University 08 Mai 45 Guelma, 2019/2020 Department of Mathematics, 2nd Year-Maths Module: Algebra 3 Exams 2020 By: Dr. Bellaouar. D

1 Sub-test of Algebra III, January 15th-2020

Exercise1. Consider the matrix

$$A = \left(\begin{array}{cc} 1 & 2\\ 4 & 3 \end{array}\right).$$

- 1. Find eigenvalues of the matrix A.
- 2. Find eigenvectors for each eigenvalue of A.
- 3. Diagonalize the matrix A. That is, find an invertible matrix P and a diagonal matrix D such that $P^{-1}AP = D$.
- 4. Diagonalize the matrix $A^3 5A^2 + 3A + I$, where I is the 2 × 2 identity matrix.
- 5. Calculate A^n , for $n \ge 0$.
- 6. Calculate $(A^3 5A^2 + 3A + I)^{2020}$.

Exercise 2.

a. Let $A \in \mathcal{M}_n(\mathbb{R})$ be an orthogonal matrix (i.e., $A^t A = AA^t = I$). Prove that $\det(A) = \pm 1$.

b. Let $A \in \mathcal{M}_n(\mathbb{R})$. Show that if A is diagonalizable by an orthogonal matrix P, then A is a symmetric matrix.

c. For which values of constants a, b and c is the matrix

$$A = \left(\begin{array}{rrr} 1 & a & b \\ 0 & 2 & c \\ 0 & 0 & 3 \end{array}\right)$$

diagonalizable?

d. Let $A \in \mathcal{M}_n(\mathbb{R})$. Prove that

$$\det\left(e^A\right) = e^{tr(A)}.$$

e. Let $A \in \mathcal{M}_n(\mathbb{R})$. Explain how a system of differential equations X' = AX can be solved whenever A is diagonalizable or not.

Good Luck.

2 Solution of Sub-test of Algebra III, 2020

Exercise1. Consider the matrix

$$A = \left(\begin{array}{cc} 1 & 2\\ 4 & 3 \end{array}\right).$$

1. We find eigenvalues of the matrix A:

$$p_A(x) = \begin{vmatrix} 1-x & 2 \\ 4 & 3-x \end{vmatrix} = \begin{vmatrix} 5-x & 5-x \\ 4 & 3-x \end{vmatrix} = (5-x) \begin{vmatrix} 1 & 1 \\ 4 & 3-x \end{vmatrix}$$
$$= (5-x) (3-x-4) = (x-5) (x+1).$$

Therefore, $\lambda_1 = -1$ and $\lambda_2 = 5$.

2. We find eigenvectors for each eigenvalue of A:

$$E_{\lambda_1} = \left\{ (x, y) \in \mathbb{R}^2; \begin{array}{c} x + 2y = -x \\ 4x + 3y = -y \end{array} \right\} = Vect \left\{ (1, -1) \right\},$$

also, we have

$$E_{\lambda_2} = \left\{ (x, y) \in \mathbb{R}^2; \quad \begin{array}{c} x + 2y = 5x \\ 4x + 3y = 5y \end{array} \right\} = Vect \left\{ (1, 2) \right\}$$

3. Next, we diagonalize the matrix A. That is, we will find an invertible matrix P and a diagonal matrix D such that $P^{-1}AP = D$. In fact, we see that

$$P^{-1}AP = \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 5 \end{pmatrix} = D$$

4. We diagonalize the matrix $A^3 - 5A^2 + 3A + I$, where I is the 2 × 2 identity matrix:

$$A^{3} - 5A^{2} + 3A + I = P\left(D^{3} - 5D^{2} + 3D + I\right)P^{-1},$$
(*)

where by few computation we find:

$$D^{3} - 5D^{2} + 3D + I = \begin{pmatrix} -8 & 0\\ 0 & 16 \end{pmatrix}.$$
 (**)

