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2 Characteristic polynomial

In this section we consider only the characteristic polynomial of an n by n matrix which is
a polynomial of degree n, from which we give a practical way to find the eigenvalues of a
given square matrix A.

Definition 1 Let A € M,, (R) be a square matrriz. The characteristic polynomial of A is
the polynomial of degree n given by pa (x) = det (A — z1,,), where I,, is the identity n-by-n
matrid]

Proposition 2 Let A € M,, (R). The characteristic polynomial ps (x) is given by
n—1

pa(z)=(-1)"2" + Zcixi with cp_1 = (=1)"""tr (A) and co = det (A) .
i=0

The leading coefficient of pa (x) is £1 (i.e. pa (x) is monic.

For example, if A = ( ; Z ) then tr (A) = 5 and det (A) = —2. Moreover, by definition
we have
pa(x) = det(/l—x.lg):‘lgm 4Ex‘:x2—5x—2

= (=1)*2% 4+ —tr (A) z + det (A) .

Remark 3 Recall that the roots of pa () are called eigenvalues of A. Also, we have the
notation:

Sp(A) ={A €K ; X is an eigenvalue of A},
which is called the spectral set of A. Thus, A € Sp(A) < pa(N) =0.

'In some references the characteristic polynomial of A is the polynomial of degree n given by pa (z) =
det (I, — A).



Example 4 Calculate the characteristic polynomial of the following matrix:

2 1
A= ( 2 ! ) |
From definition, we obtain

C1

pa(x) = ’2—x ) (the first column c¢; becomes c¢1 + ¢3)
C1+ Co
1 1
= ‘ — ) 2_90 =(3—ux) 1 29— 4 =B-x)2—-—x-1)
= B—2)(1—2).

Thus, pa(z) = (1 —x) (3 — ), and so Sp(A) ={1,3}.

Example 5 Consider the matrix

111
A=11 11
1 11
In the same manner, we get
1—x 1 1 -z 0 1
pa(z) = 1 1—-2z 1 |=|2z -z 1
1 1 1—2z 0 = 1—=x
— +
) -1 0 1
= T 1 -1 1
0 1 11—z
= - (z—-1-1)+(1-0)]

= 2°(3—1).
Hence, pa (x) = 22 (3 — ), and so Sp (A) = {0, 3}.

Example 6 Calculate the characteristic polynomial of each of the following:

4 2 -1 13 —12 —6

A = 2 7 2|, =6 -5 -3
1 -2 4 18 —18 -8
1 -1 —1 41 -1

Ay = | -1 1 -1 |, 4=[25 -2
1 -1 1 11 2



(i) From the definition of the characteristic polynomial, we get

pa, () = det(A; —zl3)
4-x 2 -1 1% column
| 2 7-x =2 |
-1 -2 4-x 15 4 3rd
B—z) 2 -1 1 2 —1 2 column
= 0 T—z -2 |=B-2)|0 7T—z =2 !
(B-2) -2 4-2 1 -2 4-2 2 x 37d 4 ond
+ -+
1 0 —1 10 —1
= 3-xz)|0 33—z -2 |[=B=2)"0 1 =2
1 2B-2) 4-u 1 2 4—x
= B—2)fd—z+4—(0—1)
= 3-2)29—1).
That is, pa, (x) = (3 —2)* (9 — ).
(ii) Compute pa, (x) :
-z —12 -0 1% column
Da, ("E) = 6 50— -3 1st+2nd
18 -18 8-z
(1—z) —12 —6 2™ column
= | (1l—-2) =5b—2 -3 !
0 —18 8- | (FPx3T+2
(1—2) 0 —6
= | (1—-2) (1—2x) -3
0 (-2)(1—2z) -8—=x
+ = -
) 1 0 —6
= (-1 1 -3
0 -2 —8-—=x
1—2)’ (-8 —2—6—6(—2))
= (-2 (-2-2)
(iti) Computre pa, (x) :
1-x -1 —1 c1 Co
pas () = -1 1-x -1 ! !
—1 -1 1-—x clL— Cy Cy — C3
— -
(2 —x) 0 -1 L 10 -1
= |-2-2) 2-2z -1 |=@2-2)"| -1 1 -1
0 —(2-2) 1-2 0 -1 1—uz




Thus, pa, () = — (1 4+ z) (2 — z)°.

(iiii) Compute pa, (x) :

4—x 1 -1 It column  9nd o lyumn
pa, () = 2 S5—xz =2 t X d 2"t 431
11 2—g| DTS o
B3—z) 0 —1
- 0 3-z =2
B3—z) 3—2z 2—x

Example 7 (a) Calculate the characteristic polynomial of the following matriz:

Ay =

—_ = = =

1
1
1
1

—_ = =
— = = =

(b) Deduce the characteristic polynomial of the n X n matriz

11 --- 1
11 ...1
An: TR . GMn(]R)
11 1
For the matriz Ay, we see that
1-x 1 1 1
1 1-x 1 1
pa(z) = 1 1-x 1
1 1 1 1-x
-z 0 0 1 _+1 0 6 1
_ |z —= 0 1 7 311 -1 0 1
0 =z —-r 1 o 1 -1 1
0 0 =z l-w 0 0 1 1-=z
-1 0 1 1 -1 0
= 2°(-1)| 1 -1 1 |+23-1)]0 1 -1
0 1 1-=x 0 0 1
= 2°(z —4)



Remark 8 For the matrix A,, we can easily prove that

pa, () = { '

"Lz —n), if n is even

2"t (n—x), if n is odd.

Example 9 Calculate the characteristic polynomial of the following matrix:

7 —6 -2
A=12 0 -1
2 -3 2
It is clear that
7T—xz —6 =2 1
pa(x) = 2 -z -1 !

B3—z) —6 —2
23—x) -3 2—=x
1 -6 -2 e
= B3-2)|0 —z -1 !
2 -3 2—x| 3X@—o
1 0 —2
= B3—-2)|0 —3—2) -1
2 33—x) 2—x
+ —
) 1 0 —2
= B-2)70 -1 -1
2 3 2-=x
= B3-2)(-24+2+3-2(2)
= (z-3)°
Example 10 Consider the matriz
3 2 =2
A= -1 0 1
1 1 0



From definition, we obtain

3—x 2 =2 Co
pa(z) = -1 -z 1 !
1 1 —r CQ+03
3—=x 0 -2
= -1 1—-z 1
1 l—-2 —=x
3—x 0 -2 c1
= (1-z)| -1 1 1 !
1 1 —g c1+C3
l1—x 0 =2
= (1—-2) 0 1 1
l—2z 1 —=x
+ -
) 1 0 -2
= 1-2)"l0 1 1
1 1 —=z

Thus, pa (z) = (1 —x)*.

Example 11 Let A be the matriz given by

-3 1 -1

A= =7 5 -1

-6 6 —2

We have

-3 - 1 —1 —2—z 0 —1
pa(x) = -7 5—z -1 =|-2—-2z 4—2 -1
—6 6 —2—=x 0 4—x —2—=x

10 —1

= —242)d—-2)| 1 1 -1

01 —2—2x

= —242)d—2)(-2—x+1-1)
= 2+2)@-2).
Hence, pa (z) = 2+ x)* (4 — z).

Example 12 Calculate the determinant

11 | |
1 1+x 1 ... 1

A,=|1 1 1+4x ... 1
11 1 1+x




Solution. We compute A,, :

1* column — 1%t column

- 2 column — 2 colummn - 15t column

3 column — 3 column - 1**column, .... and so on. We obtain
10 0 ... 0
1 x 0 ... 0
A,=|1 0 x ... 0|=gp"1
1 0 0 X

Therefore, A, = " 1.
Proposition 13 Let A € M,, (R) and r € R*. We have

X
n
pra(@) =r"pa (%)
r
Proof. Indeed, we see that
ray1 — rai9 ce rain
a9 g — T ... TQop
Pra (1’) =
ran1 Tan2 e TQpp — X
xT
r{agn — — Ta12 rain
r
X
rasy r <a22 — —> c. rasn
= r
xr
ran1 Tap2 oo rlapy — —
r
X
ai; — ; a12 . A1p
T
n 921 a9 — — ... QAon,
= T T
X
an1 an2 e App — —
r

n T
- ()
r

This completes the proof. m

Exercise 14 Consider the vendermonde’s determinant [

1 1 1
A=|a b c
a’> b A2

2In linear algebra, a Vandermonde matrix is a matrix with a geometric progression in each row. It takes
its name from the French mathematician Alexandre-Théophile Vandermonde. It is, in particular, used in
numerical analysis for solving a system formed by polynomial interpolation.

8



Prove that A = (b—a) (¢ — a) (c — b), and give a generalization formula.

Solution 15 We have

11 1 " ‘o
A = a b ¢ ! l
a2 bQ 62 Co — C1 C3 — Co
0 0 1 0 0 1
= b—a c¢c—=b c|=(0b—-a)(c=b)| 1 1 ¢
b2 —a? -0 2 b+a c+b 2

= (b—a)(c—0b)(c—a)

In the general case, the vendermonde’s determinant is given by

1 1 -.- 1

To T1 e Tn

Ty Ty Ty

2.1 Problems.
Ex 01. Consider the following two matrices:

011 1 1 1
A=l101],B=| 2 1 -1
1 10 -3 2 4

Calculate pa (x) and pp (z). Ans.

pa(@) = (1+2)° (2= ) and ps () = — (v — 2)°.

Ex 02. Let A be the matrix given by

1 0 O
A=11 2 =3
1 -1 0
Verify that ps (z) = (z+ 1) (x — 1) (x — 3).
Ex 03. Let
-3 1 -1
A= -7 5 -1
—6 6 —2

Verify that pa (z) = (2 +2)* (4 — z).



Ex 04. Let A € M,, (R) be the tridiagonal matrix given by

Calculate pa ().
Ex 05. Consider the matrix
A= (Z Z) € My (R).
Show that the characteristic polynomial p4(z) satisfying the following formula:
pa(x) = 2% —tr (A)x + det (A).
Note that tr (A) is the trace of A.

Ex 06. Let A be the matrix

_— o O O
o O O
o O = O
o= O O

Verify that ps (z) = 2% — 1.

3 On the inverse of a square matrix

Criterion 16 Let A € M,, (R). If det (A) # 0, then A~ exists. Moreover, the formula of
A=Y is given by:
1

~ det (A)

where Com (A) denotes the comatrice of A. If A~ exists, we say that A is invertible. By
French “inversible”.

-1

(Com (A))", (1)

Example 17 LetA—(z Z) € My (R). We have
1 d —b
det (A) = ad — cb and A™" = .
et (A) =ad —cb an ad—cb(—c a)

Example 18 Consider the matriz

A= e M3 (R).

00 W
00 Tt N
© o w



By definition, we obtain

+ - +
1 2 3
5 6 4 6 4 5
det (4) = 456_‘89’_2‘89‘+3'88'
8 8 9
—-3+24-24
= —-3#0.
From , we have
t
1 Ci1 Ci2 Ci3
1
A = ? Co1 C22 Ca3
C31 C32 Cs33
56| 46 45\
8 9 8 9 8 8
-1 |23 1 3] |12
3 8 9 8 9 8 8
2 3] |13 12
5 6 4 6 4 5
(-3 12 =8\ /-3 6 -3
= 35 6 —15 8 =3 12 —-15 6
-3 6 -3 -8 8 -3
As required.
3.1 Problems
Ex 01. Consider the matrix
1 —«
1 —«
A= ; aeR
1l —«
1
Prove that
1 a o a1
1 « a2
AL — :
1 o
1

Ex 02. Let A, B € M5 (R). Assume that one of the matrices A or B is invertible. Show that
AB amd BA have the same characteristic polynomial, i.e., pap () = ppa (2) .

11



4 Eigenvalues and Eigenvectors

Throughout this chapter K denotes the field R or C, and M,, (K) denotes the vector space
of n by n matrices over K.

Definition. Let A be an n x n square matrix. When Ax = Az has a non-zero vector
solution z, then

e )\ is called an eigenvalue of A.

e 1 is called an eigenvector of A corresponding to .

e The couple (A, z) is called an eigenpair of A.

Notes: (i) eigenvectors must be non-zero. (ii) But, eigenvalue A can be zero, can be
non-zero.

Conclusion 19 A vector x € E is an eigenvector of A if
1. x is non-zero,
2. there exists A € K, Ax = Ax.
The eigenspace of A corresponding to A is the subspace:
E\y={veK"; Av = \v}.

Note that FE) is a vector subspace of K"”. This is the kernel of the matrix A — AI,,. So
E\ consists of all solutions v of the equation Av = Av. In other words, E) consists of all
eigenvectors with eigenvalue A\, together with the zero vector.

Example 20 Let A = I,. Then any non-zero vector v of R2will be an eigenvector of A
corresponding to eigenvalue A = 1.
1 2
A= ( - ) .

Calculate the eigenvalues and eigenvectors of A.

Example 21 Consider the matriz

Solution.

1. First, we find the eigenvalues of A. We start with calculating the characteristic poly-
nomial of A. From definition, we obtain

2—z 1 “
pa(x) = ! (the first column ¢; becomes ¢; + ¢2)
1 2—x 1+ ¢
3—x 1 1 1
= ‘23—@“; 9_ o =(3—ux) 1 92— 2 =B—-xz)(2—2—-1)
= B-1)

3—x

~—

Hence, pa () = (1 — x) , and so the eigenvalues are A\; = 1 and \y = 3.

12



1. Second, we find the eigenvectors. By definition, the eigenspace E), is given by

- 9. TH2y==x
E)\l - {<x>y)€R7 2x_’_y:y}

= {(z,y) eR% y=—z}
= Vect{(1,-1)}.

Thus, v, = (1,—1).

Using the same manner, the eigenspace £, is given by

_ 9. T+ 2y=3x
E/\Q - {(J},y) GR ) 2x+y:3y

= {(z,y) eR% y =2z}
= Vect{(1,1)}.

That is, vo = (1, 1).

Definition 22 The geometric multiplicity for a given eigenvalue X\, denoted by G, (\),
is the dimension of the eigenspace E\. That is,

The algebraic multiplicity for a given eigenvalue X\, denoted by A, (\), is the num-
ber of times the eigenvalue is repeated. For example, if the characteristic polynomial is
(x — 1)2 (x — 5)3 then for A\ = 1 the algebraic multiplicity is 2 and for X = 5 the algebraic
multiplicity is 3.

Remark 23 The algebraic multiplicity is greater than or equal to the geometric multiplicity.
That is, we always have A, (A) > Gy, (N) .

Examples. Calculate eigenvalues and eigenvectors of the following matrices. Deduce
the algebraic multiplicity and the geometric multiplicity of each eigenvalue of A.

1 2
A= ( ! 2).
Ans. We have \; =4, v; = (2,3) and Ay = —1, v = (1, -1).
cosf sind
A= ( —sinf cosf )
Ans. We have \; = e, v; = (—i,1) and Ay = e vy = (i, 1).
1 2
4= ( ! 5).
Ans. We have \y =1, E; = Vect{(1,0)} and Ao =5, E5 = Vect {(1,2)}.
2 6
4= ( 2 2).

