Logique des prédicats du premier ordre (LPO)

1 – Introduction

1 – 1 – Insuffisance de L. P

- ** Une proposition est prise comme un tout, elle est décrété VRAIE ou FAUSSE. On dit rien sur son domaine d'application.
- ** La L. P. ne permet d'énoncer des lois générales, on ne peut énoncer que des lois particulières.

1 – 1 – Insuffisance de L. P (suite)

Exemple:

Frère (Ali, Driss)∧Père (Hmida, Driss) → Père (Hmida, Ali)

Si l'on veut une loi indépendante des noms propres, on ne peut pas l'énoncer avec la L. P, ou alors il faudrait une infinité d'écritures.

1 – 1 – Insuffisance de L. P (suite)

Exemple:

- $\forall x, \forall y, \forall z \text{ Frère } (x, y) \land \text{Père } (z, x) \rightarrow \text{Père } (z, y) \text{ ne}$ peut s'énoncer qu'en L. P. O. (ou d'ordre supérieur).
- ★ (Socrate est un homme) ^ (Tout est mortel) → Socrate est mortel en L. P.
- * la généralisation de cette loi ne peut s'écrire en L. P. mais en L.P. O.

$$\forall x \quad Homme(x) \rightarrow Mortel(x)$$

$$\qquad \qquad Mortel(Socrate)$$

$$\qquad \qquad Homme(Socrate)$$

1-2 — Définition

* Un prédicat est une fonction propositionnelle :

$$P : D^{n} \rightarrow \{V, F\}$$
$$x \mapsto P(x)$$

** ou D^n est le domaine d'application, c'est-à-dire que pour chaque " $x " \in D^n$ le prédicat devient une proposition P(x) qui sera **VRAIE** ou **FAUSSE**.

2 – Langage de la L. P. O.

2 – 1 – Alphabet des symboles

- ** Les constantes ($\in D$): a, b, c, ... ou leurs concaténation : "bloc", "not",
- \bigstar Les variables ($\in D$): x, y, z, ...
- **Symboles des fonctions :** $f:D^n \to D$
- * L'arité n d'un prédicat = nombre de ses arguments
- * Opérateur: \neg , \rightarrow , \wedge , \vee , \leftrightarrow
- ***** Séparateurs : (,),[,],{,}
- **※** Quantificateurs: l'universel ∀ et l'existentiel ∃

2-2 — Termes

- **Un terme est :**
- * i. Soit une constante
- * ii. Soit une variable ou
- # iii. l'application d'une fonction n-adique "f" à n termes (t₁, t₂, t₃, ..., tₙ)
- * Tous les termes sont engendrés par les règles (i), (ii) et (iii) appliqués un nombre de fois.

2-3 – Atomes

- i. Les symboles des propositions (Prédicats d'arité 0) sont des atomes
- ii. SI P est un prédicat d'arité $n \ge 1$ et SI $t_1, t_2, t_3, \ldots, t_n$ sont des termes ALORS P $(t_1, t_2, t_3, \ldots, t_n)$ est un atome.

Tous les atomes sont définit par (i) et (ii) uniquement.

2 – 4 – Un littéral

*Un littéral est un atome ou la négation d'un atome.

2-5 – Formules ou f.b.f

- i. Un atome est une f.b.f.
- ii. SI φ et Ψ sont des f.b.f

ALORS $\neg \varphi, \varphi \lor \psi, \varphi \land \psi, \varphi \rightarrow \psi, \varphi \leftrightarrow \psi$ sont des f.b.f.

iii. SI Ψ est une f.b.f. contenant la variable x ALORS $((\forall x) \psi)$ et $((\exists x) \psi)$ sont des f.b.f.

iv. Toute f.b.f. est engendrée uniquement par un nombre fini d'application de (i), (ii) et (iii).

2-5 — Formules ou f.b.f (suite)

Exemple d'ordre de quantification :

```
\forall x \exists y \quad (x > y) \Rightarrow y \text{ est fonction de } x.
 \exists y \ \forall x \quad (x > y) \Rightarrow y \text{ est indépendant de } x.
```

2-5 — Formules ou f.b.f (suite)

- * Variables libres et liées
 - ◆ Une variable est liée
 ⇔ elle est dans la portée d'un quantificateur.

Exemple: $(\forall x) P(x,y) (\exists x) Q(x,) P et Q sont des portées du quantificateur <math>\forall$ et \exists respectivement.

2 – 5 – Formules ou f.b.f (suite)

- * Une variable est libre <u>si et seulement si</u> elle n'est pas liée.
- * Une variable peut être libre et liée dans une même f.b.f.