5. We calculate A^n , for $n \ge 0$. Since $A = PDP^{-1}$, then

$$A^{n} = \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} (-1)^{n} & 0 \\ 0 & 5^{n} \end{pmatrix} \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \end{pmatrix} = \begin{pmatrix} \frac{2(-1)^{n} + 5^{n}}{3} & \frac{5^{n} - (-1)^{n}}{3} \\ \frac{2.5^{n} - 2(-1)^{n}}{3} & \frac{(-1)^{n} + 2.5^{n}}{3} \end{pmatrix}.$$

6. We calculate $(A^3 - 5A^2 + 3A + I)^{2020}$. From (*) and (**), we see that

$$(A^3 - 5A^2 + 3A + I)^{2020} = \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} (-8)^{2020} & 0 \\ 0 & 16^{2020} \end{pmatrix} \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \end{pmatrix}.$$

Exercise 2.

a. Let $A \in \mathcal{M}_n(\mathbb{R})$ be an orthogonal matrix (i.e., $A^t A = AA^t = I$). We prove that det $(A) = \pm 1$. Indeed, we see that

$$\det\left(A^{t}A\right) = \det\left(I\right) = 1,$$

But

$$\det (A^t A) = \det (A^t) \det (A) = (\det (A))^2 = 1,$$

then det $(A) = \pm 1$.

b. Let $A \in \mathcal{M}_n(\mathbb{R})$. We show that if A is diagonalizable by an orthogonal matrix P, then A is a symmetric matrix. In fact, since $A = PDP^{-1}$ with P is orthogonal, then $P^{-1} = P^t$ and $A = PDP^t$. It follows that

$$A^{t} = \left(PDP^{t}\right)^{t} = \left(P^{t}\right)^{t}D^{t}P^{t} = PDP^{t} = A.$$

c. For which values of constants a, b and c is the matrix

$$A = \left(\begin{array}{rrr} 1 & a & b \\ 0 & 2 & c \\ 0 & 0 & 3 \end{array}\right)$$

diagonalizable?

In fact, since A is an upper triangular matrix, then 1, 2, 3 are the eigenvalues of A, which are all simple. That is, $A_m(\lambda) = G_m(\lambda) = 1$ for $\lambda = 1, 2, 3$. Then A is diagonalizable for each values of constants a, b and c.

d. Let $A \in \mathcal{M}_n(\mathbb{R})$. Note that if λ is an eigenvalue of A, then e^{λ} is also an eigenvalue of e^A . Then, we have

$$\det (e^A) = \prod e^{\lambda_i} = e^{\lambda_1 + \lambda_2 + \dots} = e^{tr(A)}, \text{ because } tr(A) = \sum \lambda_i.$$

e. Let $A \in \mathcal{M}_n(\mathbb{R})$. Consider a system of differential equations X' = AX. In general, the solution is given by the following formula:

$$X(t) = e^{tA}c$$
, where $c \in \mathbb{R}^n$.

But, if A is diagonalizable (that is, $A_m(\lambda_i) = G_m(\lambda_i)$ for i = 1, 2, ..., n), then

$$X(t) = c_1 e^{\lambda_1 t} V_1 + c_2 e^{\lambda_2 t} V_2 + \dots + c_n e^{\lambda_n t} V_n,$$

where $c_1, c_2, ..., c_n$ are constants, and $V_1, V_2, ..., V_n$ are the corresponding eigenvectors.

_____E

3 Exam of Algebra III, January 19th-2020

University 08 Mai 45 Guelma, 2019/2020 Department of Mathematics, 2nd Year-Maths Module: Algebra 3 Final Exam

Exercise 1. Let $A_4 = \begin{pmatrix} \mathbf{0} & 0 & 0 & 0 \\ 1 & \mathbf{1} & 1 & 1 \\ 0 & 0 & \mathbf{0} & 0 \\ 1 & 1 & 1 & \mathbf{1} \end{pmatrix}$. Find the eigenvalues of the matrix A_4 . Also,

January 19th-2020

2 Hours

give the algebraic multiplicity of each eigenvalue¹. (2 pts).

Exercise 2.