13



Ans. We have A = 2 (double, i.e., the algebraic multiplicity is 2), E\ = Vect {(1,0)}.
3
3

1
A=10
0 )

S NN

Ans. We have \y = 1, Ey = Vect{(1,0,0)}, \a = 2, Ey = Vect{(2,1,0)} and A3 =
=5, E_5=Vect{(5,6,—14)}.

A:

o NN O
N O O

1
1
1
Ans. We have \; = 1, E,, = Vect{(—1,1,1)}, As = 2 (double, , i.e., the algebraic
multiplicity is 2), E\, = Vect{(0,1,0),(0,0,1)}.

A:

o O O
o O =

1
0
0
Ans. We have A\ = 0 (triple eigenvalue, , i.e., the algebraic multiplicity is 3), E\, =

Vect{(1,0,0),(0,1,—1)}. The eigenspace corresponding to A = 0 is of dimension 2.

A=

S =N
w N O
N OO

Ans. We have \ = 2 (the algebraic multiplicity is 3), E\ = Vect {(0,0,1)} . The eigenspace
corresponding to A = 2 is of dimension 1.

A:

O = =
O =
N oo

Ans. We have \; = 0 (simple eigenvalue), E), = Vect{(—1,1,0)} and Ay = 2 (double
eigenvalue), E\, = Vect {(0,0,1),(1,1,0)}. The eigenspace corresponding to A; is of dimen-
sion 1 and the eigenspace corresponding to Ay = 2 is of dimension 2.

a 2 3
A=1 0 2a 8 ;a€R
0 0 3a

2
Ans. We have \; = a and E), = Vect{(1,0,0)}, \a = 2a and E), = Vect { (5’1’0) },

1 8
A3 = 3a and E), = Vect { (2_a2 (3a +16), . 1) }

Corollary 24 Let (A, x) be an eigenpair of A. Then (/\k,x) is an eigenpair of AF.

14



Proof. In fact, we see that
Az = \v = A%z = A(\1) = Mz = \n.

Therefore,
Az = e =V k>0: AFz = Nz

The result is proved. m

Corollary 25 Let A be an invertible matriz and let (A, x) be an eigenpair of A with A # 0.
1
Then (X,x> is an eigenpair of A71.

Proof. By definition, we have

Aty = A (1a) = A7 (5 )zlA—l (A7)

)T
= %Al (Az) (since Az = A\z)
1
= 32

1
Thus, A~z = X{L’ The proof is finished. =

4.1 Problems

Ex 01. Calculate the eigenvalues and eigenvectors of the following matrix:

-3 1 -1
A=\ -7 5 -1
-6 6 -2

Ans. /\1 = —2, V1 = (]., 1,0) and )\2 = 4, Uy = (0, ]., 1) .
Ex 02. Let P € GL, (R) and let D be the following diagonal matrix:

An
Calculate the eigenpairs of D, then deduce the eigenpairs of the matrix PDP~.
Ex 03. Let A € M,, (R) and o € R*. Prove that

v is an eigenvector of A = awv is also an eigenvector of A.

Ex 04. Let A € M,, (R) and A1, Ay be two eigenvalues of A with A; # A\y. Prove that
E>\1 N E>\2 == {ORn} .
Recall that £\ = {z € R"; Az = \z}.

15



5 Similar Matrices
We will now introduce the notion of similarity.

Definition 26 Let A and B be two n-by-n matrices. We say that A is similar to B if
there exists an invertible matriz P such that

A= PBP.

In linear algebra, two n-by-n matrices A and B are called similar if there exists an
invertible n-by-n matrix P such that A = PBP~!. We also write: A and B are similar if
A = PBP~! for some invertible matrix P.

Notation 27 The notation A ~ B means that the matriz A is similar to the matriz B.

Next, we give an example.

Example 28 Let A and B be the two matrices given by

—4 7 13 -8
A:( 3 O)’B:(% —17)'
4
-1

(4 =3\ [13 =8 13\ (-4 7\
PBP _<—1 1)(25 —17><1 4)‘(3 o)‘A'

But, the question we ask here: How to find the invertible matriz P so that A = PBP~1?
We have the following properties:

Then A is similar to B because for the matriz P = ( _13 ), we have after few compu-

tation

Theorem 29 Let A and B be two n-by-n similar matrices; i.e., there exists an invertible
matriz P such that A = PBP~'. Then

1. For each positive integer k, A¥ = PB¥P~1,
2. pa(z) = pp (x), that is A and B have the same characteristic polynomial.
Proof. Let us show the theorem as follows:

1. Assume that A and B are two similar matrices, and let P be an invertible matrix such
that A = PBP~!. For each integer k > 0 we have

A= (PBP) (PBPY).. (PP

g

k—times
= PBB..BP!
S——
k—times
= pPBFpPL

16



2. We prove the following implication
A~B=pas(x)=pp(x). (2)
That is, if the matrices A and B are similar to each other, then A and B have the
same characteristic equation, and hence have the same eigenvalues. In fact, we have
pa(x) = det(A—xl)
= det (PBP™' —2PP7'), since PP~' =1, €R
= det(P —x]Pl),sincexeR

= det (P)det (B — xI)det (P7") (3)
= det (B —zl) (4)
1
Note that the passage from (3] to because det (P~1) = det (P)’
e

The proof is finished. =
Remark 30 The converse of 18 false. For example, for

11 1 0
Az(o 1) ande(O 1)212

We see that pa (x) = pp (x). Therefore, Sp (A) = Sp(B) = {1} and det (A) = det (B) . Further,
if A is similar to B then there exists an invertible matriz P such that

A=PBP ' =PLP ' =1,
A contradiction since A # Iy. Thus, A is not similar to B (we denote A »~ B).

Conclusion: We can also write
Sp(A) = Sp(B) # A~ B,

pa(x) =pp(x) - A~ B,
det (A) = det (B) # A ~ B.

Remark 31 By applying the following rule:

det (A) =0 < 0 € Sp(A). (5)

Let A and B be two similar matrices, i.e., there exists an invertible matriz P such that
A = PBP~'. We can also prove that Sp(A) = Sp(B). Let A\ € Sp(A), there erists a
nonzero vector x tel que Ax = Ax. That 1s,

(A=X)z=0=0x
Which gives 0 € Sp (A — XI). On the other hand, we have
A=A =P(B—A)P, (6)

Asssume that 0 ¢ Sp (B — \I). By () and (6) we have B — A\ € GL, (R). Consequently,
A— )\ € GL, (R). From (), 0¢ Sp(A— X). A contradiction.
Finally, we deduce that 0 € Sp (B — \I), and hence A € Sp(B). Thus, Sp(A) C Sp(B).

17



Corollary 32 Two similar matrices A and B have the same determinant.
Proof. Let P be an invertible matrix P such that A = PBP~!. It follows that

det (A) = det (PBP™") = det (P) det (B) det (P~") = det (B),
and so det (A) = det (B). This completes the proof. m

Example 33 Consider the following two matrices:

2 1 5 2
A:<_1 _1> cmdB:(4 1).

How can we tell (rather quickly) that the matrices A and B are not similar to each other?
In fact, A » B because det (A) = —1 # det (B) = —3. Thus, we have the result:

det (A) # det (B) = A =~ B.
Theorem 34 The relation " ~ " similarity is an equivalence relation.

Proof. This relation is what we call an equivalence relation, because we have the following
three properties:

1. The relation " ~ " is reflexive, because for each matrix A € M, (R) we have
A=TL,AI"
Then A ~ A.
2. The relation " ~ " is symmetric, because for all matrices A, B € M,,(R) we have
A~ B=3PcGL,(R) such that A= PBP .

It follows that
B=pP 'AP=CAC™ " and C € GL, (R).
C

Thus, B ~ A (i.e., we can just say that A and B are similar to each other). For the
matrices A, B, and P of Example 28 verify by direct computation that A = PBP~!
and that B = P~1AP.

3. The relation " ~ " is transitive, because for all matrices A, B,C € M, (R) we have

A~B 3 P € GL, (R) such that A= PBP~1,
B~C 3 Q € GL, (R) such that B=QCQ™.
Which gives

A=P(QCQ") P =(PQ)C(PQ)"' = RCR™ with R € GL, (R).
~——

R

Hence, A ~ C.

18



]
Proposition 35 Let P € GL,, (R). Define the mapping Tp by:

Tp : MyR) — M,(R)
A — Tp(A)=P AP

Then the following statements hold:

1. Tp

2
3
4. Tp(rA) =rTp (A
53

=
-

Proof. We have
1. In fact, Tp (I,) = Pl P=P'P=1,.
2. Tp(A+B) = P! (A+B)P = P 'AP+ P 'BP=Tp (A) + Tp (B).

3. Tp (AB) = P"YABP = P-'APP~'BP = (P~ AP) (P'BP) = Tp (A) Tp (B).
4. Tp (rA) = P (rA)P =r (P7'AP) = rTr (A).

o
-

)
(A¥) = P1ARP = (P71 AP) = (Tp (A)".
6. Tp (A1) =P 1ALP = (P1AP) " = (Tp (A)) L.
7. Tp (e?) = P leAP = eI AP = ¢Tr(A),
8. It is clear that
To (Tp (A) = Q7'Tp (A)Q = Q7 (PTAP) Q = (PQ) ' A(PQ) = Trq (A).
This completes the proof.

n
Remark. Let A, B € M, (R). If A~ B, then

A€GL,(R) & B € GL, (R).

In fact, we have A = PBP~! & B = P~1AP.

19



Conclusion 36 Let A € M, (R), and let B= P~'AP € M,(R) be a matriz similar to A.
Then A and B have the same characteristic polynomial. Furthermore, q(A) = Pq(B)P™!
for each q € K[X], and in particular A* = PB*P~for k > 1.

Corollary 37 Let A, B € M,(R). If A and B are similar, then Tr(A) = Tr(B).
Proof. We know that

VY M,N € M,(R):Tr (MN) =Tr(NM).

Then
Tr(A)=Tr (PBP™") =Tr (BPP™') =Tr(B).

[ |
Corollary 38 Two similar matrix have the same rank.

Proof. Assume that A = PBP~! for some invertible square matrix P. We have rk (B) >

rk (PBP™') = rk (A). Now note that B = P~ AP, so we similarily get rk (A) > rk (P~'AP) =
rk(B). m

Conclusion 39 Two similar matrices have the same determinant, same trace, same rank,
same characteristic polynomial, same eigenvalues.

On the other hand, we have the following absolutely remarkable result.

Theorem 40 In dimension 2 and 3, two matrices are similar iff they have the same minimal
polynomial and the same characteristic polynomial.

5.1 Additional Problems

Ex 01. Let A and B be two similar matrices, i.e., there exists an invertible matrix P such that
A = PBP~!. Prove that

(A, x) is an eigenpair of A = (/\7 P_lx) is an eigenpair of B.

Ex 02. Let A, B M, (R) and f (z) = ap + a1 + ... + a,2" € R [z] be a polynomial of degree
n. Prove that

A~B= f(A)~ f(B).

Ex 03. Consider the two matrices:

0
A= 1
1

N = =
-3 W
O —

10
et B=| 0 1

3 1
Prove that A ~ B ;i.e., A and B are not similar.
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Ex 04.

Ex 05.
Ex 06.

Ex 07.

Ex 08.

Show that
A—- N, ~B=A~B+\,I.

Using two methods. Prove that similar matrices have the same eigenvalues.

Prove that
A~ B= e ~eb.

Without calculating, neither eigenvalues nor eigenvectors, show that

(a)-(40)

Show by direct computation that the matrices A and B of Example 28 have the same

characteristic equation. What are the eigenvalues of A and B?

6 Diagonalizable Matrices

Definition 41 Let A = (a;;) € M, (R) be a square matriz. A is said to be diagonal, if and
only if
Ay = 0, V1 7£ j

Or, equivalently

a’rm

In this case, A is denoted by D. We also write D = diag {a11, asa, ..., Gy }-

Definition 42 Let A be a square matriz. We say that A is diagonalizable if A is similar
to a diagonal matrix D. That is, there exists an invertible matriz P such that P~1AP is
diagonal, say D. That 1s,

A is diagonalizable < 3 P € GL,, (R) such that A= PDP™
where D = diag {1, A2, ..., \n} and Ay, Ae, ..., N, are the eigenvalues of A.

Example 43 Consider the following matrices

5 —4 10 1 2
() o (30 ) mare (12,

Compute PDP~'. What can we conclude?
By computation, we obtain

et = (11) (5 8) (4 )
(D))

Thus, A = PDP~! and so A is diagonalizable.
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But the question posed is how to determine P and D if they exist? How to diagonalize
a matrix?. Here is the following theorem.

Theorem 44 (Necessary and sufficient condition for diagonalization) Let A € M, (R)
be a square matrixz. A is diagonalizable, if and only if, there exists a basis B of R™ formed
by n eigenvectors of A.

Proof. Assume that A is diagonalizable. That is, there exists an invertible matrix P such

that
A=PDP.
Or, equivalently
P 'AP =D.
Setting
P:[yl Yo ... yn]:[Pel Pey ... Pen},
where (e;),,, is the canonical basis of R" and let
dr
da
D = X = dZCLg {dl,dg, vy dn}
dn
= [ dlel dgeg Ce dnen ] .
It follows that
[ Ay Ay, ... Ay, | = AP=1,AP=PP'AP=PD
= P[ dlel d2€2 Ce dnen }
= [leel ngeg anen }
= [ diyy daya .. dpYn } .

We deduce that for each i € 1,n, Ay; = d;y;. Then y; is an eigenvector of A corresponding
to d;. Since P is invertible, then the familly B = {y1, v, ..., ¥} is a basis of R™.

Conversely, assume that R” has a basis B = {1, 29, ..., z,,} formed by n eigenvectors of
A. In this case, we put

P:[xl To ... xn]
It follows that
AP = [ Az, Axzy ... Aux, }
= [ )\11’1 )\21’2 . )\nxn ] N
where (\i),.,, are the eigenvalues of A associated with (z;),,,,, respectively. Therefore,
AT AoTar ... ApTpn Ti1 P21 ... Tnl A
AP — /\1.$12 /\2'$22 An:.I;nQ _ Ti2 T22 ... Tp2 Ao
MTIN AoTan - ApTpn TiN T2N ... Tpn An
= PD.

Hence A = PDP~!, where D is diagonale and P is invertible. The proof is finished. =
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Corollary 45 Let A € M, (R) be a diagonalizable matriz. There exists a basis B =
{1, 29, ..., 2.} of R™ formed by n eigenvectors A.

Proof. Assume that A = PDP~!. We know that {e;,es,...,e,} are eigenvectors of D
associated with diag(D), i.e.,

De; = PYAPe; = Ny, fori =1,2, ..., n.

Hence
APei = /\iPei, for ¢ = 1,2, ., n.

That is, {Pe;},,, are eigenvectors of A. Since P is invertible, then {Pe;},_,., is a basis
of R". m o o

Conclusion. Let A € M,,(R) be a square matrix and let Ay, Ao, ..., A\ be its eigenvalues.
Let A,, (A\;) and G,, (\;) denote the algebraic multiplicity and the geometric multiplicity of
Ai, respectively. Then A is diagonalizable if and oly if

Am ()\z) = Gm ()\Z) y for i = 1, 2, ceey k.
Corollary 46 Let A € M, (R) be a square matriz. Assume that
pa(x) = (2 —X)" (x — X)) ... (x — \p)™, where k < n.

