University 08 Mai 45 Guelma, 2019/2020 Department of Mathematics, 2^{nd} Year-Maths Module: Algebra 3 Exams 2020 By: Dr. Bellaouar. D

1 Sub-test of Algebra III, January 15th-2020

Exercise1. Consider the matrix

$$
A = \left(\begin{array}{cc} 1 & 2 \\ 4 & 3 \end{array}\right).
$$

- 1. Find eigenvalues of the matrix A.
- 2. Find eigenvectors for each eigenvalue of A.
- 3. Diagonalize the matrix A . That is, find an invertible matrix P and a diagonal matrix D such that $P^{-1}AP = D$.
- 4. Diagonalize the matrix $A^3 5A^2 + 3A + I$, where I is the 2×2 identity matrix.
- 5. Calculate A^n , for $n \geq 0$.
- 6. Calculate $(A^3 5A^2 + 3A + I)^{2020}$.

=== Exercise 2.

a. Let $A \in \mathcal{M}_n(\mathbb{R})$ be an orthogonal matrix (i.e., $A^t A = A A^t = I$). Prove that $\det(A) = \pm 1.$

b. Let $A \in \mathcal{M}_n(\mathbb{R})$. Show that if A is diagonalizable by an orthogonal matrix P, then A is a symmetric matrix.

c. For which values of constants a, b and c is the matrix

$$
A = \left(\begin{array}{ccc} 1 & a & b \\ 0 & 2 & c \\ 0 & 0 & 3 \end{array}\right)
$$

diagonalizable?

d. Let $A \in \mathcal{M}_n(\mathbb{R})$. Prove that

$$
\det(e^A) = e^{tr(A)}.
$$

e. Let $A \in \mathcal{M}_n(\mathbb{R})$. Explain how a system of differentail equations $X' = AX$ can be solved whenever A is diagonalizable or not.

===

Good Luck.

2 Solution of Sub-test of Algebra III, 2020

Exercise1. Consider the matrix

$$
A = \left(\begin{array}{cc} 1 & 2 \\ 4 & 3 \end{array}\right).
$$

1. We find eigenvalues of the matrix A :

$$
p_A(x) = \begin{vmatrix} 1-x & 2 \\ 4 & 3-x \end{vmatrix} = \begin{vmatrix} 5-x & 5-x \\ 4 & 3-x \end{vmatrix} = (5-x) \begin{vmatrix} 1 & 1 \\ 4 & 3-x \end{vmatrix}
$$

= $(5-x)(3-x-4) = (x-5)(x+1).$

Therefore, $\lambda_1 = -1$ and $\lambda_2 = 5$.

2. We find eigenvectors for each eigenvalue of A :

$$
E_{\lambda_1} = \left\{ (x, y) \in \mathbb{R}^2; \begin{array}{c} x + 2y = -x \\ 4x + 3y = -y \end{array} \right\} = Vect \left\{ (1, -1) \right\},\,
$$

also, we have

$$
E_{\lambda_2} = \left\{ (x, y) \in \mathbb{R}^2; \quad \begin{cases} x + 2y = 5x \\ 4x + 3y = 5y \end{cases} \right\} = Vect \left\{ (1, 2) \right\}.
$$

3. Next, we diagonalize the matrix A . That is, we will find an invertible matrix P and a diagonal matrix D such that $P^{-1}AP = D$. In fact, we see taht

$$
P^{-1}AP = \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 5 \end{pmatrix} = D.
$$

4. We diagonalize the matrix $A^3 - 5A^2 + 3A + I$, where I is the 2×2 identity matrix:

$$
A3 - 5A2 + 3A + I = P(D3 - 5D2 + 3D + I)P-1,
$$
 (*)

where by few computation we find:

$$
D^3 - 5D^2 + 3D + I = \begin{pmatrix} -8 & 0 \\ 0 & 16 \end{pmatrix}.
$$
 (*)