- 1. Let $A \in \mathcal{M}_n(\mathbb{R})$. Explain how a system of differential equations X' = AX can be solved whenever A is diagonalizable or not. (2 pts)
- 2. Trigonalize the matrix $A = \begin{pmatrix} 2 & -1 \\ 1 & 4 \end{pmatrix}$. Compute A^n for any $n \in \mathbb{N}$. (4 pts)
- 3. Let $A \in \mathcal{M}_n(\mathbb{R})$. Assume that A has a unique eigenvalue, say λ . Prove that

$$e^{tA} = e^{\lambda t} \left[I + (A - \lambda I) \frac{t}{1!} + (A - \lambda I)^2 \frac{t^2}{2!} + \dots + \frac{t^{n-1}}{(n-1)!} (A - \lambda I)^{n-1} \right]. \quad (1.5 \text{ pts})$$

4. Solve the system of differential equations: $\begin{cases} x' = 2x - y \\ y' = x + 4y. \end{cases}$ (1.5 pts)

5. Solve the following system of linear recurrence sequences:

$$\begin{cases} a_{n+1} = 2a_n - b_n \\ b_{n+1} = a_n + 4b_n \end{cases}, \text{ where } a_0 = 1 \text{ and } b_0 = 0. \tag{2 pts}$$

Exercise 3.

- 1. Let A, B be two square matrices. Prove that if A or B is invertible, then AB is similar to BA. (1 pt)
- 2. Let A be an $n \times n$ matrix and let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be its eigenvalues. Show that

$$\det(A) = \prod_{i=1}^{n} \lambda_i. \tag{2 pts}$$

3. Let A be an $n \times n$ matrix. We say that A is idempotent if $A^2 = A$.

¹**Optional Question:** Determine all eigenvalues and their algebraic multiplicities of the matrix A_{2n} , for $n \ge 2$. (+ 2 pts)

- 3.a) Find a nonzero, nonidentity idempotent matrix. (1 pt)
- 3.b) Show that any eigenvalue of an idempotent matrix A is either 0 or 1. (1 pt)
- 3.c) Let A be an $n \times n$ idempotent complex matrix. Then prove that A is diagonalizable. (2 pts)

Good Luck.

4 Solution

Exercise 1. Let $A_4 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$. We find the eigenvalues and their algebraic multi-

plicities of the matrix A_4 . In fact, we have

$$p_{A_4}(x) = \begin{vmatrix} -x & 0 & 0 & 0 \\ 1 & 1-x & 1 & 1 \\ 0 & 0 & -x & 0 \\ 1 & 1 & 1 & 1-x \end{vmatrix} = -x \begin{vmatrix} 1-x & 1 & 1 \\ 0 & -x & 0 \\ 1 & 1 & 1-x \end{vmatrix} = -x^3 \begin{vmatrix} -1 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 1 & 1-x \end{vmatrix} = -x^3 \begin{bmatrix} -1 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 1 & 1-x \end{vmatrix}$$

Then $\lambda_1 = 0$ with $A_m(\lambda_1) = 3$ and $\lambda_2 = 2$ with $A_m(\lambda_2) = 1$.

Exercise 2.

1. Let $A \in \mathcal{M}_n(\mathbb{R})$. Consider a system of differential equations X' = AX. In general, the solution is given by the following formula:

$$X(t) = e^{tA}c$$
, where $c \in \mathbb{R}^n$.

But, if A is diagonalizable (that is, $A_m(\lambda_i) = G_m(\lambda_i)$ for i = 1, 2, ..., n), then

$$X(t) = c_1 e^{\lambda_1 t} V_1 + c_2 e^{\lambda_2 t} V_2 + \dots + c_n e^{\lambda_n t} V_n,$$

where $c_1, c_2, ..., c_n$ are constants, and $V_1, V_2, ..., V_n$ are the corresponding eigenvectors.