Then A is diagonalizable if and only if dim E), = «;, fori=1,2,... k.

Example 47 For the following matrices, by calculating the eigenpairs one has:

Matriz pa(x) Sp(A) An(N) G ()

1 10 1 1
A=[11 0 z(z—2)° 5 5 5

0 0 2

2 1 1
B=| 2 1 2| @+1?@-3) P X

-1 0 -2

1 0 0 -1 1 1
C=11 2 -3 (+1)(x—-1)(z—-3) 1 1 1

1 -1 0 3 1 1

We deduce that A and C' are diagonalizable, but B is not.
We see also the following example:

Example 48 Show that the following matriz is diagonalizable.

— = =
— = s
N N

1
1
4
1
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Solution. The characteristic polynomial is p4 () = (z — 7) (z — 3)°. The eigenvalues of
A are \; = 7 (simple), and A\ = 3 (triple). The associated eigenvectors are v; = (1,1,1,1)
for Ay, v = (—1,1,0,0), v3 = (—1,0,1,0) and vy = (—1,0,0,1) for Ay. The matrix A is
therefore diagonalizable since dim E, = A, (\;), for i = 1, 2.

From Theorem [44], we have the following corollary:

Corollary 49 Let A € M, (R) be a square matriz. If A has n distinct eigenvalues, then A
18 diagonalizable.

Proof. Since A € M,,(R) and A has n distinct eigenvalues, then dim Fy, = 1= A, _ ()\;), for

m

1=1,2,...,n. Then A is diagonalizable. =

Proposition 50 Let A and B be two diagonalizable matrices with P~YAP = D, and P"'BP =
Dy for some invertible matriz P. Then AB = BA.

Proof. We can easily verify that if P~1AP = D, and P~'BP = D,, it follows that

A=PD, P!
B = PD,PL.

Note that DDy = Dy D1, and therefore
AB = PDD;P ' = PDyD,P~' = PD,P~'PD,P~! = BA.
Hence the result. m

Corollary 51 Let A € M, (R) be a square matriz, and assume that A has a unique eigen-
value . Then A is diagonalizable if and only if A = \,,.

Proof. It is clear that if A = AI[,, then A is diagonalizable. Conversely, assume that
A € M, (R) is diagonalizable and has a unique eigenvalue A, there is therefore an invertible
matrix P such P~'AP is diagonal. We put P~'AP = D, where diag (D) = Sp(A) = {\}.
It follows that

A=P . Pl=)\P ‘ Pl = APL,P™' =\,

This completes the proof. m
Proposition 52 Let A be a diagonalizable matrixﬂ with Sp (A) = {1, Aoy ..., A\n}. Then

3Note that the result of Equation is always true for any matrix A € M,,(C) which may or may not
be diagonalizable.
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Proof. Assume that A = PDP~!, where D = diag {\, A2, ..., Ay }. Then

det (A) = det (PDP™")
= det (P)det (D)det (P7")
= det (D)
= M. A\,

This commpletes the proof. m

Definition 53 A € R is called the eigenvalue of multiplicity m if and only if
pa(z) = (z—=N)"q(x) with q(\) #0.

Example 54 Let

2 1 1
A= 2 1 =2
-1 0 -2

Then pa (z) = (z — 3) (x 4+ 1) and A cannot be diagonalizable on either R or C. Indeed, we
have

E_ i =Vect{(1,-2,-1)}

In R? or C3, E_; is a vector space of dimension 1 equipped by (1,—2,—1). Since —1 is an
eigenvalue of A of multiplicity 2, A is not diagonalizable.

6.1 Applications of diagonalization
6.1.1 Computing of the power of a matrix

A classical application is the computing of the powers of a matrix A. Assume that A is given
to be diagonalizable. That is, there exist P and D such that

A0 .00

0 X ... O
D = )

0 0 ... A\

and D = P~'AP. For each k > 0 we have
A* = pDFpP1

The preceding formula then generalizes to k € Z. The matrix A is then invertible if, and
only if, D is invertible and
At=pDtph

Exercise 55 Consider the matrix

Calculate A™ for every n > 0.
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Solution 56 We start by computing the characteristic polynomial of A

2—z -1

pale) = ' -1 2-u -z 2—x

_‘ l—z -1

1 -1

= (1-2) 1 Q_x‘:(l—x)(?)—x).

Then Sp (A) = {1,3}.
Next, we find the eigenvectors of A :

20 —y==x
— 2.
El - {(l’,y)ER, —$+2y=y}

= Vect{(1,1)}.

and also we have

—r 42y =3y
= Vect{(1,-1)}.

(i h) (i)

e (D0 ®
() Ge) (i 4)

1+3" 1-3"

By = {(l’,y)EW; 2w =y =3u }

We put

It follows that

N[N | =
N[

2 2
- 1-3" 1+3"
2 2

Example 57 Consider the matriz

i

I
e N N
N INIS NOE

Calculate lim A"™.

n—-+0o00
First, let us calculate the eigenvalues and eigenvectors of A. From computation, we find

)\1:17 U1:<171)7
1
)\QZZL, 'UQI<—2,1).
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- 1
Since A = PDP~', then A*¥ = PD*P~1, where P = ( ! 12 ) and D = ( 0

follows that

lim A" = lim
n—-+4o0o n—-4o00

| |
VR VR
—_ =
— | [ Y
\O) 1\3
= =
~ ~__
N —
)
~
~__ =
B o ’—‘3
/\
LLol i e m
~_
g N
Wl o Do 3
| e |
| = W~
| =
W =W DN
W W | N

Il
W W —
W DWW DN

Example 58 Consider the mapping
o R3[X] — R3[X]
p = flp)=3ap—(a* = 1)1
and let B = {1,z,2% 23} be the canonical basis of Rz [X].
1. Calculate My (B) .

2. Is [ diagonalizable? if so, give the diagonalization.

Solution. There are two steps:
> The calculation of M (B). We see that

f(1)=3x=0+ 3z + 02 + 03
f(z)=1+22% =1+ 0x + 22* + 023
2) =2z + 2% =0+ 2z + 022 + 123
f(2*) =322 =04 0z + 32 + 023

f(x

Which gives

0100
30 20
MyB)=1109 9 0 3
0010
> Let us calculate the characteristic polynomial of M, (B). Indeed, we have
-r 1 0 0
3 —xz 2 0
DM (B) (x) = 0 9 _» 3 |~ 2t — 1022+ 9.
0 0 1 -z
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The eigenvalues of A are {—1,1,—3,3}. From Corollary ??, M, (B) is diagonalizable.
> Diagonalization of My (B) : First, let us calculate the eigenvectors of My (B3), we obtain

1 1 1 1 -3 0 00 é -1 5 —3

-3 -1 1 3 0 -1 00 : L 13

= 8 8 8 8

M; (B) 3 -1 -1 3 0 0 10 g & -5 -4
-1 1 -11 0 0 03 LI S R

6.2 Problems

Ex 01.

Ex 02.

Ex 03.

Ex 04.

Ex 05.

Ex 06.

Ex 07.

Let A € M3(R) be a square matrix such that

pa(r) = (r—1)(r —2)".

Is it diagonalizable ?

Let f be a diagonalizable endomorphism over a vector space E. Prove that

E =ker f & Imf.

Let f be a diagonalizable endomorphism over a vector space satisfying f* = idg for
some natural integer k. Show that f? = idp.

Let A be a 3-by-3 matrix given by

. Is the matrix A diagonalizable?

. Calculate (A —213) and (A — 213)" for every n € N. Deduce an explicit formula of A™.

Let M be a complex square matrix satisfying M* = I for some positive integer k.
Prove that M is diagonalizable.

Study the diagonalization of the matrix
3 00
A= 41 2 |;a€eR
a 0 3
Ans. A is diagonalizable < a = 0.
Verify that the matrix
2 =2 2
A= 0 1 1
-4 8 3

is diagonalizable. Ans : Sp(A) ={1,2,3}.

28



Ex 08. Study the diagonalization of the matrix

Ex 09. Check that the matrices of the form

are not diagonalizable.

Ex 10. Consider the two matrices
2 1 -1 2 21
A= 0o 2 -1 and B=1| 1 3 1
-3 -2 3 12 2
e Check that A and B have the same eigenvalues.

e Prove that A ~ B.

Ex 11. Find a matrix A € Ms(R) which is not diagonalizable.

Ex 12. Let

A:S( Aol f )SI;SGG]Lz(R) and \; Ay € R.
2

Calculate the determinant of A and A~1.

Ex 13. Calculate the eigenvalues and the eigenvectors of the following matrices. Are they
diagonalizable? If so, determine a basis of eigenvectors.

CORCHEEE!

1 —9 1 111 11
2 1 2|, [111], 11
9 9 _3 111 01

74 0 0
-7 =2 1 12 -7 0 0
28 8 -4 |,
0 U 90 11 -6 T
12 -6 6 6

Ex 14. Let A € M, (R). Prove that A is diagonalozable < A is diagonalizable.
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Ex 15.

Ex 16.

Ex 17.

Ex 18.

Ex 19.

Ex 20.

Study the diagonalization of the following matrix

ca#0and b, c,d,e, feR.

SN QLo

c
e
f
3

OO O
OO~ Q

Study the diagonalization of the following matrices

1 01 110
A= 010 and A,=| 0 1 0
0 0 2 0 0 2

Ans. A; : yes, Ay : no
Discuss the diagonalization, according to a,b € R of the matrix

a b a-—1»b
A= b 2b —b ;ab#0
a—b —b a
and find «, # and « for which
A3 = aA? + A+ 45,

Ans. ps(z)=x(x—3b) (r —2a+D).

Determine the real number a for which the matrix

000 O
1 00 1
A= 010 a
0 01 —a

is diagonalizable.

Let A € M,,(R) be a diagonalizable matrix with Sp (4) = {—1,1}. Prove that A =
AL

Let
9

A:

O = O
_ o O

)
-8
Prove that A is diagonalizable and find a matrix P € GL3 (R) for which P~'AP is
diagonal.
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Ex 21.
Ex 22.

Ex 23.

Ex 24.

Ex 25.

Ex 26.

Ex 27.

Calculate A", n € N and deduce an explicit formula of e4.
Let A € M, (R) such that A> = A. Prove that A is diagonalizable.
Calculate p(A) = 248 — 3A4° + A* + A% — 413, where A is given by

1 0 2
A= 0 -1 1
0 1
Consider the matrix o
1 =
Aq (n> = — i
— 1
n
Prove that ‘
i pet = (0 ),
n—-+oo —Slino& COS«
Let A be the matrix given by
A=

0.6
0.4

oo
DN CO
N———

Verify that

2 2
lim A" =
dmAr=|t
3 3
Consider the matrix
9 00
A=| -5 4 0
-8 0 1
Calculate A", for n € N. Ans.
g 0 0
A= 4" —=9" 4™ 0
1-9" 0 1
Let
1 20 100
A=|1 010 |,B=|2 30
00 3 0 01
1. Diagonalize the matrix B.
2. Is matrix A similar to B?
Let n > 2. Let A be the real n x n matrix of coefficients a,; = 0 if ¢ = j and a;; = 1;

otherwise. We put B = A + I,,.
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1. What is the rank of the matrix B? Deduce that —1 is an eigenvalue of A and determe
the dimension of the associated eigenspace.

2. Calculate

and deduce a new eigenvalue of A.
3. Justify that A is diagonalizable, and give its characteristic polynomial.

4. Give an invertible matrix P and a matrix D such that A = PDP~! (one does not ask
to calculate P~1).

7 The Matrix Exponential

Note that the exponential of a matrix deals in particular in solving systems of linear dif-
ferential equations. In the following section, we present some remarkable definitions and
properties on the exponential of a square matrix which may or may not be diagonalizable.

Definition 59 For each nxn complex matrix A, define the exponential of A to be the matriz

et = Ak—I+A+A—2+ +A—k+
k! 12l k!

This is the matriz exponential of A.

Note that if A =0 (the zero matrix); we have ¢° = I,,. Indeed, we see that

0 0 0
=1, =1,.
gttt gt
We also have for every k € Z, ¢4 = (eA)k .
Example 60 Consider the matriz
1 1 3
A= 5 2 6
-2 -1 =3
Calculate A% and A®. Deduce e?.
Indeed, according computation, we have
1 1 3 1 1 3 0O 0 O
A= 5 2 6 5 2 6 |= 3 3 9
-2 -1 =3 -2 -1 -3 -1 -1 -3
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Moreover,

1 1 3 0O 0 0 0 0O
A3 = 5 2 6 3 3 9 =100 0
-2 -1 =3 -1 -1 -3 0 00
Using Definition[59, we obtain
A A2
A — J— _
e’ = 13+1!+ o
AZ
= IB‘FA—F?
1 00 1 1 3 1 0 0 O
= 010 |+ 5 2 6 + = 3 3 9
0 01 -2 -1 -3 -1 -1 -3
2 1 3
13 9 21
R
2 2 2

It is easy to calculate the exponential of a diagonal matrix. We have

Corollary 61 Let D be a diagonal matrix, i.e.,

A1
Ao .
D = = diag {1, A2, ..., \n} -
An
Then
eM
eM2
el = = diag {e)‘l, e .., e’\”} (9)
ern
Proof. In fact, for each £ > 0 we have
A )
D" = &
)\k
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From definition 59, we get

+oo k
Lo N D
k!
k=0
)\k
1
+o00 k
_ 1 Ay
N k!
k=0
k
)\TL
k
hog
i—o k!
k
b
= =0 k!
k
Pl
i—o k!
eM
e
eA’VL

This completes the proof. m
Example 62 Let

Calculate e?.
In fact, by (9), we have

el 0

Proposition 63 Let A € M, (R) be a diagonalizable matriz. Then e is also diagonalizable.

In addition, we have
A=PDP ! = et = PP Pt

Proof. Let A € M, (R) be a diagonalizable matrix. Then there exists an invertible matrix
P such that A = PDP~! with D is diagonal. Therefore,

+oo +oo _1\k
Ak (PDP)
A I
€ - Z k! _Z k!
k=0 k=0
KX PDFP!
o Z k!
k=0
+o0o
DFY\ |
(%)
k=0
= pePpt



As required. m

Theorem 64 Let S € GL,, (R) be an invertible matriz and let A € M,,(R). We have
357 = GeAs!
Proof. Let S € GL, (R) and let A € M, (R). From Definition |59 we have
_ —1\2 —1\3
‘ e TR A TR
SAS™t  SA28! SA35—1
+ + ++

SAS™1  SA28-1 SA3S—1
_ -1
= SIS + 1 + 9] + + 3] +
A A2 A3 B
= S (]ﬁ +-ii‘+‘7§r +-7§r +-”.);9

= Sets

The proof is finished. =

Corollary 65 Let A € M,(R) and let (A\,x) be an eigenpair of A. Then (e’\,x) is an
eigenpair of e

Proof. Assume that (A, x) is an eigenpair of A. By definition, we have

+0o0 +oo
Ak Akg
A _
cr = (Z k:!)x_ k!

k=0 k=0
KN *ix’f
- B W)t
k=0 k=0
= GAI‘.