5. We calculate A^n , for $n \ge 0$. Since $A = PDP^{-1}$, then

$$
A^{n} = \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} (-1)^{n} & 0 \\ 0 & 5^{n} \end{pmatrix} \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \end{pmatrix} = \begin{pmatrix} \frac{2(-1)^{n} + 5^{n}}{3} & \frac{5^{n} - (-1)^{n}}{3} \\ \frac{2 \cdot 5^{n} - 2(-1)^{n}}{3} & \frac{(-1)^{n} + 2 \cdot 5^{n}}{3} \end{pmatrix}.
$$

6. We calculate $(A^3 - 5A^2 + 3A + I)^{2020}$. From (*) and (**), we see that

$$
(A^3 - 5A^2 + 3A + I)^{2020} = \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} (-8)^{2020} & 0 \\ 0 & 16^{2020} \end{pmatrix} \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \end{pmatrix}.
$$

Exercise 2.

a. Let $A \in \mathcal{M}_n(\mathbb{R})$ be an orthogonal matrix (i.e., $A^t A = A A^t = I$). We prove that $\det(A) = \pm 1$. Indeed, we see that

===

$$
\det\left(A^{t}A\right)=\det\left(I\right)=1,
$$

But

$$
\det (AtA) = \det (At) \det (A) = (\det (A))^{2} = 1,
$$

then det $(A) = \pm 1$.

b. Let $A \in \mathcal{M}_n(\mathbb{R})$. We show that if A is diagonalizable by an orthogonal matrix P, then A is a symmetric matrix. In fact, since $A = PDP^{-1}$ with P is orthogonal, then $P^{-1} = P^t$ and $A = PDP^t$. It follows that

$$
At = (PDPt)t = (Pt)t Dt Pt = PDPt = A.
$$

c. For which values of constants a, b and c is the matrix

$$
A = \left(\begin{array}{ccc} 1 & a & b \\ 0 & 2 & c \\ 0 & 0 & 3 \end{array}\right)
$$

diagonalizable?

In fact, since A is an upper triangular matrix, then $1, 2, 3$ are the eigenvalues of A , which are all simple. That is, $A_m(\lambda) = G_m(\lambda) = 1$ for $\lambda = 1, 2, 3$. Then A is diagonalizable for each values of constants a, b and c .

d. Let $A \in \mathcal{M}_n(\mathbb{R})$. Note that if λ is an eigenvalue of A, then e^{λ} is also an eigenvalue of e^A . Then, we have

$$
\det\left(e^A\right) = \prod e^{\lambda_i} = e^{\lambda_1 + \lambda_2 + \dots} = e^{tr(A)}, \text{ because } tr(A) = \sum \lambda_i.
$$

e. Let $A \in \mathcal{M}_n(\mathbb{R})$. Consider a system of differentail equations $X' = AX$. In general, the solution is given by the following formula:

$$
X(t) = e^{tA}c, \text{ where } c \in \mathbb{R}^n.
$$

But, if A is diagonalizable (that is, $A_m(\lambda_i) = G_m(\lambda_i)$ for $i = 1, 2, ..., n$), then

$$
X(t) = c_1 e^{\lambda_1 t} V_1 + c_2 e^{\lambda_2 t} V_2 + \dots + c_n e^{\lambda_n t} V_n,
$$

where $c_1, c_2, ..., c_n$ are constants, and $V_1, V_2, ..., V_n$ are the corresponding eigenvectors.

== End

3 Exam of Algebra III, January 19th-2020

University 08 Mai 45 Guelma, 2019/2020 Department of Mathematics, 2^{nd} Year-Maths Module: Algebra 3 January 19th-2020 Final Exam 2 Hours ===

give the algebraic multiplicity of each eigenvalue^{[1](#page-3-0)}. (2 pts).

Exercise 2.

- 1. Let $A \in \mathcal{M}_n(\mathbb{R})$. Explain how a system of differentail equations $X' = AX$ can be solved whenever A is diagonalizable or not. (2 pts)
- 2. Trigonalize the matrix $A =$ $\begin{pmatrix} 2 & -1 \\ 1 & 4 \end{pmatrix}$. Compute A^n for any $n \in \mathbb{N}$. (4 pts)
- 3. Let $A \in \mathcal{M}_n(\mathbb{R})$. Assume that A has a unique eigenvalue, say λ . Prove that

$$
e^{tA} = e^{\lambda t} \left[I + (A - \lambda I) \frac{t}{1!} + (A - \lambda I)^2 \frac{t^2}{2!} + \dots + \frac{t^{n-1}}{(n-1)!} (A - \lambda I)^{n-1} \right]. \quad (1.5 \text{ pts})
$$

