddots & \\ & & & \sum_{k=0}^{+\infty} \frac{\lambda_{n}^{k}}{k!} \end{pmatrix}
$$

\n
$$
= \begin{pmatrix} e^{\lambda_{1}} & & & \\ & e^{\lambda_{2}} & & \\ & & \ddots & \\ & & & e^{\lambda_{n}} \end{pmatrix}.
$$

This completes the proof. $\;\blacksquare\;$

$$
A = \left(\begin{array}{cc} -1 & 0 \\ 0 & 2 \end{array} \right).
$$

Calculate e^A .

In fact, by (1) , we have

$$
e^A = \left(\begin{array}{cc} e^{-1} & 0 \\ 0 & e^2 \end{array}\right).
$$

Proposition 5 Let $A \in \mathcal{M}_n(\mathbb{R})$ be a diagonalizable matrix. Then e^A is also diagonalizable. In addition, we have

$$
A = PDP^{-1} \Rightarrow e^A = Pe^D P^{-1}.
$$

Proof. Let $A \in \mathcal{M}_n(\mathbb{R})$ be a diagonalizable matrix. Then there exists an invertible matrix P such that $A = PDP^{-1}$ with D is diagonal. Therefore,

$$
e^{A} = \sum_{k=0}^{+\infty} \frac{A^{k}}{k!} = \sum_{k=0}^{+\infty} \frac{(PDP^{-1})^{k}}{k!}
$$

$$
= \sum_{k=0}^{+\infty} \frac{PD^{k}P^{-1}}{k!}
$$

$$
= P\left(\sum_{k=0}^{+\infty} \frac{D^{k}}{k!}\right)P^{-1}
$$

$$
= Pe^{D}P^{-1}.
$$

As required. ■

Theorem 6 Let $S \in \mathbb{GL}_n(\mathbb{R})$ be an invertible matrix and let $A \in \mathcal{M}_n(\mathbb{R})$. We have

$$
e^{SAS^{-1}} = Se^AS^{-1}.
$$

Proof. Let $S \in \mathbb{GL}_n(\mathbb{R})$ and let $A \in \mathcal{M}_n(\mathbb{R})$. From Definition [1,](#page-0-0) we have

$$
e^{SAS^{-1}} = I_n + \frac{SAS^{-1}}{1!} + \frac{(SAS^{-1})^2}{2!} + \frac{(SAS^{-1})^3}{3!} + \dots
$$

\n
$$
= I_n + \frac{SAS^{-1}}{1!} + \frac{SAS^{-1}}{2!} + \frac{SAS^{-1}}{3!} + \dots
$$

\n
$$
= SI_nS^{-1} + \frac{SAS^{-1}}{1!} + \frac{SAS^{-1}}{2!} + \frac{SAS^{-1}}{3!} + \dots
$$

\n
$$
= S\left(I_n + \frac{A}{1!} + \frac{A^2}{2!} + \frac{A^3}{3!} + \dots\right)S^{-1}
$$

\n
$$
= Se^AS^{-1}.
$$

The proof is finished. \blacksquare

Corollary 7 Let $A \in \mathcal{M}_n(\mathbb{R})$ and let (λ, x) be an eigenpair of A. Then (e^{λ}, x) is an eigenpair of e^A .

Proof. Assume that (λ, x) is an eigenpair of A. By definition, we have

$$
e^{A}x = \left(\sum_{k=0}^{+\infty} \frac{A^{k}}{k!} \right) x = \sum_{k=0}^{+\infty} \frac{A^{k}x}{k!}
$$

$$
= \sum_{k=0}^{+\infty} \frac{\lambda^{k}x}{k!} = \left(\sum_{k=0}^{+\infty} \frac{\lambda^{k}}{k!} \right) x
$$

$$
= e^{\lambda}x.
$$

This completes the proof. ■

Lemma 8 We have the following two properties:

(i) For any $A \in \mathcal{M}_n(\mathbb{R})$ and for any $t \in \mathbb{R}$,

$$
Ae^{At} = e^{At}A.
$$

(ii) For any $A \in \mathcal{M}_n(\mathbb{R})$ and for any $t \in \mathbb{R}$,

$$
e^{tI_n}=e^tA.
$$

Proof. By the definition, we have

$$
Ae^{At} = A \sum_{i=0}^{+\infty} \frac{A^k t^k}{k!} = \sum_{i=0}^{+\infty} \frac{A^{k+1} t^k}{k!} = \left(\sum_{i=0}^{+\infty} \frac{A^k t^k}{k!}\right) A = e^{At} A.
$$

Likewise, we have

$$
e^{tI_n} = e^{\begin{pmatrix} t & & \\ & \ddots & \\ & & t \end{pmatrix}} = \begin{pmatrix} e^t & & \\ & \ddots & \\ & & e^t \end{pmatrix} = e^t \begin{pmatrix} 1 & & \\ & \ddots & \\ & & 1 \end{pmatrix} = e^t I_n.
$$

The proof is finished. \blacksquare

Remark 9 According to the previous lemma, we have

$$
e^{tI_n}I_n = e^{tI_n} = e^tI_n.
$$

Note that $e^{tI_n} \neq e^t$; because $e^{tI_n} \in \mathcal{M}_n(\mathbb{R})$ and $e^t \in \mathbb{R}$.