This completes the proof. m

Lemma 66 We have the following two properties:
(i) For any A € M, (R) and for any t € R,
At =M A,
(it) For any A € M,(R) and for any t € R,

etn = el A,
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Proof. By the definition, we have

+00  Akik 100 Ak4+14k 100 pkik
At — A A AT t:( At)A:eAtA.

k< k! k!

=0 =0 i=0

Likewise, we have

QN
~+
—_

et]nze f— ..' —e ..' :etIn‘

The proof is finished. =

Remark 67 According to the previous lemma, we have
], = el = '],

Note that e # e'; because e € M, (R) and e’ € R.

The integer series which defines the exponential of a real, or complex number, is also
convergent for a matrix. In addition, we have

Theorem 68 For any matrizc A € M,,(C), the series
k!
k=0

is absolutely convergent (therefore convergent) in M., (C).

Proof. For each k > 0, we have

H AR _ Al
Z <
EV— K
and according to d’Alembert’s Ruld], we obtain

lA]*

!
im M = lim AL =0<1
k—too ||| A k—took + 1
k!

“Let > u, be a series with positive terms. If the limit (finite or not)
| = lim 22+t
Uy,
exists, then
1. The series Y u, is convergent if [ < 1,
2. The series Y uy, is divergent if [ > 1.
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+oo Ak
Thus, > T is convergent. Since
k=0 K

k!

k=0

k

+o0
It follows that > —
i=o k!

Also we have the following proposition.

is therefore absolutely convergent. m

Proposition 69 Let A be a square matriz. Then

A
lim6 ! = A.
x—0 x
Proof. We know that ) )

So we can write

2 3
A (zA)" | (zA)
||e —I—xA” = ‘ 51 + a3l + ...
|zA|? |z A|P
- 21 3!

= el 1 — |24

For every x # 0, we obtain

A _ l=All _ 1 — |-zl _
e I —AH <& 1—||zA| _ (e I HA”) o
x 2]

As required. =

7.1 Problems
Ex 01. Are the matrices

A= 8 ) = (0 ) e=(0 Y

exponentials of matrices?

Ex 02. Prove that the matrix

~1 1
(0 4)

is neither the square nor the exponential of any matrix of M3(R), but the matrices

_ (/S O (S D2
J4—<0 Jz)anng—(O J2>
are the square and the exponential of a matrix of My(R).
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Ex 03. Let

S

I
o o Q
o o
L 0

Calculate e?.
Ex 04. Let

10 01
A—<O 2)andB-<O 0>.

B A+ BGA.

Calculate ee?, eAB and e

Ex 05. Considere the following matrices

11 1 -1
A—(O O>andB—(O 0 )

Calculate C' = eAtB, D = e4eP and F = ePe?. Check that C # D # F.

1 1
A:( )
21

Calculate log A. i.e., find a matrix B € M, (C) such that A = €5,

11 1 -1
A—(O 0>andB—(O 0 )

Calculate e?, e®. Deduce the expression of e, where

Ex 06. Consider the matrix

Ex 07. Consider the matrices

o O O

S O O

o= O O
[a)

8 Special Matrices

Definition 70 A matrixz with all zero entries is called a zero matrix and is denoted by 0.

That 1s,
0 0 0
0 0 0
A= . .
0 0 - 0

Also, A is called the null matrix.
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Definition 71 A square matriv A = (a;;) is diagonal if a;; =0 for i # j. In this case, we
write D = diag {\1, A, ..., \n}. So, a diagonal matrix is given by

A 0 - 0
0 XAy --- 0
0 0 - A

e Every computation on diagonal matrices are quite easy. For example, v D, D*, D!,
eP, cosD, InD, ...

Definition 72 The unit matrix or the identity matriz:

01 0
I, =
00 -+ 1

This is a diagonal matriz; but, all the diagonal elements are equal to 1.
For any A € M,, (R) we have
A-I,=1,-A=A.

Definition 73 A square matrix is upper triangular if all entries below the main diagonal
are zero. The general form of an upper triangular matrix is given by

aix di2 -+ Aip
0 azp - a

U =
0 0 - ap,

A is called lower triangular if all entries above the main diagonal are 0. The general form
of a lower triangular matriz is given by

a;; 0 - 0

a1 QA22 - 0
L =

ap1 Qp2 *°° QApn

Definition 74 Strictly triangular matrices are of the form:

0 a2 a1n 0 0 0

0 0 A1p a921 0 0
or i

0 0 0 [ ) 0
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8.1 Symmetric Matrices

Definition 75 The transpose of an m x n matriz A, denoted by A', is the n X m matriz
obtained by interchanging rows and columns of A. That is,

if A= (aij)1<i<m € M (K) 5" A = (a;1) 1520 € My (K) .

1<j<n 1<i<m

It is cleat that the mapping A — A’ from M., ,, (K) to M,, ., (K) is linear, and that if
A€ My, (K), then
(4" = A
Further, if A € M,,,, (K) and B € M,,, (K), we have
(AB)' = B'A' € M,,,,, (K).

Properties of transpose:

(AN = A.

(A+ B)' = A* + Bt

For scalar a, (aA)" = aAl.

e (AB)' = B'A".

Example 76 For the matrix
1 2
A= 3 4 c M372 (R) s
5 6

we have

Theorem 77 Let A € M, (R). Then A and A' have the same eigenvalues.
Proof. Let x € R. We have

pa(z) = det(A—al)=det((A—=I)") (since det B = detB')
= det (At — xI)
= pat(x).

Thus, A and its transpose have the same characteristic polynomial. =

Definition 78 Let A = (aij),; <,
At = A. That is, a;j = aj; for each i,j € 1,n. So, an n x n matriz A is called symmetric if
1t 1s equal to its transpose.

be a square matrix. A is said to be symmetric if
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Example 79 The matrix

o

I
W N
ol o N
— ol w

is symmetric; since A' = A.
Corollary 80 For every matrix A € M,, (R), A'A and AA" are always symmetric.

Proof. It is clear that
(AfA)" = AT (AY)" = A'A.

That is, for each A € M,, (R), A'A is symmetric. m
Proposition 81 The eigenvalues of a real symmetric matriz are real numbers.
Proof. See Theorem 07, m

Corollary 82 Let A € M, (R) be a symmetric matriz and let ag, g, ..., y, € R withm > 1.
The matriz
apl + oA+ ... + o, A™

18 also symmetric.

Proof. (Easy). m

8.2 Skew-symmetric Matrices

Definition 83 Let A = (a;;), <ij<n D€ @ Square matriz. A is said to be skew-symmetric if
At = —A. That is, a;;j = —ay; for eachi,j € 1,n.

(50

Lemma 84 Fvery square matriv M € M,, (R) can be written as A + B, where A is skew-
symmetric and B 1is symmetric.

For example, the matrix

is skew-symmetric since A = —A.

Proof. It is clear that for each M € M,, (R) we have

LYool :
A_2(M M)+2(M+M).

J/ - J/
-~ -~

skew-symmetric symmetric

Theorem 85 Let B be a skew-symmetric matrix; i.e., Bt = —B. Then the matrix A = I—B
1s invertible.
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Remark 86 Note that a matriz A is invertible if and only if (Ax =0 =z =0).

Proof of Theorem [85l
It suffices to prove that Az = 0 implies x = 0. In fact, if Ax = 0, it follows that Bx = x.
Therefore,
(x,z) = (z, Bx).

On the other hand, we have

x = 2'Bx

: ¢ ¢
= s'z=2a'B'z (since (z'z) =a'z and (2'Bz) = 2'B'z)
= 'z =2'"(—B)x (since B is skew-symmetric)
= 'z =—2'Bx
= 'z =—2'z
= 'z =0.

. t
Settmgx:(a:l To ... ITnp ) , we find
L1
L2
{EtLL':(ZE1 T xn) . :xf+x§+...—|—mi:0.
T

Thus, x; = 0 for each i € 1,n, andsoz = 0. m

8.2.1 Problems.

1. Let
0o -2 3
A= 2 0 4
-3 -4 0

Verify that A is skew-symmetric.

2. Prove that M, (R) =S, (R) & A,, (R), where S,, (R) is the subspace of all symmetric
matrices and A, (R) is the subspace of all skew-symmetric matrices.

8.3 Orthogonal Matrices

Definition 87 A matriz A € M,, (R) is called orthogonal if A* = A~
Example 88 The matriz

sinf cos0

A_(COSH —81116); 0eR
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18 orthogonal, since

AA — AAt:<COSH —sin&)( cos 0 sin&)

sinf cos® —sinf cos®

10
- (y))-n

An orthogonal matrix has the following properties:

1. its column vectors (rows) are orthonormal,

2. A'A = AA' =1,

3. At =A"1,

4. For every z € R" : |Az|| = ||z]| ,

5. For every z,y € R" : (Az, Ay) = (z,y) .
Corollary 89 Let A € M,, (R) be an orthogonal matriz. Then

det (A) = £1.
Proof. Since A = A~!, then A*A = I,,. It follows that
det (A'A) = det (A") det (A) = (det (A))* = det (I,) = 1.

Hence det (A) = +1. m

Theorem 90 Let A € M,, (R) be an orthogonal matriz. The following properties are equiv-
alent.

1) A is orthogonal.
2) For every x € R" : | Azx| = ||z .
3) For every x,y € R" : (Azx, Ay) = (z,y) .
Proof. 1)=2). Assume that A is orthogonal. Let x € R", we have

|Az|®> = (Ax, Azx) = (z, A'Az)

(@, Lux) = (x,2) = |lz]”

Therefore, ||Ax| = ||z]| .
2)=3). Assume that V 2 € R" : ||Az|| = ||=|| . Let z,y € R™, we have

2 2
1A @@+ yI” = llz+yl”;

That is,
(Az + Ay, Az + Ay) = (x +y,x + y) ,
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and so
(Azx, Az) + (Ay, Ay) + 2 (Azx, Ay) = (z,z) + (y,y) + 2 (x,y)

Thus, (Az, Ay) = (z,y) .
3)=1). Assume that V z,y € R" : (Az, Ay) = (z,y) . It follows that

(z, A'Ay) = (z,y)

ie.,

(z, A'Ay —y) =0
In particular, for x = ' Ay — vy, we obtain

|4tay — " =0,
Hence A'Ay = y, and therefore A'A=1,. m

Exercise 91 Consider the matrix

For each § € R, prove that €4 is orthogona.

Exercise 92 Let A be an orthogonal matriz. Prove the following properties:
1. A' is orthogonal.
2. For every A € Sp(A) = |\ =1.

3. If Ay and A, are two orthogonal matrices, then AiAs is also orthogonal.

8.4 Hermitian Matrices

Definition 93 Let A = (aij),; ;<,, € Mn(C). That is a;; is a complex number for 1 <
i,j < n. The matriz (G;), <ij<n S called conjugate of A, denoted by A. The transpose
conjugate matriz of A is called the adjoint of A, denoted by A*. Note that A* = At = (Z)t.

Definition 94 A matriz A € M,, (C) is called Hermitiar{| if A* = A. Thta is, if AT = A.
Example 95 The matriz
1 140 2+3i
A= 1—-i -2 —i
2-3i i 0

1s Hermitian; because A* = A.

5See the chapter of exponential of square matrices.
5On the other hand, a matrix A is said to be skew-Hermitian if A* = —A.
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Proposition 96 The diagonal coefficients of a Hermitian matrix are real.

Proof. From Definition [93] the result is obvious since a; = a; for 1 <i<n. m

Theorem 97 The eigenvalues of a Hermitian matrixz are real.

Proof. Proof. Let (), z) be an eigenpair of a Hermitian matrix A (note that = # 0). We
can write

Az, z) =

That is, A = \.

Remark 98 Let A € M,, (C). We can easily prove that the matrices A+ A*, AA* and A*A
are Hermitian.

8.5 Unitary Matrices

Definition 99 A matriz U € M,, (C) is said to be unitary if U~' = U*. In other words, a
square matrix U with complex coefficients is said to be unitary if it satisfies the equalities:

U'U=0U"=1,.
e The unitary matrices with real coefficients are the orthogonal matrices.

e Note that a complex square matrix A is normal if it commutes with its conjugate
transpose A*. That is, A*A = AA*. Thus, unitary, Hermitian and skew-Hermitian
matrices are normal.

Example 100 The matrix

18 unitary; since

e o (0 =iN[O0 —i
ar=aa= (7 3)(07)
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Any unitary matrix U satisfies the following properties:

a. its determinant has modulus 1;
b. its eigenvectors are orthogonal;

c. U is diagonalizable, i.e.,
U=VDV*,

where V' is a unitary matrix and D is a unitary diagonal matrix.
d. U can be written as an exponential of a matrix:

U=¢eH
where ¢ is the imaginary unit and H is a Hermitian matrix.

Proposition 101 Let U be a square matrixz of size n with complex coefficients; the following
five propositions are equivalent:

1. U 1is unitary,

2. U* 1s unitary;

3. U s invertible and its inverse is U*;
4

. the columns of U form an orthonormal basis for the canonical Hermitian product over

(Cn ;

5. U is normal and its eigenvalues have modulus 1.

8.6 Idempotent matrix
Definition 102 Let A € M,, (K). Then A is called idempotent if A> = A.

Examples of 2 x 2 idempotent matrices are:

10 3 —6
0 1)/)’\1 =2
Theorem 103 If A is idempotent, then A is diagonalizable.

Proof. Since A% = A, it follows that ma (z) = z (z — 1) which has simple roots, and hence
A is diagonalizable. m
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9 Matrx norms

Definition 104 Let E be a vector space over K (R or C). The norm over E, denoted by
I.l, is a mapping

Il E—R

r — ||lz|| (we say: the norm of x)
satisfying the following properties:
1. Forallz € E :||z|]| >0 and ||z|| =0 < o = 0g;
2. For all x € E and scalar o € K : ||az|| = |a] . ||z ;
8. Porallz,y € E: o+ yll < lall + 1yl

In this case, the couple (£, ||.||) is called normed vector space or normed space. So,
a normed space F is a vector space with a norm defined on it.

Example 105 In this lesson, we use only the vector spaces, K" and M,, (K) with K =R or
C.

1. Define over K" the following norms:

1
2

n n
2
lzll, = D lail, Nelly = (ZIIH) )
i=1 i=1

7o = max (Jz])

2. Define over M,, (K) the following norms:

n n
IAll, = mjaxz lai;| and ||A]l = m?XZ ;|
i=1 ey

[All, = (ZI%F) :
i

As an application, for x = ( -1 1 =2 )t, we have
lzll, =4, llzll, = V6 and ||zl = 2.

—1

andforAz( 7

_32 ) e M,, (R), we also have

|Al|l, = max (8,5) = 8, ||A|l, = 3V7 and ||A||,, = max(3,10) = 10.
Lemma 106 For each matric A € M,, (K) and for each x € K", we have the following
iequality:

[Az] < [|A[ ]
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10 Scalar Product (Inner product)

Definition 107 Let E be real vectot space. The inner product of E (over E) is a function
(.,.) defined by

(L), : ExE—->R
(z,y) — (z,y)
satisfying the following properties:
1. Forallz € E : (x,z) >0 and (x,z) =0 <z = 0.
2. Forallz,y € E: (z,y) = (y,z).
3. For all x € E and scalar o € R : (Az,y) = A (z,y)
4. Foradlz,y,z€ E:{(x+y,z) = (x,2)+ (y,2).
Define on the vector space R" the inner product (.,.) by
Vo= ( T4 Ty ... Ty )t,y: ( Y1 Y2 .. UYn )tER”

we have .
i=1

Remark 108 For each (z,y) € R* x R", we have

(z,y) = a'y.
Also, the inner product over C" is given by

(z,y) = 2'7, (10)
where Y is the conjugate of .
Example 109 Let A € M,, (R). Find a symmetric matriz B € S,, (R) such that

' Az = 2'Bx for every x € R™.