4. Solve the system of differential equations: $\begin{cases} x' = 2x - y \\ y' = x + 4y \end{cases}$ $y' = x + 4y.$ (1.5 pts)

5. Solve the following system of linear recurrence sequences:

$$
\begin{cases} a_{n+1} = 2a_n - b_n \\ b_{n+1} = a_n + 4b_n \end{cases}
$$
, where $a_0 = 1$ and $b_0 = 0$. (2 pts)

Exercise 3.

- 1. Let A, B be two square matrices. Prove that if A or B is invertible, then AB is similar to BA . (1 pt)
- 2. Let A be an $n \times n$ matrix and let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be its eigenvalues. Show that

$$
\det\left(A\right) = \prod_{i=1}^{n} \lambda_i. \tag{2 \; pts}
$$

3. Let A be an $n \times n$ matrix. We say that A is idempotent if $A^2 = A$.

¹Optional Question: Determine all eigenvalues and their algebraic multiplicities of the matrix A_{2n} , for $n \geq 2. (+ 2 \; pts)$

- 3.a) Find a nonzero, nonidentity idempotent matrix. $(1 pt)$
- 3.b) Show that any eigenvalue of an idempotent matrix A is either 0 or 1. (1 pt)
- 3.c) Let A be an $n \times n$ idempotent complex matrix. Then prove that A is diagonalizable. $(2 \; pts)$

Good Luck.

4 Solution

Exercise 1. Let $A_4 =$ $\sqrt{ }$ $\overline{}$ 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 . We find the eigenvalues and their algebraic multi-

plicities of the matrix A_4 . In fact, we have

$$
p_{A_4}(x) = \begin{vmatrix} -x & 0 & 0 & 0 \\ 1 & 1-x & 1 & 1 \\ 0 & 0 & -x & 0 \\ 1 & 1 & 1 & 1-x \end{vmatrix} = -x \begin{vmatrix} 1-x & 1 & 1 \\ 0 & -x & 0 \\ 1 & 1 & 1-x \end{vmatrix} = -x \begin{vmatrix} -x & 0 & x \\ 0 & -x & 0 \\ 1 & 1 & 1-x \end{vmatrix} = -x^3 \begin{vmatrix} -1 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 1 & 1-x \end{vmatrix} = -x^3 \begin{vmatrix} -x^3 \cdot (-1+x) + 1 \cdot 1 = x^3 \cdot (x-2) \cdot 1 = x^3 \cdot (x-2) \cdot 1 = x^3 \cdot (x-2)
$$

Then $\lambda_1 = 0$ with $A_m(\lambda_1) = 3$ and $\lambda_2 = 2$ with $A_m(\lambda_2) = 1$.

Exercise 2.

1. Let $A \in \mathcal{M}_n(\mathbb{R})$. Consider a system of differentail equations $X' = AX$. In general, the solution is given by the following formula:

$$
X(t) = e^{tA}c, \text{ where } c \in \mathbb{R}^n.
$$

But, if A is diagonalizable (that is, $A_m(\lambda_i) = G_m(\lambda_i)$ for $i = 1, 2, ..., n$), then

$$
X(t) = c_1 e^{\lambda_1 t} V_1 + c_2 e^{\lambda_2 t} V_2 + \dots + c_n e^{\lambda_n t} V_n,
$$

where $c_1, c_2, ..., c_n$ are constants, and $V_1, V_2, ..., V_n$ are the corresponding eigenvectors.

- 2. We trigonalize the matrix $A =$ $\begin{pmatrix} 2 & -1 \\ 1 & 4 \end{pmatrix}$, and then we compute A^n for any $n \in \mathbb{N}$.
	- (a) We compute the characteristic polynomial of A :

$$
p_A(x) = \begin{vmatrix} 2-x & -1 \\ 1 & 4-x \end{vmatrix} = \begin{vmatrix} 3-x & -1 \\ -(3-x) & 4-x \end{vmatrix} = (3-x) \begin{vmatrix} 1 & -1 \\ -1 & 4-x \end{vmatrix}
$$

= $(3-x)(4-x-1) = (3-x)^2$.

