
1 Linear recurrence sequences of order k

By Bellaouar D.
Let (a0; a1; :::; ak�1) be a system of k real numbers not all zero. A linear recurrence

sequence of order k is de�ned as follows:�
xn+k = a0xn + a1xn+1 + :::+ ak�1xn+k�1,
x0; x1; :::; xk�1 2 R are given.

Thus, a sequence de�ned by a linear recurrence relation is uniquely determined by its
�rst k terms: x0; x1; :::; xk�1. As an example, for k = 2 :�

xn+2 = a0xn + a1xn+1,
x0; x1 2 R are given.
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In the equivalent vector-matrix system, we obtain�
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from which it follows that

Xn = AXn�1 = A
2Xn�2 = ::: = A

n�1X1; (1)

where X1 =

�
x0
x1

�
. Thus, we must compute An for n � 0.

Application. Consider the following example:

Example 1 Let (xn) be the sequence given by

xn+2 =
2

1

xn
+

1

xn+1

; x0; x1 2 R�+. (2)

Find the formula of xn in terms of n, then calculate lim
n!+1

xn:

Solution. In fact, we write (2) in the form

2

xn
=

1

xn�2
+

1

xn�1
.

Setting
2

xn
= yn, we get

2yn = yn�1 + yn�2, that is, yn =
1

2
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2
yn�2.
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In the equivalent vector-matrix system, we have
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Therefore, �
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, where A =
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From the computation (the matrix diagonalizable), we obtain
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and so
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Since xn =
1

yn
, it follows that
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Passing to the limit as n tends to in�nity, we get

lim
n!+1

xn =
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:
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