In fact, for every x € R", we have

ttAr = (xtAx)t (since v' Az = a € R)

= o'A'z,

It follows that

1 1 A+ A
tA :_tA _tAt — it )
T Ax 2£U x—|—2x x a:( 5 ):U

t

Note that the matrix B = 1S symmetric.
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Also, define over the vector space C'([a,b]) the inner product

v f.g€Catl): (f,9) —/ f(2) g (x) d.

Proposition 110 Let A be a symmetric matriz and let (o, x), (8,y) be two eigenpairs of A
with o # B. Then x and y are orthogonal, i.e., x 1 y. Or, equivalently, (x,y) = 0.

Proof. Indeed, we have

alz,y) = (ax,y) = (Az,y) = (x, Aly) = (x, Ay) = (2, By) = B (z,y),

and since « # 3, it follows that (z,y) =0. =

10.1 Problems.

Ex 01. Consider the equation
az® + 2hzy + by? = 0. (11)

Write in the form X*AX = 0, where A € M3 (R) and X = ( v ) :

)
a h
Ans. A = < Lob ) .
Ex 02. Write the equation A\jz? + X\yz2 = 0 in the form X'AX = 0, where A € M, (R) and
X:(“).
T2
Ex 03. Let A € M, (R). We ask if 2'Az =0; V2 e R"= A=07

Ans. No, take the matrix A = ( (1) _01 ) .

11 System of linear recurrence sequences

11.1 Form I (without initial values)

Let (z,) and (y,) be two sequences given by the following relation:

Tp4+1 = A11Tn + a12Yn | X _ a (12)
Ynt1 = 21Tp + a22Yn ~ \ Yo b )’

In the matrix form, we get
Tn+1 _ 11 Q12 Tn
Ynt1 ) x, a1 22 ) 4 \ Yn ) x.
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Or, equivalently, we write in the form

Xpi1 = AX, , where X, = ( ;0 ) .
0

Consequently,
X, =AX, 1 = A(AX, 3) = A’X, 5= .= A"X,. (13)

Remark 111 If it is given to us X,, we have only X, = A" 1X].

In the general case, a system of k linear recurrence sequences xS) 1 =1,2,... k is given
by

131(11+)1 = allell) + auxg) + ...+ a1k137(zk)

) (1) 2) )
T = Q91 Tpn’ + Q2oTn + ...+ QopTn i .
et 2 2.2 o : ZL‘(()) eR, fori=1,2,..,k. (14)

wﬁl = akliig) + ak2$7(12) + ...+ Cbkkxa(mk)

In the matrix form
(1) 1)

I?—&)-l aix Q2 ... Qg x?)
2 2
Tyt B g1 G2 ... Qg T
= ‘ ,
(k) a a a (k)
k1 Qg2 ... Qgk

'I’I’L—Fl X7L+1 A fEn Xn

(1)
M

2
Lo

where Xy = . As in (13), we get
X, = A"X,.

These problems (the solution of or (14)) reduce to the computation of A™.
Consider the following example:

Example 112 Solve the system of linear recurrence sequences

Tp4+1 = an — UYUn
. (20,90) = (0,—1). 15
{ Yntl = —Tp + 2yn ( 0 yO) ( ) ( )

Solution. First, we write the system according to the equivalent matrix form

() () )= (0)
Yn+1 Xna1 —]. 2 A Un, X, ’ —1

From (13), we have X,, = A"X,. Moreover, from the previous computation, an explicit
formula if A™ in terms of n is given by

1+3" 1-3"
2 2
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It follows that

1+3" 1-3" 3" -1
n 0
2 2 2

11.2 Form II (with initial values)

Consider the system of linear recurrence sequences ! ), fori=1,2,....k:
x511+)1 = CL11$C7(11) + (112$7(12)

!L‘q(i)rl = a21$a(zl) + a22x£LQ)

+ ... +a1kx£lk) + 1
(k)

+ ...+ agrn’ +C i .

o 2 ; ci,xg)ER, fori=1,2,..., k.

(k) (1) @)

(k)
Tpi1 = Qk1Tn’ + Qk2Zn’ + ... + QppZn’ + Cg

In the matrix form

(1) (1)
337(12451 aip Gz ... Gk $?2) C1
Tyt _ 21 Q22 ... Q2k Tn i C2 ,
o)
e
where Xy = 0 . This means that
Ne
X, = AX, 1+ C=AAX, 2, +O)+C=AX, o+ (A+1)C
= A"Xo4+ (A" + AP+ L+ A+])C. (18)
n—1
These problems are reduced to the computation of A™ and Y A’.
i=0

Example 113 Solve the system of linear recurrence sequences

{ :Bn—i-lzzxn_yn_]-

Yni1 = —Tp +2yn +2 (20, 90) = (0, =1). (19)

Solution. The system can be written in the following matrix form:

), -2, G ()
= +
Yn+1 Xn+1 -1 2 A Yn Xn 2 C

It suffices to compute A" 1 4+ A"2 + ..+ A+ I. Indeed, in view of we can write

1+3" 1-3"
Ar = 2 2 ~lp Py
=1 153 163 | TRV oY
2 2
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where

It follows that

1 .. 4 3n-l
AL A2 A4+ T = —U+( I+t )V

2

n 3 -1
()
Finally, from we have
1 3" n 3" —1 1/1 1 3" 1 -1
X, - (§U+?V)Xo+{§U+< - )V]c_(§<1 1>+7(_1 : ))(
n n 11 n 3" -1 1 -1 -1
2\ 1 1 4 -1 1 2

2n—3"+1
2n—|—§”—5 ; n = 0.
4

Exercise 114 Let A € My (R). Assume (A — I,)™" exists, prove that
AV 4 A2 LA+ T=(A"—L)(A-L)".

12 Linear Systems of differential equations, Part I

Define the linear system of differential equations (x} (t),z} (t), ..., 2!, (t)) by

n

.73/1 (t) = a11T1 (t) + a12Z2 (t) + ...+ a1, (t) + f1 (t)
l‘l2 (t) = 2171 (t) —+ Q999 (t) + ...+ Ao2nTn (t) + f2 (t) (20)
2 (1) = apxy (t) + anaza (1) + oo + apny (t) + fn (1),

where a;; € R. The unknowns are the functions z; (t),z2 (t), ..., z, (f) which are derivable

and f; (t) are some given functions.

The system is called homogeneous if all f; = 0, otherwise it is called non-homogeneous.
Matrix Notation

A non-homogeneous system of linear equations is written as the equivalent vector-
matrix system

X(t)=A-X(t)+ (1),

where
x1 (1) air a2 o Qg fi
D% (t) _ T2 (t> ’ A— Q21 Q22 -+ A2y ,f _ f2
Ty (1) pl QAp2 **°  dpy f2
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In this section, we consider only homogeneous systems: We wish to solve the system
X' = AX. (21)

There are two cases:
Case 1. Assume that A is diagonalizable. There exists an invertible matrix P such that
A = PDP~! where D is diagonal. Thus,

X'=PDP'X = PY’

Y'=DY
Y =P X.
The system becomes
Y' = DY,

which is easier to solve since D is diagonal. Then after, we solve the equation Y = P~1X,
that is, X = PY.

Example 115 Solve the system of differential equations:

;. (1 2 (3
X_AX,A_(3 2),whereX(O)—(2).

Solution. At first, the eigenvalues of A are \; = —1 and Ay = 4. The corresponding
eigenvectors are v; = (1,—1) and vy = (2,3). Thus, we have

(3 0)r-(43)

We put X = ( 1 ) and Y = < % ) It follows that
T2 Y2

Y/ — _DY <:> y:,[ = _y]. <:> yl — Cle_t
Yys = 4ya Y2 cpett )7

B (1 2 cie ™\ [ cremt + 2c0e
X =Py = < -1 3 > ( coett ) o ( —cre 4 3cgett )

Since X (0) = ( ;) ), then

and hence

{ Cl+262:3 :>0120221.

—c1+3co =2

Thus is,
xy = et + 2e
To = —e b+ 3ett,

We present another method to solve the system X' = AX, where A is diagonalizable.
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Proposition 116 Let A € M,, (R) be diagonalizable matriz and let

P=[X) X, .. X,]

be the invertible matriz formed by n linearly eigenvectors Xi, X, ..., X,, of A.

system X' = AX has a unique solution given by
X (1) = 1M X 4 e Xy + ..+ e X,
where cq,Ca, ..., Cc, € R™ and A1, Ay, ..., \,, are the eigenvalues of A.
Proof. It is clear that X' = AX implies
X (t) = ¢, where £ € M,,; (R).

Since A is diagonalizable, then

ez\lt
e)\zt
X (t)=PeP'Pt=p _ Ple
' oAt
Setting
&1
c
ple=| 7 |=cC
Cp,
It follows from that
Mt c1
et Co
X)) = [Xl X, .. Xn} )
ent c.n
&1
= [ eMtX, eMtX, ... eMX, } 0,2
CTL

= 1M X+ ™ Xy + .+ cne)‘”tXn.

Therefore,
X (1) = 1M X 4 e Xy + ..+ cpe™i X,

This completes the proof. m

Example 117 Solve the system of differential equations:

; (1 2 (3
X—AX,A—(3 2),whereX(0)—(2).

o4

Then the

(22)

(23)
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Solution. After the computation of the eigenvalues and eigenvectors of the matrix A.

It follows from (24]) that
. 1 2
X (t) = cre t( _1)+02€4t<3>.

7 (t) = cre™t + 2c0e*,
y(t) = —cre™ + 3cpe.

Hence

Since X (0) = ( 3 ), then

1y = e b+ 2et
To = —e !t 4 3ett.

Example 118 Solve the system of differential equations:

X' = AX with A=

—_ = =

0
2
0

N OO

Solution. Simple computation we get

M=1, v =(=1,1,1)
A1 =2, vy =(0,1,0) and v3 = (0,0,1).

The matrix A is diagonalizable, and by we obtain

-1 0 0
X (t) = ci€ 1 +ee® [ 1 | +ee®| 0|,
1 0 1

where ¢y, ¢9, c3 are constants. That is,

z(t) = —ci€t
y(t) = cre’ + coe?
2 (t) = cre' + c3e?.

Remark 119 In another way, which is very long and based on the calculation of P and P~}
with A = PDP~t. From which it follows that

et = pePipTt (25)

1 2
3 2

C' is an arbitrarily constant. Since X (0) = ( 3 2 )t, then C' = ( 3 2 )t. Therefore,

Let A = ( ) . The solution of the differential system X' = AX is X (t) = e*.C, where

X (t)=e-X(0). (26)
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Simple computation gives

Y
Il
VR
W N
| =
[a—
N~
=)
3
ISH
N
Il
Ut L] =
Ul| [L)Cﬂl —

Hence

ot QU] =

12.1 Problems

Ex 01. Calculate e for each t € R, where
1
A= 0O 0 1
1

Deduce the general solution of the system of differential equations:

pr=—q+r
¢ =r
r=—p+r

Ex 02. Solve the system of differential equations:

' (t) =y (t)
y () =z ()
7 (t) = w(t)
w'(t) =z (1)

Ex 03. Solve the system of differential equations X’ = A - X, where A =

O =

O ==

13 The square root of a diagonalizable matrix

By Bellaouar D.

Lemma 120 Let
A

A
D = 2 ) , where \; >0 (1 <i<mn).
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Then
VAL
A
VD - Ve
VA
Proof. It is clear by computation that VDVD=D. =

Proposition 121 Let A € M, (R) be a diagonalizable matriz with Sp (A) C Ry. Then

VA e M, (R).

Proof. Assume that A= PDP~! where Sp (D) C R,. We put
H = PVDP™' € M,(R).

Since vVDVD = D, it follows that

H? = (P\/EP—l) (P\/BP‘1> — PDP ' = A.

Thus, VA=H. m

Example 122 Consider the matriz

11 -5 5
A= -5 3 =3
5 -3 3

Calculate v/ A.

After simple computation, the eigenpairs of A are:

A =0, By, =Vect{(0,1,1)},
Ao =1, Ey, =Vect{(-1,-1,1)},
A3 =16, E), = Vect{(2,—-1,1)}.

Further, we see that

0 —1 2 00 0 o i 1
P=|1 -1 -1 |,D=[01 0 and P~ = | —3 —% %
1 1 1 0 0 16 I
Which gives
VA = PVDP™!
0 —1 2 VO 0 0 o i1
= [1 -1 <1 0 V1 0 -3 —% 3
1 1 0 0 416 I I
3 -1 1
= -1 1 -1
1 -1 1
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Definition 123 Let A = PDP! be a diagonalizable matriz whose eigenvalues are given by
the diagonal matrix

D= dzag {)\1, )\2, cees /\n} .
For any function f(z) defined at the points (\i), <<, , we have

f (A1)
f(A)=Pf(D) P =P T

f(An)
For example, if A € M,,(R) with A= PDP~! then

f(z)=a%= f(A)=A*=PD*P1 fork>0
f(x)=vz = f(A)=vVA=PJ/DP!
f(x)=cosz = f(A)=cos A= P(cosD) P!
f(x)=e"= f(A)=et = PeP P!

13.1 Problems.

Ex 01. Let M be a real n by n matrix. We denote by cos M the real part of '™ and sin M
its imaginary part.

1. Show that cos M and sin M commute and that
(cos M)? + (sin M)? = I,,.

2. Let 0 be a real number. Calculate
0 1 d si 0 1
cos| o g and sin { o4 ).

Ex 02. Let

Calculate VA.

14 Cayley-Hamilton Theorem

The goal of this section is to prove the famous Cayley-Hamilton Theorem, which asserts that
if p(z) is the characteristic polynomial of an n by n matrix A, then p(A) = 0.

Definition 124 Let p (z) = ag + a1z + ... + apx® € K[X], and let A € M,, (K). Define the
matriz p (A) by
p(A) = aol, + a1 A+ ... + a A*.

In other words, p (A) is the matriz obtained by replacing x* by A?, for each i =0,1,....k, in
the expression of p, with the convention A° = I,,.
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Remark 125 If we replace x by A in the formula of the characteristic polynomial pa (z),
which gives

pa(A) =det (A— A) =det (0) = 0.
This is impossible since pa (A) € M,, (K) and det (A — A) = det (0) € K.

Let us recall the statement of one of the very classical theorem.

Theorem 126 (Cayley-Hamilton Theorem) Let A € M,, (R) and let p4 (x) be its char-
acteristic polynomial. Then py (A) = 0.

In the proof, we need to use the following lemma.
Lemma 127 For each A € M,, (R), we have
A(com (A))" = (com (A))" A = det AL, (27)

In particular, if A is invertible, its inverse is given by

1

AT =
det (A)

(com (A))".

. a b
For example, if A = ( o d

Ateomay = ()L )= (0" )

— (ad — bo) <é ?)zdet(A)I2.