(b) We compute the corresponding eigenvector:

$$
E_3 = \left\{ (x, y) \in \mathbb{R}^2; \quad \frac{2x - y = 3x}{x + 4y = 3y} \right\} = Vect \left\{ (1, -1) \right\}.
$$

(c) Setting $v_2 = (1,0)$, and let

$$
P = \left(\begin{array}{cc} 1 & 1 \\ -1 & 0 \end{array} \right).
$$

Then,

$$
P^{-1}AP = \left(\begin{array}{cc} 3 & -1 \\ 0 & 3 \end{array}\right),
$$

and so, $A = PTP^{-1}$.

- (d) We compute A^n : In fact, we have $A^n = PT^nP^{-1}$.
- (e) Next, it suffices to compute T^n . Since

$$
T = \left(\begin{array}{cc} 3 & -1 \\ 0 & 3 \end{array}\right) = \left(\begin{array}{cc} 3 & 0 \\ 0 & 3 \end{array}\right)_D + \left(\begin{array}{cc} 0 & -1 \\ 0 & 0 \end{array}\right)_N,
$$

where N is nilpotent (with $N^2 = 0$) and $DN + ND$, it follows that

$$
T^n = (D+N)^n = D^n + nD^{n-1}N = \begin{pmatrix} 3^n & 0 \\ 0 & 3^n \end{pmatrix} + n \begin{pmatrix} 3^{n-1} & 0 \\ 0 & 3^{n-1} \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}
$$

= $\begin{pmatrix} 3^n & -3^{n-1} \cdot n \\ 0 & 3^n \end{pmatrix}$.

(f) Finally, we deduce that

$$
A^{n} = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 3^{n} & -3^{n-1}n \\ 0 & 3^{n} \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 3^{n} - 3^{n-1} \cdot n & -3^{n-1} \cdot n \\ 3^{n-1} \cdot n & 3^{n-1} \cdot n + 3^{n} \end{pmatrix}.
$$

3. Let $A \in \mathcal{M}_n(\mathbb{R})$ be a square matrix which has a unique eigenvalue, say λ . We prove that

$$
e^{tA} = e^{\lambda t} \left[I + (A - \lambda I) \frac{t}{1!} + (A - \lambda I)^2 \frac{t^2}{2!} + \dots + \frac{t^{n-1}}{(n-1)!} (A - \lambda I)^{n-1} \right].
$$

Firstly, note that $p_A(x) = (x - \lambda)^n$ since A has a unique eigenvalue, say λ . By definition, we have

$$
e^{tA} = e^{\lambda t I_n + t(A - \lambda I_n)}
$$
\n
$$
= e^{\lambda t I_n} e^{t(A - \lambda I_n)}
$$
 (since $\lambda t I_n$ and $t(A - \lambda I_n)$ commute)
\n
$$
= e^{\lambda t} e^{t(A - \lambda I_n)}
$$
 (since $e^{\alpha I_n} B = e^{\alpha} B$ for any $B \in \mathcal{M}_n(\mathbb{R})$ and $\alpha \in \mathbb{R}$)
\n
$$
= e^{\lambda t} \sum_{k=0}^{+\infty} (A - \lambda I_n)^k \frac{t^k}{k!}
$$
\n
$$
= e^{\lambda t} \sum_{k=0}^{n-1} (A - \lambda I_n)^k \frac{t^k}{k!},
$$
\n(1)

where $+ \infty$ $\sum_{k=n}^{\infty} (A - \lambda I_n)^k = 0$; since by Cayley-Hamilton's Theorem $p_A(A) = (A - \lambda I_n)^n =$ 0.

4. Application: We solve the system of differential equations $\begin{cases} x' = 2x - y \\ y' = x + 4y \end{cases}$ $y' = x + 4y.$

$$
X(t) = e^{3t} \left[I + (A - \lambda I)t\right].C
$$

= $e^{3t} \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + t \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix} \right\}.$ $C = \begin{pmatrix} e^{3t} & -te^{3t} \\ te^{3t} & (2t+1)e^{3t} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}.$

Therefore $x = c_1 e^{3t} - c_2 t e^{3t}$ and $y = c_1 t e^{3t} + c_2 (2t + 1) e^{3t}$, c_1, c_2 are constants.