Exemple: $P(x) \lor \forall x \ Q(x)$ x est libre dans P et liée dans Q

Une f.b.f est <u>fermée</u> <u>si et seulement si</u> elle ne contient aucune variable libre, sinon elle est <u>ouverte</u>.

2 - 6 - Relations

$$\neg (\forall x \ P(x)) \equiv \exists x \neg P(x)$$

$$\neg (\exists x \ P(x)) \equiv \forall x \ \neg P(x)$$

2 - 7 - Notation

Si Q est le quantificateur ∀ (respectivement ∃)

alors Q' sera le quantificateur \exists (respectivement \forall).

3 – 2 – Interprétation

- * Une interprétation d'une f.b.f G est définie par les quatre étapes suivantes :
- * i. Définir un domaine D d'interprétation, un ensemble Φ d'éléments qui sont les valeurs possibles des termes.
- * ii. Assigner à chaque constante de la f.b.f *G*, un élément de *D*.

3 – 2 – Interprétation (suite)

****** iii. Assigner à chaque prédicat d'arité $n \ge 0$ une application de $D^n \to \{T, F\}$

** iv. Assigner à chaque fonction d'arité $n \ge 1$ une application de $D^n \to D$. On dit alors que G est interprété sur D.

3 – 2 – Interprétation (suite)

Exemple : soit $G = (\forall x) (P(x) \rightarrow Q(f(x),a))$ une interprétation I est telle que :

$$I: \begin{cases} D = (1,2); a = 1; f = \begin{cases} 1 \to 2 \\ 2 \to 1 \end{cases} \\ P: \begin{cases} 1 \to F \\ 2 \to V \end{cases}; Q: \begin{cases} (1,1) \to V \\ (1,2) \to V \\ (2,1) \to F \\ (2,2) \to F \end{cases} \end{cases}$$

Alors:

Pour
$$x=1$$
 $P(1) \rightarrow Q(2,1)$
 $F \rightarrow F$
 $\Rightarrow G=V$

Pour
$$x=2$$
 $P(2) \rightarrow Q(1,1)$
 $V \rightarrow V$
 $\Rightarrow G=V$

 $\Rightarrow I$ est un modèle de G

3-3- Validité et inconsistance

même définition qu'en L.P.

3-4- Equivalence et conséquence logique

***** Identique

** Par contre la méthode de la table de vérité est inapplicable dans la L.P.O.

4 – Syntaxe

4-1- Schéma axiomatique

** SI Ψ est un théorème de la L.P et si φ est obtenue en substituant dans Ψ une proposition par une f.b.f de la L.P.O,

ALORS φ est un axiome de la L.P.O.

Exemple:

|---- (P \wedge Q) \rightarrow P est un théorème de la L.P. (($\forall x$) $P(x) \wedge Q(y) \rightarrow (\forall x) P(x)$ est un théorème de la L.P.O.

4 – 2 – Règles d'inférences

- * 2.1. même définition qu'en L.P.
- * 2.2. exemples de R.I.
- * R1: Modus Ponens
- R2: Modus Tollens
- * R3: Principe de Résolution
- * R4: Règle d'inférence « spécialisation universelle »
- *A partir de $\forall x$, G(x) et toute cte « a » elle exhibe (déduit) G(a) par remplacement de toute occurrence de « x » par « a ».

4 – 2 – Règles d'inférences

When occurrence d'une variable x dans une formule F est un endroit où x apparaît dans F sans être immédiatement précédée par ∀ ou ∃

4-2-Règles d'inférences (suite)

- Si ((Qx) A) est une f.b.f., A est le scope de Qx et x est l'occurrence quantifiée par Q.
- ☼ Une occurrence de variable x est liée si et seulement si elle est dans le scope d'un quantificateur qui quantifie une occurrence de cette même variable où elle est elle-même l'occurrence quantifiée.
- * Une occurrence de variable est libre si et seulement si elle n'est pas liée.

4-2-Règles d'inférences (suite)

- ☼ Une variable est liée dans une f.b.f. ⇔ une au moins de ses occurrences est liée.
- ★ Une variable est libre dans une f.b.f. ⇔
 une au moins de ses occurrences est libre.
- ** Une f.b.f. qui ne comporte pas de variable libre est dite fermée.