) € My (R), we have

Proof of Cayley-Hamilton Theorem. Let

ay; a2 ... QAip
a21 A292 ... QA9
Ap1 Ap2 ... Qpn

Assume further that py () = 2" + ¢,_12" ' + ¢ 22" 2 + ... + c17 + ¢o. Applying Lemma
using the matrix zI,, — A, we obtain

(21, — A) com (zI — A)" = det (xI,, — A) I,

where
Tr — Q11 a12 ce Q1n
a91 r — Q22 ... Aoy,
xl — A=
Qp1 an2 oo U — Qpp
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Hence

1,1 1,2 1n
Py (@) B (@) (@)
com (x[ _ A) _ Prn-1 ( ) Pn-1 Pn—1 ( ) ,
n,l. n,2. . n,n.
pid @) @) (@)
where pff_j% are polynomials of degree n — 1. Setting

com (x1 — A)' = By + 2By + 2*By + ... + 2" ' By, where (Bi),_q; ., 4 € M, (R).
We deduce that

(I —A) (Bo+ aBi +2°By+ ... + 2" 'B,_1) = det (2, — A) .1,
= 2", + cp 12" ', + ... 4z, + col,,.

It follows that

ZL’an,1 + Inil (Bn,Q — Aanl) + .. +x (B() — ABl) — ABO
= "I, + cp12" , + ... 4+ crxl, + col,,.
Then

(

B,1=1,
B2 — ABn—l = Cn—lxnilln

BO - ABl == Clln
L —ABO = COIn-

Which gives

pa(A) = colp+ciA+ .. +cp AV A"
= —ABy+ A(By— ABy) + ...+ A" ' (B, — AB,_1) + A"B,,_,
= 0.

This completes the proof. m

0 1

Example 128 Let A = < 5 3

Ans. p(z) = 2* — 3z — 2.

>. Find a polynomial p(x) of degree 2 such that p(A) = 0.

Corollary 129 Let A € M,, (R) with
pa(T) = 2" + cprz™ o™ P+t ar +
where cg € R* and ¢y, ca, ...,cp_1 € R. Then
P (Z A1 A) |
€ \'=1

60



Proof. Since
pa(A) =col + 1A+ cA® + ...+ cp A"+ A" =0,

it follows that
(01[ + CQA —I— + Cn_lAn_z —|— An_l) A = —00],

and so

A = (el + A+ e AV 4 AT
Co

This completes the proof. m

Example 130 Using Cayley-Hamilton Theorem, calculate the inverse of the matrix

1 1 0
A= -1 0 0
2 0 -1
Solution. First, let us calculate p4 () :
+ - 4
r—1 1 0
pa(@) = | -1 x 0
2 0 z+1

= (z—=1D[z(x+1)]+ (z+1)
= (z—-1)(z" -2 +1)
2+ 1.

Therefore, pa () = 23 + 1, and hence

pA(A) = 0:>A3+13:0
= Al=_4%
Finally, we get
1 1 0 1 1 0 0 -1 0
Alt=—-[ -10 o0 -10 0 |J]=(1 1 o0
2 0 -1 2 0 -1 0 -2 —1

15 Minimal Polynomial

We introduce here a second polynomial extracted from the characteristic polynomial of a
square matrix.

Definition 131 Let A be a square matriz and let pa(z) be its characteristic polynomial.
The minimal polynomial of A, denoted by m4(x), is a polynomial satisfying the following

two properties:

1. ma(z)|pa(x); i.e., ma(x) divides the characteristic polynomial pa ().
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2. ma(A) = pa(A) = 0 (the zero matriz). That is, ma (x) satisfies Cayley-Hamilton
Theorem as does pa(x).

Theorem 132 The eigenvalues of a matrix A are the roots of ma(x).

Proof. Let )\ be an eigenvalue of A and let x be its eigenvector. We do the Euclidean
division of ma(x) by x — A, we obtain

ma(xz) =Q(x)(x—A)+c¢, ceRand Q € R[X].

It follows that
0=my(A)=Q(A)(A—AI)+cl.

If we apply this to the vector x, we get
0=Q (A) (Az — \z) + cz.

Hence cx = 0. Since z is not zero, we get ¢ = 0, and so my (z) = @ (z) (z — A) . This means
that A is a root of mu (). m

Remark 133 The minimal polynomial of A is a polynomial satisfying the following three
properties:

1. ma(z)|pa (),
2. mu(A) =pa(A) =0 (the zero matriz),
3. For any A € Sp(A) :ma(X) =0.

Example 134 Calculate the minimal polynomial of the matrices:

2 1
cas(21)

11
2o (1)

Solution.

1. We can easily prove that ps (x) = (1 — x) (3 — z), and so my (z) = pa ().
2. First, the characteristic polynomial is p4 (x) = (x — 1)*. Hence,
ma(z) = (x —1) or my (z) = (x — 1),
and since A — I, # 0, then m 4 (z) = pa (z) = (z — 1)°.
Example 135 Determine the minimal polynomials of the following matrices:
01 1 411 _
A=|o0o00]|,B=1]141 ,(J:(1 o)
000 11 4
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3

e It is clear that ps (z) = 23. Then, m4 () = 23 or 2% or z. On the other hand, we have

my (z) = 2%; since A # 0 and A% = 0.

e Note that after computation, pg (z) = (z — 3)* (z — 6). Since pg () and mp (z) having
the same roots and mp (x) divides pp (x), then mp () = (z — 3) (x — 6) or mp (z) =
(z —3)*(z — 6). But,

(B —3I5) (B —6I;) =

OO O = ==

It follows that mp (z) = (z — 3) (z — 6).
e From simple computation, we get pc (z) = (z —1)*. Since A — I, # 0, then

me (x) = (v — 1)2 =po ().

Corollary 136 Let A € M,, (R) with ma (z) = (z —a) (x —b); a,b € R. Then A™ can be
written in terms of A and I.

Proof. The proof is by induction on n. Indeed,for n = 1, we have

A'=1.A+0.1.

Moreover, for n = 2, A> = (a + b) A—abl, since ma (A) = 0. Assume that A" can be written

in terms of A and I, i.e.,
A" = a, A+ b,I.

Therefore,

AME = AA™ = A(a, A+ b,I)
an,A* + b, A
= a,((a+b)A—abl)+b,A
((a+0b)a, +b,) A— aba,I
= f(AI).

This means that A" can be written in terms of A and /. =

Corollary 137 The matrixz A is diagonalizable if and only if the roots of m4 (z) are simple.

Example 138 Let

b

I
)
— O
O = =

Verify that A is diagonalizable.
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Solution. From computation, we get
pa(z)=(1+z)(x—2).

This means that my (z) = (1 +z) (x — 2) or my (z) = (1 +z)* (z — 2). But,

(I+A)(A-2]) =

O OO = ==
OO O = ==
OO DO =

Thus, ma (x) = (1 + ) (x — 2). It is clear that the roots of m, (z) are simple, and hence
A is diagonalizable.

Example 139 Study the diagonalization of the matriz

A= , where a € R.

— = Q
= O
L OO

Since A is a lower triangular matriz, then py (z) = (z —a)®. Since (A —al) # 0, then
ma () can not be (x — a). This means that the roots of ma (x) are not simple, and so A is
not diagonalizable.

Example 140 Consider the matriz

a b b

A=1b a b

b b a

Show that A is diagonalizable.
In fact, we have
100 011
A=al|l 01 0 |+b| 1 0 1 | =al3+bB.

0 01 110

It suffices to prove that B is diagonalizable. After computation we obtain
mp (z) = (z+1) (z - 2),

and hence B is diagonalizable. That is, B can be written in the form B = PDP~', from
which it follows that

A = al;+bPDP!
= P(als+bD) P

Since als + bD is diagonal, then A is diagonalizable.
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Example 141 Chsider the matrix
1 11
A= 1 11
1 11

By computation, ma (x) = x (z — 3). This means that A is diagonalizable since the roots of
ma () are simple.

15.1 Problems

Ex 01. Find minimal polynomial of the matrix

2 2 =5
A=\ 3 7 —-15
1 2 —4

Deduce that A is diagonalizable. Ans.
pa(x)=(x—=3)(x—1)% and my (z) = (z —3) (x —1).

Ex 02. Consider the matrix

A:

O = =
O =
N OO

Calculate the minimal polynomial of A. Ans. my (z) =z (x —2).

Ex 03. Calculate the characteristic polynomial of the matrix

[ =N

1
4
1
1

I e e

1
1
4
1
Deduce its minimal polynomial. Ans.

pa(x)=B—2)°(7—2z) and my (z) = (3—2)(7T—x).

Ex 04. Calculate the minimal polynomial of the following matrices
3 00 300 300 310
03 0], 1 30|, 13 0|, 0 31
0 0 4 0 0 4 01 4 1 0 4
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Ex 05. Verify that all matrices of the forn
1 « .
A= ( 01 ) ;aeR

Ex 06. Calculate the minimal polynomial of the matrix

are not diagonalizable.

A
1 A
A= S JAER.
1 A
1 A
Is it diagonalizable ?
Ex 07. Let A € M3(R) given by

3 2 =2
A= -1 0 1
1 1 0

a) Determine the characteristic polynomial of A.
b) Determin the minimal polynomial of A.
c) Is the matrix A diagonalizable?

Ex 08. Find all the matrices A € My(C) whose minimal polynomial is z2 + 1.

Ex 09. Calculate the minimal polynomial of the matrix:

s

I
el e e e
el e e e
—= = R = e e e
L e T e T S = S SRS S
e e e e e N
= R = R e e
= R = e e e
= R = s e s

Ans. my (z) =z (x —8).

Ex 10. Calculate the characteristic polynomial and its minimal polynomial of the matrix

25000
02000
A=]1004 2 0
00350
00007

Ans. py (z) = (. —2)° (z = 7)* and my (z) = (z — 2)* (z = 7).

66



16 Linear recurrence sequences of order £

Let (ag,as,...,ar—1) be a system of k real numbers not all zero. A linear recurrence
sequence of order £ is defined as follows:

Tptk = QTn + 1Tpy1 + oo + Q1 Tpk-1,
Xg, X1, ..., Tp_1 € R are given.

Thus, a sequence defined by a linear recurrence relation is uniquely determined by its

first k terms: xg, z1,...,Tp_1. As an example, for k£ = 2 :

Tpt2 = QpTp + A1Tp41, (S)
Zo, 1 € R are given.

In the equivalent vector-matrix system, we obtain
Tnt2 \ _ ( 41 Qo Tn+1
Tl 1 0 T ’
T 0 1 T
xn+2 X'rz+2 a/O al A xn—i—l X7L+1

from which it follows that

or equivalently

XTL fr— AXTL*I fr— AZXTL*Z = ... = Anile, (28)

Zo

where X; = . Thus, we must compute A" for n > 0.

Z1
Application. Consider the following example:

Example 142 Let (x,) be the sequence given by

2 *
Tny2 =T 7/ 7o, 11 € RY. (29)
— +
Tn Tn41

Find the formula of z, in terms of n, then calculate lirf Tp.

Solution. In fact, we write in the form

2 1 1
Tn, Tn—2 Tn—1

.2
Setting — = y,,, we get
x

n

. 1 1
2yn = Yn—1 + Yn—2, that 1S, Yn = 53/7171 + §yn72-
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In the equivalent vector-matrix system, we have

1

(e )=(a) (),
Yn—1 1 O Yn—2 Yy = —
T

Therefore,
11
Yn L ,WhereA:( 2 2 )
Yn—1 Yo 1 0

From the computation (the matrix diagonalizable), we obtain

o | B 2 3
_1\yn—1 _1\n—1 ’
s22@7] 2@
and so
_1 2+ -1 n—1 +1 1 1 n—1
Yn 3 5 n 3 5 Yo-
) 1 .
Since z,, = —, it follows that
— 3
" - —1”*11+1 I\ 1
2 T 2 Zo

Passing to the limit as n tends to infinity, we get

I 3
m xr, = s5———.
+ 242
T Zo

17 System of linear differential equations, Part II

Consider the system of differential equations:

) = a;1x1 + a19%2 + ... + a1,y
/
Ty = 2171 + A22T2 + ... + A2p Ty (30)

/
T, = p1li + ApoTo + ... + ApnTn,

which is written by the following equivalent vector-matrix system:
X'=A-X,

where the matrix A is non-diagonalizable. In this case, the general solution of can

be given by: o
X (t) = e“c,
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where ¢ = ( C1 C ... Cp )t is a constant.
In this program, we only consider certain cases. For example, A € M, (R) but has a
unique eigenvalue or when A € M, (R) with n < 4. The situation is particularly simple

whenever A € My(R).

Corollary 143 Let A € M, (R) be a square matriz having a unique eigenvalue, say A. Then

et =eMy (A
0

3
—

o
R

e
Il

Proof. We first have p4 (z) = (z — \)" since A has a unique eigenvalue \. We have

oA = MIntt(A=AIR) (31)
= MntA=A) (hecause At and t (A — A\I,) commute)
= eMtAMn) (hecause e*" B = ¢“B for any B € M,(R) and a € R)
+00 k
t
k=0
n—1 tk
A k
= MY (A=A
k=0
+o0o
where Y (A — )\In)]€ = 0; this is obtained by Cayley-Hamilton theorem since p (A) =
k=n

(A=X,)"=0. m

Remark 144 In particular, by Corollary[143, if A € Ms(R) with Sp (A) = {A} then
e =M I+ (A— D) t}. (33)
If A € M3(R) with Sp (A) = {\} then

1
etA :e)‘t{Ig—i-(A—)\Ig)t+§(A—>\Ig)2t2} . (34)
Example 145 Solve the system of différentiel equations
¥=2x+y

Let A be the matrixz of (35)), i.e.,

2 1
(1)
From , we have
etA = €2t{12+(14—2[2)t}

=) ) =G )
(v )
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Thus, the solution of s given by

(x@)\ [ e* te* a1\ [ e +tee
X (t) - ( y (t) > - ( 0 6215 o - 6262t )
where c1,co are constants.

Example 146 Solve the system of differential equations:

' —4 1 1 T
y | = 1 -1 =2 Yy
z -2 1 -1/, \ =2

Solution: The characteristic polynomil of A is given by
pa(z) = (z+2)°.

This means that A has a unique eigenvalu, A = —2. From , we obtain

1
et = 72 {13 + (A+2L)t + 3 (A+ 2[3)2t2} :

where
-2 1 1 3 0 -3
A+2I5 = 1 1 =2 and A+2l3=| 3 0 -3
-2 1 1 3 0 -3

Then

1
et = e‘”{13+(A+213)t+§(A+213)2t2}

100 -2 1 1 L [30 =3

= ¢ 2 o010+ 1 1 -21]t+=[30 -3
00 1 21 1 2\ 30 -3
22241 ¢ t— 3¢

= e P4t t4+1 =3P -2t
242 — 2t o =P 4t+1

Exercise 147 Solve the system of differential equations

' (3 —18
X' =A X,whereA-(2 _9).