- 2. We trigonalize the matrix $A = \begin{pmatrix} 2 & -1 \\ 1 & 4 \end{pmatrix}$, and then we compute A^n for any $n \in \mathbb{N}$.
 - (a) We compute the characteristic polynomial of A:

$$p_A(x) = \begin{vmatrix} 2-x & -1 \\ 1 & 4-x \end{vmatrix} = \begin{vmatrix} 3-x & -1 \\ -(3-x) & 4-x \end{vmatrix} = (3-x) \begin{vmatrix} 1 & -1 \\ -1 & 4-x \end{vmatrix}$$
$$= (3-x)(4-x-1) = (3-x)^2.$$

(b) We compute the corresponding eigenvector:

$$E_3 = \left\{ (x, y) \in \mathbb{R}^2; \quad \begin{array}{c} 2x - y = 3x \\ x + 4y = 3y \end{array} \right\} = Vect \left\{ (1, -1) \right\}.$$

(c) Setting $v_2 = (1, 0)$, and let

$$P = \left(\begin{array}{cc} 1 & 1\\ -1 & 0 \end{array}\right).$$

Then,

$$P^{-1}AP = \left(\begin{array}{cc} 3 & -1\\ 0 & 3 \end{array}\right),$$

and so, $A = PTP^{-1}$.

- (d) We compute A^n : In fact, we have $A^n = PT^nP^{-1}$.
- (e) Next, it suffices to compute T^n . Since

$$T = \begin{pmatrix} 3 & -1 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}_D + \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}_N,$$

where N is nilpotent (with $N^2 = 0$) and DN + ND, it follows that

$$T^{n} = (D+N)^{n} = D^{n} + nD^{n-1}N = \begin{pmatrix} 3^{n} & 0\\ 0 & 3^{n} \end{pmatrix} + n\begin{pmatrix} 3^{n-1} & 0\\ 0 & 3^{n-1} \end{pmatrix} \begin{pmatrix} 0 & -1\\ 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 3^{n} & -3^{n-1}.n\\ 0 & 3^{n} \end{pmatrix}.$$

(f) Finally, we deduce that

$$A^{n} = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 3^{n} & -3^{n-1}n \\ 0 & 3^{n} \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 3^{n} - 3^{n-1}.n & -3^{n-1}.n \\ 3^{n-1}.n & 3^{n-1}.n + 3^{n} \end{pmatrix}.$$

3. Let $A \in \mathcal{M}_n(\mathbb{R})$ be a square matrix which has a unique eigenvalue, say λ . We prove that

$$e^{tA} = e^{\lambda t} \left[I + (A - \lambda I) \frac{t}{1!} + (A - \lambda I)^2 \frac{t^2}{2!} + \dots + \frac{t^{n-1}}{(n-1)!} (A - \lambda I)^{n-1} \right].$$

Firstly, note that $p_A(x) = (x - \lambda)^n$ since A has a unique eigenvalue, say λ . By definition, we have

$$e^{tA} = e^{\lambda t I_n + t(A - \lambda I_n)}$$
(1)

$$= e^{\lambda t I_n} e^{t(A - \lambda I_n)} \text{ (since } \lambda t I_n \text{ and } t (A - \lambda I_n) \text{ commute})$$

$$= e^{\lambda t} e^{t(A - \lambda I_n)} \text{ (since } e^{\alpha I_n} B = e^{\alpha} B \text{ for any } B \in \mathcal{M}_n(\mathbb{R}) \text{ and } \alpha \in \mathbb{R})$$

$$= e^{\lambda t} \sum_{k=0}^{+\infty} (A - \lambda I_n)^k \frac{t^k}{k!}$$

$$= e^{\lambda t} \sum_{k=0}^{n-1} (A - \lambda I_n)^k \frac{t^k}{k!},$$

where $\sum_{k=n}^{+\infty} (A - \lambda I_n)^k = 0$; since by Cayley-Hamilton's Theorem $p_A(A) = (A - \lambda I_n)^n = 0$.

4. Application: We solve the system of differential equations $\begin{cases} x' = 2x - y \\ y' = x + 4y. \end{cases}$

$$X(t) = e^{3t} [I + (A - \lambda I)t] . C$$

= $e^{3t} \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + t \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix} \right\} . C = \begin{pmatrix} e^{3t} & -te^{3t} \\ te^{3t} & (2t+1)e^{3t} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} .$

Therefore $x = c_1 e^{3t} - c_2 t e^{3t}$ and $y = c_1 t e^{3t} + c_2 (2t+1) e^{3t}$, c_1, c_2 are constants.

