1 The square root of a diagonalizable matrix

By Bellaouar D.

Lemma 1 Let

$$D = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix}, \text{ where } \lambda_i > 0 \text{ (}1 \le i \le n\text{)}.$$

Then

$$\sqrt{D} = \begin{pmatrix} \sqrt{\lambda_1} & & & \\ & \sqrt{\lambda_2} & & \\ & & \ddots & \\ & & & \sqrt{\lambda_n} \end{pmatrix}.$$

Proof. It is clear by computation that $\sqrt{D}\sqrt{D} = D$.

Proposition 2 Let $A \in \mathcal{M}_n(\mathbb{R})$ be a diagonalizable matrix with $Sp(A) \subset \mathbb{R}_+$. Then $\sqrt{A} \in \mathcal{M}_n(\mathbb{R})$.

Proof. Assume that $A = PDP^{-1}$, where $Sp(D) \subset \mathbb{R}_+$. We put

$$H = P\sqrt{D}P^{-1} \in \mathcal{M}_n(\mathbb{R}).$$

Since $\sqrt{D}\sqrt{D} = D$, it follows that

$$H^{2} = \left(P\sqrt{D}P^{-1}\right)\left(P\sqrt{D}P^{-1}\right) = PDP^{-1} = A.$$

Thus, $\sqrt{A} = H$.

Example 3 Consider the matrix

$$A = \left(\begin{array}{ccc} 11 & -5 & 5 \\ -5 & 3 & -3 \\ 5 & -3 & 3 \end{array}\right).$$

Calculate \sqrt{A} .

After simple computation, the eigenpairs of A are:

$$\left\{ \begin{array}{l} \lambda_1 = 0, \ E_{\lambda_1} = Vect\left\{(0,1,1)\right\}, \\ \lambda_2 = 1, \ E_{\lambda_2} = Vect\left\{(-1,-1,1)\right\}, \\ \lambda_3 = 16, \ E_{\lambda_3} = Vect\left\{(2,-1,1)\right\}. \end{array} \right.$$

Further, we see that

$$P = \begin{pmatrix} 0 & -1 & 2 \\ 1 & -1 & -1 \\ 1 & 1 & 1 \end{pmatrix}, D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 16 \end{pmatrix} \text{ and } P^{-1} = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{3} & -\frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{6} & \frac{1}{6} \end{pmatrix}.$$

Which gives

$$\begin{array}{rcl} \sqrt{A} & = & P\sqrt{D}P^{-1} \\ & = & \left(\begin{array}{ccc} 0 & -1 & 2 \\ 1 & -1 & -1 \\ 1 & 1 & 1 \end{array} \right) \left(\begin{array}{ccc} \sqrt{0} & 0 & 0 \\ 0 & \sqrt{1} & 0 \\ 0 & 0 & \sqrt{16} \end{array} \right) \left(\begin{array}{ccc} 0 & \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{3} & -\frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{6} & \frac{1}{6} \end{array} \right) \\ & = & \left(\begin{array}{ccc} 3 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{array} \right). \end{array}$$

Definition 4 Let $A = PDP^{-1}$ be a diagonalizable matrix whose eigenvalues are given by the diagonal matrix

$$D = diag \{\lambda_1, \lambda_2, ..., \lambda_n\}.$$

For any function f(x) defined at the points $(\lambda_i)_{1 \leq i \leq n}$, we have

$$f(A) = Pf(D) P^{-1} = P \begin{pmatrix} f(\lambda_1) & & \\ & f(\lambda_2) & \\ & & \ddots & \\ & & f(\lambda_n) \end{pmatrix} P^{-1}.$$

For example, if $A \in \mathcal{M}_n(\mathbb{R})$ with $A = PDP^{-1}$ then

$$\begin{cases} f(x) = x^k \Rightarrow f(A) = A^k = PD^kP^{-1} & \text{for } k \ge 0 \\ f(x) = \sqrt{x} \Rightarrow f(A) = \sqrt{A} = P\sqrt{D}P^{-1} \\ f(x) = \cos x \Rightarrow f(A) = \cos A = P(\cos D)P^{-1} \\ f(x) = e^x \Rightarrow f(A) = e^A = Pe^DP^{-1} \\ & \dots \end{cases}$$

1.1 Problems.

- **Ex 01.** Let M be a real n by n matrix. We denote by $\cos M$ the real part of e^{iM} and $\sin M$ its imaginary part.
 - 1. Show that $\cos M$ and $\sin M$ commute and that

$$\left(\cos M\right)^2 + \left(\sin M\right)^2 = I_n.$$

2. Let θ be a real number. Calculate

$$\cos \left(\begin{array}{cc} \theta & 1 \\ 0 & \theta \end{array} \right) \text{ and } \sin \left(\begin{array}{cc} \theta & 1 \\ 0 & \theta \end{array} \right).$$

Ex 02. Let

$$A = \left(\begin{array}{cc} 0 & i \\ i & 0 \end{array}\right) \in \mathcal{M}_2(\mathbb{C}).$$

Calculate \sqrt{A} .