Exercise 148 Solve the system of differential equations

@ (t) 1 21 3 xq (1)
zh() | [0 1 1 -1 xy (1)
@) | [ 001 2 x3 (1)
x)y (t) 000 1 x4 (t)



Theorem 149 Let A € M3(R). If A has two distinct eigenvalues A and p (where A has
multiplicity 2), then

o N ot _ oAt , et )
= (L A=A + T (A=A = (4= (36)
Proof. From and (32), we have
+o0 tk
tA Xt k
e = e Z(A— M) T
k=0
+oo ) tk
Y’ At
= MI+(A-AD)+eMD) (A=) o
k=2
A e o 17
= I+ (A—- X A=\ ——
A=)+ Y (A=A 7

Now, let pu (z) = (z — A)* (z — p) be the characteristic polynomial of A. First, we note that

A—pl =(A—=XL,) — (p— M) 1.
By Cayley-Hamilton theorem, we get

0= (A= AI? (A= ) = (A= AT — (= X) (A = MY,
from which is follows that
(A=XD)% = (=N (A=),

By induction, for every r > 1,

(A= XD*" = (n =N (A= X)>.
It follows from that

+oo 2+r oo 24r T
t t

ZO(A—M)HT Grnl ZO(M—)\)TW (A—AD)?
1 Xtk k 2
- —(u—A)Q;H< — )" (A=A,

Finally, we obtain

At

et = MU+ (A-N))+ ‘ 2{e(“’_’\)t—l—(,u—)\)t}(A—)\I)2
(=)
. eht _ Xt B 2 teMt B )
= ¢ (I+t(A—)\I))+(M_)\)2(A M) M_)\(A PVARS

This completes the proof. m
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Example 150 Solve the system of differential equations

2y (t) 2 -1 2 x1 (t)
zh(t) | =1 10 =5 7 xg (1)
xh (1) 4 =2 2 ) \ z3(t)

We first find the characteristic polynomial of A. By computation, p (x) = 2* (x + 1) . This
means that A has two eigenvalues X = 0 (with multiplicity 2) and pn = —1 (simple). It follows

from that
e =T+ tA+ (t+e ' —1)A%

Simple computation we obtain

44+2 -1 1-% -2t 3t+5 -1
= 8t—-2+2 L4t 6t—L+1
44 2 _9 _2

et et

18 On the powers of A

Example 151 Let

a b c
A=1 0 a b
0 0 a
Find A™ forn > 0.
Solution. Setting
a b c a 0 0 0 b c
A=10a b | =10 a 0 +1 0 00
0 0 a 00 a/, 000/,

It is clear that N is nilpotent of index k = 3. Moreover, DN = N D. By Binomial formula
we have

A" = (D+ N)"=CpD" + C,D"'N + C2D"*N?,

where
0 0 b
N>’=100 0
0 0 O
That is,
—1
An — Dn + nanlN + n (n2 )Dn72N2.
Problem 152 Let
01
0 1
0 1
0
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For example, we have

01 00
010
01 0 01 0
Jé'_ ( 0 0 > 7J5'_ 8 8 é ajl'_ 00 0 1 )
0 0 0 O

and so on. Prove that J"™' # 0 and J" = 0. That is, J, is nilpotent with index n.

19 Nilpotent Matrices

Definition 153 A nilpotent matriz is a square matrizc N such that N* = 0 for some
positive integer k.

In other words, a square matrix N is said to be nilpotent if there exists a positive integer
k such that N*¥ = 0. The smallest such k is called the index of N.

ot

is nilpotent with index 2, since N? = 0.

Example 154 The matriz

Proposition 155 Let N be a nilpotent matriz. Then
e Sp(N)=A{0},

o [ — N is invertible.

Kook skoskosk sk sk skookoskoskoskosk sk sk skoskoskoskosk sk sk sk skoskoskoskok sk sk skoskoskoskoskok sk skoskoskoskoskoskok skokoskoskoskosk
Proof. Assume that N* = 0 and N*~! £ 0 for some k > 1.

e Let (X, x) be an eigenpair of N, that is, Nz = Az and z # 0. It follows that A"z =
N¥z =0, and hence A\ = 0.

e Let © € R™ such that (Il — N)z = 0. Therefore, Nx = z, form which it follows that
NFzx = N¥1g = 0. Since N*~! #£ 0, then x = 0. Thus, I — N is invertible.

The proof is finished. =
ook ko kR Rk Rk Rk Kk ok ok sk ok sk ok sk ok sk Rk Rk Rk K Rk

Theorem 156 Let A be a nonzero nilpotent matrixz. Then A is nondiagonalizable.

Proof. Assume, by the way of contradiction that A is diagonalizable, that is, A = PDP~1
for some invertible matrix P = 0. Since A is nilpotent, there exists a positive integer k such
that A* = 0. It follows that D = P~'AP, and so

DF = P7'A*P = 0.

Since D is diagonal, then D = 0. This means that A = 0, a contradiction. =
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Theorem 157 Any strictely triangular matrix is nilpotent.

Proof. Setting

0 O 0
A _ 921 0 0
an1 Gp2 -+ 0

Since p (z) = 2". By Cayley-Hamilton theorem, A" =. That is, 3 k < n such that A* =0,
and hence A is nilpotent. m

Example 158 Determine the index of the following matrix:

010
N=[(001
000
It is clear that
001 000
N2=1000 ] andN>*=| 0 0 0
000 000

Since N =0 and N? # 0, then N is nilpotent of index k = 3.

Remark 159 The product of two non-zero matrices can be zero. Indeed, for a matriz A €
M, (R), we have
A2=0= A=0.
1 -1 )
# 0 we see that

1 -1

(1D )-08)

For example, if A= (

But, A # 0.
Example 160 Consider the matrix
39 -9
A=12 0 0
3 3 =3

Show that A is nilpotent.

Solution. First, we determine the characteristic polynomial of A.

3—x 9 -9 3—x 0 -9
pa(zr) = 2 —x 0 = 2 —x 0
3 3 —-3—=x 3 - —-3—=x
3—x2 0 -9
= —x 2 1 0
3 1 -3—=z
= —z3

By Cayley-Hamilton theorem, A3 = 0. Since A2 # 0, then A is nilpotente of index 3.
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Theorem 161 Let N be a nilpotent matriz of index k and let x € R™ be a nonzero vector
such that N*~'z £ 0. The family

{]ZE, Nz, N2z, ..., Nk_lx}
is free.

Proof. Let (ai)y<;<_; € R such that

k—1
E a;N'z =0,
i=0

from which it follows that

aoNF* 1z + oy NFz + ...+ a1 N* 22 =0 ([ agNF1z=0
aoN* 20 + oy N¥ o + ..+ a1 N* 32 =0 a N1y
: = :
aoNz + N2z + ... + a1 Nz =0 ap_oNF1p =0
agler + 1Nz + ... + a1 Nl =0 \ a1 N1z =0
Since N*~1z #£ 0, then ag = oy = ... = a;_; = 0. This completes the proof. m

19.1 Problems
Ex 01. Let A € M,,(R) be a nilpotent matrix. Prove that

det (A+1,) =1.

Ex 02. Weaskif A2=0=A=07?

Ex 03. Verify that

1 -3 —4
A= -1 3 4
1 -3 —4
is nilpotent.
Ex 04. Let
1 1 3
A= 5 2 6
-2 -1 =3

Calculate A3. What do you say ?

Ex 05. Prove the result: If N is nilpotent, then I + N and I — N are invertible, where [ is the
identity matrix.

Ex 06. Prove that
A~ 2A = A is nilpotent over R.
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20 Trigonalization

Definition 162 Let A € M,,(K). Then A is called trigonalizable if there exists an invert-
ible matriz P, that is, P € GL,, (K), such that A = PTP~!, where T is an upper triangular
matriz having the same eigenvalues of A. Or, equivalently, A is similar to a triangular
matriz T'.

Now, we present Schur Theorem decomposition of a square matrix A € M,,(C).

Theorem 163 Any matriz with complex entries is trigonalizable over M, (C).

Proof. Let A € M,(C). We will show that A is trigonalizable over M,,(C). We use
induction on n. Indeed, for n = 1 we have

A = (a11), where a1, € C.
In this case, we write
A=1I(ay)[ ' =PTP ' withP=1=(1)and T = (ay;) = A.

Assume that every matrix A; € M, (C) is trigonalizable. Let (A, z) be an eigenpair of A,
and let {x,us, ..., u,} be a basis of C". We put U = (x, us, ..., u,), it follows that

AU =( Az Auy ... Au, )= ( A Auy ... Au, )
Now, calculate U tAU. In fact, we have
Uil = U71U€1 = €1,

where e; = (1,0, ...,0). Therefore,

UTAU=U"( Xz Auy ... Au, )= (Xeg UtAuy ... U tAu, ).
Also we obtain
A X o0X
0 * ... =x A C
-1 o _ _
CATEL _<0 Al)_TI’
0 *x ... =x

where C' € M;,,—1 (C) and A; € M,_; (C). From the hypothesis, there exists an invertible
matrix W such that

Lo ) (0 5 ) Lo )= (0w )= (%),

A CW
ANT1N<0 T/ ):T7

where T is upper triangular. That is, A~T. =

Hence
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Exercise 164 Trigonalize the following matriz:
2 -1
A= ( 2 - ) |

1. From simple computation, we haev
pa(z) = (x—3)°.

This means that A = 3 is an eigenvalue of A with multiplicity 2, and hence A is not
diagonalizable since A # 31.

Then, calculate A™, for n > 0.

Next, we find the corresponding eigenvectors. In fact, we have

_ 9 2x—y=3r
E/\ - {(xuy)eR; $+4y:3y

= {(:c,y) eER?* y= —:c}
= Vect{(1,-1)} = Vect{v}.

Let vy be a nonzero vector for which {vy,vs} is a basis of R?. For example, we put

ve = (1,1), and let
1 1
(1)
P—lAP:(

—1 2 —1 1 1 3 =2

2 _ _

) )0 )
That is, A ~T.

Next, we compute A™ : We have

Therefore,

N[0 [

A" = PT"P7.
It suffices to compute T™ : We write T in the form

(3 =2\ (30 0 -2 2
T—(O 3>—(03)D+(0 O)N,whereN = 0.

T = D"+nD"'N

_ (30, gn-1 0 —2
— Lo 3 "o gt 0 0

—2n><3" 1)

Hence

;o n > 0.

(o
(50T
-

3" _n. 3n1 _n'3n—1 >

Finally, we deduce that

DN | =D [ =
[N |
N[

n >

e

n- 31 n-3"t 4 3n
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Theorem 165 For any matriz A € M,,(C), we have

det (A H A

AESP(A

Recall that Sp (A) consists of all eigenvalues of A.

Proof. We know that A is trigonalizable, and so there exists an invertible matrix P &
GL,, (C) and an upper triangular matrix 7" such that

A= PTP " (T = (t;) with t; € Sp(A)).
Therefore,

det (A) = det (PTP™")
= det (P)det (T )det (P’l)
= det (T) t11t22

I
&

Ai€Sp(A)

This completes the proof. m

Corollary 166 Let A € M, (C). Then
0¢ Sp(A) = A is invertible.

Proof. By Theorem [165], if we have 0 ¢ Sp(A) then det (A) # 0, and so A is invertible. m

Addional notes

21 Nonsingular Matrices

Definition 167 Let A be an n x n matriz. A is nonsingular if the only solution to Ax =0
is the zero solution x = 0.

Definition 168 Let A be an n X n matriz.

o If A is nonsingular, then A is nonsingular.
o A is nonsingular if and only if the column vectors of A are linearly independent.

e Ax = b has a unique solution for every n X 1 column vector b if and only if A is
nonsingular.

Definition 169 Nonsingular matrices are sometimes also called regular matrices. A square
matriz is nonsingular iff its determinant is nonzero.
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Exercise 1. Determine whether the following matrices are nonsingular or not.

1 0 1 21 2
A= 2 1 2 ,B=11 01
1 0 -1 4 1 4

Exercise 2. Consider the matrix
1 4
M = ( 3 12 )

2. Find a non-zero vector v such that Mwv = 0, where 0 is the 2-dimensional zero vector.

1. Show that M is singular.

Exercise 3. Let A be the following 3 x 3 matrix

11 -1
A= 01 2
11

Determine the values of a so that the matrix A is nonsingular.

22 Inverse Matrices

Definition 170 An n x n matriz A is said to be invertible if there exists an n X n matrizc
B such that AB = BA = I, where I is the n X n identity matrix. Such a matriz B is unique
and called the inverse matriz of A, denoted by A~*.

e A is invertible if and only if A is nonsingular.

e Not all matrices have inverses. This is the first question we ask about a square matrix.

e If A and B are invertible then so is AB. The inverse of a product AB is

(AB)™' = B7tA™L.
e If A is invertible, then A’ is invertible and (A")~! = (A1)

Exercise 1. Let A be the matrix

1 -1 0
A= 0 1 -1
0 0 1

Is the matrix A invertible? If not, then explain why it isn’t invertible. If so, then find the
inverse.
Exercise 2. Find the inverse matrix of

11
A= 00
10

— = O

if it exists. If you think there is no inverse matrix of A, then give a reason.
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23 Introduction to Eigenvalues and Eigenvectors

e Let A be an n X n matrix. A scalar \ is called an eigenvalue of A if the equation
Ax = Az has a nonzero solution z. Such a nonzero solution z is called an eigenvector
corresponding to the eigenvalue \.

e The characteristic polynomial of A is the polynomial of degree n given by p(t) =
det(A —tI).

o If p(t) = (t — A)™ -+ (t — \p)™ is a factorization of the characteristic polynomial of
A, where \y,... \; are distinct eigenvalues of A, then the algebraic multiplicity of the
eigenvalue \; is n;.

Let A be an n x n matrix and let p(t) be the characteristic polynomial of A.

e The degree of p(t) is n.
e )\ is an eigenvalue of A if and only if p(\) = det(A — A\I) = 0.

A has at least one eigenvalue and has at most n distinct eigenvalues.
e A has at most n distinct eigenvalues.
e The eigenvalues of a matrix A are roots of the characteristic polynomial of A.

e The eigenvalues of a triangular matrix are diagonal entries.

Exercise 1.

(a) True or False. If each entry of an n x n matrix A is a real number, then the eigenvalues
of A are all real numbers.

(b) Find the eigenvalues of the matrix

(75

Exercise 2. Find all the eigenvalues and eigenvectors of the matrix

a=(52)

Show that the eigenvalues of the matrix

0000
1111
0000
1111

are 0 and 2.
Exercise 4. Let

a —1
(13
be a 2 x 2 matrix, where a is some real number. Suppose that the matrix A has an eigenvalue

3.
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1. Determine the value of a.

2. Does the matrix A have eigenvalues other than 37

Exercise 5. Determine all eigenvalues and their algebraic multiplicities of the matrix

s

I
—Q
SIS
— Qo

where a is a real number.

. 1. . . .
Exercise 6. Suppose that [ } is an eigenvector of a matrix A corresponding to the

1

eigenvalue 3 and that [ 1 is an eigenvector of A corresponding to the eigenvalue —2.

1

4

Compute A2 [ e

Exercise 7. Suppose that A is an n x n matrix with eigenvalue A and corresponding
eigenvector v.

1. If Ais invertible, is v an eigenvector of A=1? If so, what is the corresponding eigenvalue?
If not, explain why not.

2. Is 3v an eigenvector of A? If so, what is the corresponding eigenvalue? If not, explain
why not.

Exercise 8. Let A be a 2 x 2 real symmetric matrix. Prove that all the eigenvalues of
A are real numbers by considering the characteristic polynomial of A.