The integer series which defines the exponential of a real, or complex number, is also convergent for a matrix. In addition, we have

Theorem 10 For any matrix $A \in \mathcal{M}_n(\mathbb{C})$, the series

$$
\sum_{k=0}^{+\infty} \frac{A^k}{k!}
$$

is absolutely convergent (therefore convergent) in $\mathcal{M}_n(\mathbb{C})$.

Proof. For each $k \geq 0$, we have

$$
\left\|\frac{A^k}{k!}\right\| \le \frac{\left\|A\right\|^k}{k!}
$$

and according to d'Alembert's Rule^{[1](#page-4-0)}, we obtain

$$
\lim_{k \to +\infty} \left| \frac{\frac{\|A\|^{k+1}}{(k+1)!}}{\frac{\|A\|^k}{k!}} \right| = \lim_{k \to +\infty} \frac{\|A\|}{k+1} = 0 < 1.
$$

Thus, $+\infty$ $k=0$ A^k $k!$ is convergent. Since

$$
\left\|\sum_{k=0}^{+\infty}\frac{A^k}{k!}\right\|\leq \sum_{k=0}^{+\infty}\frac{\|A\|^k}{k!},
$$

It follows that $+\infty$ $k=0$ A^k $k!$ is therefore absolutely convergent. Also we have the following proposition.

Proposition 11 Let A be a square matrix. Then

$$
\lim_{x \to 0} \frac{e^{xA} - I}{x} = A.
$$

Proof. We know that

$$
e^{xA} - I - xA = \frac{(xA)^2}{2!} + \frac{(xA)^3}{3!} + \dots
$$

¹Let $\sum u_n$ be a series with positive terms. If the limit (finite or not)

$$
l = \lim \frac{u_{n+1}}{u_n}
$$

exists, then

- 1. The series $\sum u_n$ is convergent if $l < 1$,
- 2. The series $\sum u_n$ is divergent if $l > 1$.

So we can write

$$
||e^{xA} - I - xA|| = ||\frac{(xA)^2}{2!} + \frac{(xA)^3}{3!} + ...||
$$

$$
\leq ||xA||^2 + ||xA||^3 + ...
$$

$$
= e^{||xA||} - 1 - ||xA||.
$$

For every $x \neq 0$, we obtain

$$
\left\|\frac{e^{xA} - I}{x} - A\right\| \le \frac{e^{\|xA\|} - 1 - \|xA\|}{|x|} = \left(\frac{e^{|x| \cdot \|x\|} - 1}{|x|} - \|A\|\right) \to 0.
$$

As required. \blacksquare

1.1 Problems

Ex 01. Are the matrices

$$
A = \left(\begin{array}{cc} -1 & 0\\ 0 & -1 \end{array}\right), B = \left(\begin{array}{cc} -1 & 1\\ 0 & -1 \end{array}\right), C = \left(\begin{array}{cc} -1 & 0\\ 0 & -4 \end{array}\right)
$$

exponentials of matrices?

Ex 02. Prove that the matrix

$$
J_2 = \left(\begin{array}{cc} -1 & 1\\ 0 & -1 \end{array}\right)
$$

is neither the square nor the exponential of any matrix of $\mathcal{M}_2(\mathbb{R})$, but the matrices

$$
J_4 = \left(\begin{array}{cc} J_2 & \mathbf{0} \\ \mathbf{0} & J_2 \end{array}\right) \text{ and } J_3 = \left(\begin{array}{cc} J_2 & I_2 \\ \mathbf{0} & J_2 \end{array}\right)
$$

are the square and the exponential of a matrix of $\mathcal{M}_4(\mathbb{R}).$

Ex 03. Let

$$
A = \left(\begin{array}{ccc} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{array}\right).
$$

Calculate e^A .

Ex 04. Let

$$
A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \text{ and } B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.
$$

Calculate $e^A e^B$, e^{A+B} and $e^B e^A$.

Ex 05. Considère the following matrices

$$
A = \left(\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array}\right) \text{ and } B = \left(\begin{array}{cc} 1 & -1 \\ 0 & 0 \end{array}\right).
$$

Calculate $C = e^{A+B}$, $D = e^{A}e^{B}$ and $F = e^{B}e^{A}$. Check that $C \neq D \neq F$.

Ex 06. Consider the matrix

$$
A = \left(\begin{array}{cc} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{array}\right).
$$

Calculate $log A$. i.e., find a matrix $B \in \mathcal{M}_2(\mathbb{C})$ such that $A = e^B$.

Ex 07. Consider the matrices

$$
A = \left(\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array}\right) \text{ and } B = \left(\begin{array}{cc} 1 & -1 \\ 0 & 0 \end{array}\right).
$$

Calculate e^A, e^B . Deduce the expression of e^F , where

$$
F = \left(\begin{array}{rrrr} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{array}\right).
$$