5. In the matrix form, we obtain

$$
\begin{pmatrix} a_{n+1} \\ b_{n+1} \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} a_n \\ b_n \end{pmatrix}.
$$

Setting $U_n = \begin{pmatrix} a_n \\ b_n \end{pmatrix}$ with $U_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Then

$$
U_n = A^n U_0 = \begin{pmatrix} 3^n - 3^{n-1} \cdot n & -3^{n-1} \cdot n \\ 3^{n-1} \cdot n & 3^{n-1} \cdot n + 3^n \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}.
$$

It follows that $a_n = 3^n - 3^{n-1} \cdot n$ and $b_n = 3^{n-1} \cdot n$.

Exercise 3.

1. Let A, B be two square matrices. We prove that if A or B is invertible, then AB is similar to BA . Assume, for example A is invertible. It is clear that

$$
A^{-1}(AB) A = I.BA = BA.
$$

2. Let A be an $n \times n$ matrix. Since $A = PTP^{-1}$, where T is an upper triangular matrix with its diagonal entries are the eigenvalues of A (say, $\lambda_1, \lambda_2, \ldots, \lambda_n$) and P is invertible, then

$$
\det (A) = \det (PTP^{-1}) = \det (P) \det (T) \det (P^{-1}) = \det (T) = \prod_{i=1}^{n} \lambda_i.
$$

- 3. Let A be an $n \times n$ matrix. We say that A is idempotent if $A^2 = A$.
	- 3.a) We find a nonzero, nonidentity idempotent matrix. For example, we have

$$
A = \left(\begin{array}{cc} 3 & -6 \\ 1 & -2 \end{array}\right).
$$

- 3.b) Let A be an idempotent matrix and let (λ, x) be an eigenpair of A. Then $\lambda x =$ $Ax = A^2x = \lambda^2x$ and hence $\lambda^2 = \lambda$ since $x \neq 0$. Thus, λ is either 0 or 1.
- 3.c) Let A be an $n \times n$ idempotent complex matrix. We prove that A is diagonalizable. Indeed, from the above question we see that

$$
p_A(x) = x^{\alpha} (x - 1)^{\beta}
$$
, where $\alpha + \beta = n$.

Since $A(A - I) = 0$, then $m_A(x) = x(x - 1)$, which has simple roots. Hence, A is diagonalizable. End.

5 Passing Exam, November 18th-2020

Exercise 1. The following questions are indepentent.

1. Let A be an n by n matrix over \mathbb{C} . Prove that

$$
\det\left(A\right) = \prod_{\lambda_i \in Sp(A)} \lambda_i.
$$

2. Consider the matrix

$$
A = \left(\begin{array}{rrr} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right).
$$

Find A^n for each $n \geq 0$.

3. Let $A \in \mathcal{M}_n(\mathbb{R})$ be a nilpotent matrix. Show that

A is diagonalisable \Rightarrow A = 0 (zero matrix).

Let $A =$ $\left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right)$. Is A a diagonalizable matrix?

4. Let $A \in \mathcal{M}_n(\mathbb{R})$. Show that

$$
A \sim 2A \Rightarrow A
$$
 is nilpotent.

5. Consider the 2×2 matrix

$$
A = \begin{pmatrix} \frac{-\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{-\pi}{2} \end{pmatrix}
$$

Compute $\cos^2 A$ et $\sin^2 A$.

Exercise 2. Let A be the real matrix given by:

$$
A = \begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).
$$

a) Determine the minimal polynomial of A.

b) Prove, for each $n \in \mathbb{N}$, that there exist two real numbers α_n and β_n for which

$$
A^n = \alpha_n A + \beta_n I_3.
$$

- c) For each $n \in \mathbb{N}$, compute α_n and β_n in terms of n
- d) Assume that $A \in \mathcal{M}_n(\mathbb{R})$ with $a_{ij} = 0$ for $i = j, -1$; otherwise. Prove that A is diagonalizable.

Good Luck.