5. In the matrix form, we obtain

$$\begin{pmatrix} a_{n+1} \\ b_{n+1} \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} a_n \\ b_n \end{pmatrix}.$$

Setting $U_n = \begin{pmatrix} a_n \\ b_n \end{pmatrix}$ with $U_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Then
$$U_n = A^n U_0 = \begin{pmatrix} 3^n - 3^{n-1} \cdot n & -3^{n-1} \cdot n \\ 3^{n-1} \cdot n & 3^{n-1} \cdot n + 3^n \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

It follows that $a_n = 3^n - 3^{n-1} \cdot n$ and $b_n = 3^{n-1} \cdot n$.

Exercise 3.

1. Let A, B be two square matrices. We prove that if A or B is invertible, then AB is similar to BA. Assume, for example A is invertible. It is clear that

$$A^{-1}(AB)A = I.BA = BA.$$

2. Let A be an $n \times n$ matrix. Since $A = PTP^{-1}$, where T is an upper triangular matrix with its diagonal entries are the eigenvalues of A (say, $\lambda_1, \lambda_2, \ldots, \lambda_n$) and P is invertible, then

$$\det(A) = \det(PTP^{-1}) = \det(P)\det(T)\det(P^{-1}) = \det(T) = \prod_{i=1}^{n} \lambda_i.$$

- 3. Let A be an $n \times n$ matrix. We say that A is idempotent if $A^2 = A$.
 - 3.a) We find a nonzero, nonidentity idempotent matrix. For example, we have

$$A = \left(\begin{array}{cc} 3 & -6\\ 1 & -2 \end{array}\right).$$

- 3.b) Let A be an idempotent matrix and let (λ, x) be an eigenpair of A. Then $\lambda x = Ax = A^2x = \lambda^2 x$ and hence $\lambda^2 = \lambda$ since $x \neq 0$. Thus, λ is either 0 or 1.
- 3.c) Let A be an $n \times n$ idempotent complex matrix. We prove that A is diagonalizable. Indeed, from the above question we see that

$$p_A(x) = x^{\alpha} (x-1)^{\beta}$$
, where $\alpha + \beta = n$.

Since A(A - I) = 0, then $m_A(x) = x(x - 1)$, which has simple roots. Hence, A is diagonalizable. **End.**

5 Passing Exam, November 18th-2020

University 08 Mai 45 Guelma, 2019/2020 Department of Mathematics, 2nd Year-Maths Algebra 3 November 18th-2020 Passing Exam 1 H 30 mn

Exercise 1. The following questions are indepentent.

1. Let A be an n by n matrix over \mathbb{C} . Prove that

$$\det\left(A\right) = \prod_{\lambda_i \in Sp(A)} \lambda_i.$$

2. Consider the matrix

$$A = \left(\begin{array}{rrrr} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right).$$

Find A^n for each $n \ge 0$.

3. Let $A \in \mathcal{M}_n(\mathbb{R})$ be a nilpotent matrix. Show that

A is diagonalisable $\Rightarrow A = 0$ (zero matrix).

Let $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Is A a diagonalizable matrix?

4. Let $A \in \mathcal{M}_n(\mathbb{R})$. Show that

$$A \sim 2A \Rightarrow A$$
 is nilpotent.

5. Consider the 2×2 matrix

$$A = \left(\begin{array}{cc} \frac{-\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{-\pi}{2} \\ \frac{\pi}{2} & \frac{-\pi}{2} \end{array}\right)$$

Compute $\cos^2 A$ et $\sin^2 A$.

Exercise 2. Let A be the real matrix given by:

$$A = \begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix} \in \mathcal{M}_{3}(\mathbb{R}).$$

a) Determine the minimal polynomial of A.

b) Prove, for each $n \in \mathbb{N}$, that there exist two real numbers α_n and β_n for which

$$A^n = \alpha_n A + \beta_n I_3.$$

- c) For each $n \in \mathbb{N}$, compute α_n and β_n in terms of n
- d) Assume that $A \in \mathcal{M}_n(\mathbb{R})$ with $a_{ij} = 0$ for i = j, -1; otherwise. Prove that A is diagonalizable.

Good Luck.