3 – Formes normales Prenex

3 - 1 - Définitions

- **X** La f.b.f. **G** est sous **forme normale de Prenex** si et seulement si **G** s'écrit sous la forme : $G = (Q_1x_1 ... Q_nx_n)$ M où $Q_i = \forall$ ou \exists , $Q_i = \forall$ préfixe et M est une f.b.f. sans quantificateur dite Matrice.
- **Exemple**:

$$(\forall x)(\exists y)(\exists z) P(x,y) \longrightarrow H(x,z)$$

3 – 2 – Formules équivalentes

- * Les équivalences de la L.P. sont conservés, on y rajout
 - $\qquad \neg ((Qx)M) = (Q'x)(\neg M)$
 - $(Qx)M \lor G = (Qx)(M \lor G)$ Si G ne contient aucune
 - $(Qx)M \wedge G = (Qx)(M \wedge G)$ occurrence de x
 - $(\forall x)M \land (\forall x)N \equiv (\forall x)(M \land N)$
 - $(\exists x) M \lor (\exists x) N \equiv (\exists x) (M \lor N)$
 - $\bullet \qquad (\forall x) M \lor (\forall x) N \equiv (\forall x) (M \lor N)$
 - $(\exists x) M \land (\exists x) N \equiv (\exists x) (M \land N)$
 - $\bullet \qquad (Q_1 x)M(x) \vee (Q_2 x)N(x) \equiv Q_1(x)Q_2(y)(M(x) \vee N(y))$
 - $(Q_1 x)M(x) \land (Q_2 x)N(x) \equiv Q_1(x)Q_2(y)(M(x) \land N(y))$

3 – 3 – Passage sous f.n.P

- Pour écrire une f.b.f. sous f.n.P. On appliquera les règles suivantes :
- (i) Eliminer les \leftrightarrow et les \rightarrow
- (ii) Utiliser les formules d'équivalences pour ramener les ¬ immédiatement devant les atomes.
- (iii) Utiliser le reste des formules d'équivalences pour ramener les Q_i à gauche de la f.b.f.

3-3- Passage sous f.n.P (suite)

Exemple:

$$G=(\forall x) \qquad P(x) \rightarrow (\exists x)(Q(x))$$

$$G=(\exists x) \qquad \neg P(x) \lor (\exists x)(Q(x))$$

$$G=(\exists x) \qquad (\neg P(x) \lor Q(x)) : \mathbf{f.n.Prenex}$$

$$\mathbf{Matrice}$$

4 – Formes standard de Skolem: (suppression des quantificateurs)

4 – 1 – Fonctions de Skolem

- * Soit $\varphi = (Q_1 x_1) \dots (Q_n x_n) M$ Prenex
- * Pour écrire φ sous forme standard de Skolem on doit :

- # i. Mettre M sous f.n.c : $M = M_1 \land ... \land M_q$)
- **≭** ii. Si **Q**_i = ∃
 - S'il n'y a aucun \forall à gauche de Q_i alors supprimer $Q_i x_i$ et remplacer x_i par une constante non existante déjà dans M.
 - Si Q_j , ..., Q_l sont à gauche de Q_i et sont tous des \forall alors supprimer $Q_i x_i$ et remplacer toute occurrence de x_i par une fonction $f(x_i,...,x_l)$.
- iii. Lorsque tous les ∃ sont supprimés on obtient ce qu'on appelle f.s. de Skolem les constantes et les fonctions définies sont dites fonctions de Skolem.

4-1 – Fonctions de Skolem (suite)

- Remarque: Une f.b.f. peut avoir plusieurs formes de Skolem.
- **Exemple**:

$$(\forall x) \ P(x) \land (\exists y) \ Q(y) = G$$

$$G = (\forall x)(\exists y) \ (P(x) \land Q(y))$$

$$y = f(x) \quad 1^{\text{ère}} \text{ fonction de Skolem.}$$

$$G = (\forall x) \ P(x) \land Q(f(x)) \quad 1^{\text{ère}} \text{ forme de Skolem.}$$

4-1 – Fonctions de Skolem (suite)

* Ou bien:

$$G=(\exists y) Q(y) \land (\forall x) P(x)$$

 $G=(\exists y)(\forall x) Q(y) \land P(x)$

Soit y=a 1^{ère} fonction de Skolem.

 \Rightarrow $G=(\forall x) (Q(a) \land P(x))$ 2ème forme de Skolem.

La plus simple et la meilleur (la 2^{ème} dans notre cas).

4-2- Formes clausales (ou ensemble de clause)

** Une clause est une disjonction de littéraux

P(x), $P(x) \lor \neg Q(y)$ sont des clauses.

- * Un ensemble de clauses correspond à une

4-2- Formes clausales (suite)

- ** On supprime tous les quantificateurs \forall pour représenter ϕ sous la forme : $\phi = \varphi_1 \land \dots \land \varphi_m$ Forme clausale
- * ou ≠=(≠1,....,⊄**) ensemble de clauses.