Exercise 9. Let
a b
a=( %)

be a 2 x 2 matrix, where a, b are real numbers. Suppose that b # 0. Prove that the matrix
A does not have real eigenvalues.

Exercise 10. Find all eigenvalues and corresponding eigenvectors for the matrix A if

2 =30
A=12 -5 0
0 0 3

Exercise 11. Let A be an n x n matrix. We say that A is idempotent if A2 = A.
(a) Find a nonzero, nonidentity idempotent matrix.
(b) Show that eigenvalues of an idempotent matrix A is either 0 or 1.

Exercise 12. Let A be an n x n matrix. Suppose that all the eigenvalues A of A are
real and satisfy A < 1. Then show that the determinant det(/ — A) > 0, where I is the n x n
identity matrix.
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Exercise 13. Consider the 2 x 2 matrix
A cgs@ —sinf ,
sinff cos@
where 6 is a real number 0 < 6 < 2.
(a) Find the characteristic polynomial of the matrix A.

(b) Find the eigenvalues of the matrix A.
(c) Determine the eigenvectors corresponding to each of the eigenvalues of A.

Exercise 14. Let A be an n x n matrix and let A, ..., \, be its eigenvalues. Show that

1. det (A) = T A,

i=1

2. tr(A) =3 A

=1

Exercise 15.

(a) A 2 x 2 matrix A satisfies tr(A%) =5 and ¢r(A) = 3.

Find det(A).

(b) A 2 x 2 matrix has two parallel columns and tr(A) = 5. Find tr(A?).

(c) A 2 x 2 matrix A has det(A) = 5 and positive integer eigenvalues. What is the trace
of A?

Exercise 16. Let n be an odd integer and let A be an n x n real matrix. Prove that
the matrix A has at least one real eigenvalue.

Exercise 17. Let A be an n x n real matrix. Prove the followings:

(a) The matrix AA? is a symmetric matrix.

(b) The set of eigenvalues of A and the set of eigenvalues of A’ are equal.

(¢) The matrix AA" is non-negative definite.

(An n X n matrix B is called non-negative definite if for any n dimensional vector =, we
have ' Bz > 0.)

(d) All the eigenvalues of AA? is non-negative.

Exercise 18. Let A be an n X n matrix. Suppose that y is a nonzero row vector such
that yA = y. (Here a row vector means a 1 X n matrix.) Prove that there is a nonzero
column vector x such that Az = z. (Here a column vector means an n x 1 matrix.)

Exercise 19.

(a) Let A be a real orthogonal n x n matrix. Prove that the length (magnitude) of each
eigenvalue of A is 1.

(b) Let A be a real orthogonal 3 x 3 matrix and suppose that the determinant of A is 1.
Then prove that A has 1 as an eigenvalue.

Exercise 20. Let A and B be square matrices such that they commute each other:
AB = BA. Assume that A — B is a nilpotent matrix. Then prove that the eigenvalues of A
and B are the same.
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Exercise 21. Let A be an nxn matrix. Suppose that A has real eigenvalues A, Ao, ..., A\,
with corresponding eigenvectors uq, us, ..., u,. Furthermore, suppose that |[\;| > |\o| >
oo > |An|. Let

Tog = ClUy + CoUo + ... + CpUy

for some real numbers ¢y, ¢y, ..., ¢, and ¢; # 0. Define x,,1 = Az, for K =0,1,2,... and let

t
ﬁk = TeThil
xhxy,

Prove that klim B — A1
24 Eigenvectors and Eigenspaces

Definition 171 Let A be an n x n matrix. The eigenspace corresponding to an eigenvalue
A of A is defined to be
E\y={x € C"; Ax = \z}.

Let A be an n X n matrix.

e The eigenspace FE) consists of all eigenvectors corresponding to A and the zero vector.
e A is singular if and only if 0 is an eigenvalue of A.

e The nullity of A is the geometric multiplicity of A = 0 if A = 0 is an eigenvalue.

Problem 172 Let

0000
1111
A=1000 0
1111

One of the eigenvalues of the matriz A is X = 0. Find the geometric multiplicity of the
eigenvalue A = 0.

24.1 Problems about Similar Matrices

Let A, B be n X n matrices.

e We say that a matrix A is similar to a matrix B if there exists a nonsingular (invertible)
matrix P such that
A=PBP.

e A is diagonalizable if there exist a diagonal matrix D and nonsingular matrix P such

that P"1AP = D. (Namely, if A is diagonalizable if it is similar to a diagonal matrix.)

83



e A is said to be defective if there is an eigenvalue A of A such that the geometric
multiplicity of X is less than the algebraic multiplicity of .

e If A and B are similar, then the characteristic polynomials of A and B are the same.
Hence the eigenvalues of A, B and their algebraic multiplicities are the same.

e A is diagonalizable if and only if A is not defective.

e A is diagonalizable if and only if R” has an eigenbasis of A (a basis consisting of
eigenvectors).

e A is diagonalizable if and only if there are n linearly independent eigenvectors of A.
e If A has n distinct eigenvalues, then A is diagonalizable.

e Ifvy,... v, are linearly independent eigenvectors of A corresponding to the eigenvalues
Ai, ..., A, (not necessarily distinct), then S™*AS = D, where S = [vy,...,v,] and
D = diag( M, ..., \n).

Definition 173 An n x n matriz A is said to be diagonalizable if it can be written on the
form
A=PDP!,

where D is a diagonal n X n matriz with the eigenvalues of A as its entries and P is a

nonsingular n X n matriz consisting of the eigenvectors corresponding to the eigenvalues in
D.

The diagonalization theorem states that an n x n matrix A is diagonalizable if and only if
A has n linearly independent eigenvectors, i.e., if the matrix rank of the matrix formed by the
eigenvectors is n. Matrix diagonalization (and most other forms of matrix decomposition)
are particularly useful when studying linear transformations, discrete dynamical systems,
continuous systems, and so on.

How to Diagonalize a Matrix. Step by Step Explanation.

Diagonalization Procedure of a square matrix A

Step 1: Find the characteristic polynomial

Step 2: Find the eigenvalues

Step 3: Find the eigenspaces

Step 4: Determine linearly independent eigenvectors

Step 5: Define the invertible matrix P and find P!

Step 6: Define the diagonal matrix D

Step 7: Finish the diagonalization: We verify that A = PDP~!

Definition 174 A square matriz D is diagonal if the only nonzero entries in D are on
the diagonal of D.
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Example.

1 0 00
0 -1 .0 0
b= 0 0 40
0O 0 0 3

Digonalisability (an idea)
For a given m X m matrix A, we would like to write A = PDP~! for some invertible
matrix P and some diagonal matrix D. Why? Finding powers of diagonal matrices is easy.

7 2
=(41)

where A = PDP~! with P = ( _11 _12 ) and D = ( (5) g ) Find an expression for A*

Powers of a diagonal matrix
Example. Consider

for any positive integer k.
Theorem 175 We have the following notions:
1. If A is similar to B, then B is similar to A.
A is similar to itself.
If A is similar to B and B is similar to C, then A is similar to C.
If A is similar to the identity matrixz I, then A = 1.

If A or B is nonsingular, then AB is similar to BA.

S T e

If A is similar to B, then AF is similar to B* for any positive integer k.

Problem 176 Let A,B, and C' be n x n matrices and I be the n x n identity matriz. Prove
the following statements.

Problem 177 Show that if A and B are similar matrices, then they have the same eigen-
values and their algebraic multiplicities are the same.

1. If A is similar to B, then B is similar to A.

Proof. If A is similar to B, then there exists a nonsingular matrix P such that B = P~1AP.
Let Q = P~!. Since P is nonsingular, so is Q). Then we have

Q”BQ = (13*1)*1313*1 = PBP ! = P(P”AP)P*1 =JTAl = A.
Hence B is similar to A. =

2. We show that A is similar to itself.
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Proof. Since the identity matrix I is nonsingular and we have
A=T1"1AI

the matrix A is similar to A itself. m

3. If A is similar to B and B is similar to C, then A is similar to C.

Proof. If A is similar to B, we have
B =P AP,

for some nonsingular matrix P. Also, if B is similar to C', we have
C=Q7'BQ,

for some nonsingular matrix ¢). Then we have

C=Q 'BQ=Q (P'AP)Q = (PQ) 'A(PQ).

Let R = PQ. Since both P and @) are nonsingular, R = P(Q) is also nonsingular. The above
computation yields that we have
C =R AR,

hence A is similar to C. =

Theorem 178 Part (1),(2),(3) show that similarity is an equivalence relation.

Proposition 179 If A is similar to the identity matriz I, then A = 1.

Proof. Since A is similar to I, there exists a nonsingular matrix P such that
A=P P

Since P7'IP, wehave A=1. m

Proposition 180 If A or B is nonsingular, then AB is similar to BA.

Proof. Suppose first that A is nonsingular. Then A is invertible, hence the inverse matrix
A~! exists. Then we have

A Y AB)A = AT'ABA = IBA = BA,

hence AB and BA are similar. Analogously, if B is nonsingular, then the inverse matrix
B~ exists. We have
B (BA)B =B 'BAB = IAB = AB,

hence AB and BA are similar. m
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Proposition 181 If A is similar to B, then A* is similar to B* for any positive integer k.

Proof. If A is similar to B, then we have

B=P'AP
for some nonsingular matrix P. Then we have for a positive integer k

B* = (PT'AP)* = (PT'AP)(P"'AP)---(P"'AP)

k—times

= P'A'P,

since we can cancel P and P! in between. Hence A* and B* are similar. m

24.2 Problems

Exercise 1.

Is the matrix A = L2 similar to the matrix B = 30 ?
0 3 1 2
) 01 .. ) 1 2
Is the matrix A = similar to the matrix B = ?
5 3 4 3
Is the matrix A = -0 similar to the matrix B = 30 ?
-2 6 0 2
) -1 2 .. . 1 2
Is the matrix A = ( 9 6 ) similar to the matrix B = ( 1 4 )?

Exercise 2. If two matrices are similar, then their determinants are the same.
Exercise 3. Determine whether the matrix

(1)

is diagonalizable. If so, find a nonsingular matrix S and a diagonal matrix D such that
S71AS = D.
2

Exercise 4. Diagonalize the 2 x 2 matrix A = ( 1 _21 > by finding a nonsingular

matrix S and a diagonal matrix D such that S™1AS = D.
Exercise 5. Diagonalize the matrix

4 -3 =3
A= 3 -2 =3
-1 1 2

by finding a nonsingular matrix S and a diagonal matrix D such that S~*AS = D.
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Exercise 6. Suppose that A and P are 3 x 3 matrices and P is invertible matrix. If

1 2 3
P1'AP=10 4 5
0 06
then find all the eigenvalues of the matrix A2
Exercise 7. Let A = < ; ? ) Compute A" for any n € N.

Exercise 8. Let A, B be matrices. Show that if A is diagonalizable and if B is similar
to A, then B is diagonalizable.

1. Is every diagonalizable matrix invertible?

2. Is every invertible matrix diagonalizable?

Exercise 9. Determine whether the matrix

0 10
A= -1 0 0
0 0 2

is diagonalizable. If it is diagonalizable, then find the invertible matrix S and a diagonal
matrix D such that S™tAS = D.
Exercise 10. For which values of constants a,b and c is the matrix

7 a b

A=10 2 ¢

0 0 3

diagonalizable?
Exercise 11. Let

1 3 3 2 4 3
A=| -3 -5 -3 and B=| -4 -6 -3
3 3 1 3 3 1

For this problem, you may use the fact that both matrices have the same characteristic
polynomial:

Pi(N) =Pp () =-(A-1)(A+2)".
1. Find all eigenvectors of A.
2. Find all eigenvectors of B.

3. Which matrix A or B is diagonalizable?

4. Diagonalize the matrix stated in (3), i.e., find an invertible matrix P and a diagonal
matrix D such that A= PDP~! or B= PDP~L.
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a

Exercise 12. Consider the matrix A = < b

b #0.
1. Find all eigenvalues of A.

_ab ) , where a and b are real numbers and

2. For each eigenvalue of A, determine the eigenspace F.

3. Diagonalize the matrix A by finding a nonsingular matrix S and a diagonal matrix D
such that S7'AS = D.

Exercise 13. Determine all 2 x 2 matrices A such that A has eigenvalues 2 and —1 with
corresponding eigenvectors < (1) ) and ( ? ), respectively.

Exercise 14. Let A and B be n X n matrices. Suppose that A and B have the same
eigenvalues Ay, ..., \, with the same corresponding eigenvectors z1, . .., z,. Prove that if the
eigenvectors 1, ..., x, are linearly independent, then A = B.

Exercise 15. Suppose that A is a diagonalizable n x n matrix and has only 1 and —1
as eigenvalues. Show that A2 = I,,, where I, is the n x n identity matrix.

Exercise 16. Let

RN IS N § GV

INRICC N R IGU N
| L = W

A=
be 3 x 3 matrix. Find lir_"I_l A",
Exercise 17. Let
0 01
A= 1 00
010

1. Find the characteristic polynomial and all the eigenvalues (real and complex) of A. Is
A diagonalizable over the complex numbers?

2. Calculate A2009.

Exercise 18. Let A be an n X n matrix with real number entries. Show that if A is

diagonalizable by an orthogonal matrix, then A is a symmetric matrix.

Exercise 19. Let
2 -1 -1

A= -1 2 -1
-1 -1 2

Determine whether the matrix A is diagonalizable. If it is diagonalizable, then diagonalize
A.

Exercise 20. Let A be an n x n matrix with the characteristic polynomial
pt) =t —-1)72t—-2"t+2)".

Assume that the matrix A is diagonalizable.
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1. Find the size of the matrix A.
2. Find the dimension of the eigenspace Fy corresponding to the eigenvalue A = 2.

3. Find the nullity of A.

Exercise 21. Let A be an n x n real symmetric matrix whose eigenvalues are all non-
negative real numbers. Show that there is an n x n real matrix B such that B? = A.

Exercise 22. Find a square root of the matrix
-3

1
A=10 )
0 9

O = W

How many square roots does this matrix have?

Exercise 23. Suppose the following information is known about a 3 x 3 matrix A.

1 1 1 1 2 2
Al 2 =62 |.,4| -1 |=3 -1 |.,4( -1 | =3 -1
1 1 1 1 0 0

(a) Find the eigenvalues of A.
(b) Find the corresponding eigenspaces.
(c) Is A a diagonalizable matrix? Is A an invertible matrix? Is A an idempotent matrix?

Exercise 24. Diagonalize the matrix

A:

—_ = =
—_ = =
—_ = =

Namely, find a nonsingular matrix S and a diagonal matrix D such that S~*AS = D.
Exercise 25. Prove that the matrix

0 1
=(40)
is diagonalizable.

Prove, however, that A cannot be diagonalized by a real nonsingular matrix.
That is, there is no real nonsingular matrix S such that S71AS is a diagonal matrix.

A_(l—a a )
—a l+4+a

be a 2 x 2 matrix, where a is a complex number. Determine the values of a such that the
matrix A is diagonalizable.

Exercise 26. Let
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Exercise 27. Consider the 2 x 2 complex matrix

a b—a
(67
(a) Find the eigenvalues of A.
(b) For each eigenvalue of A, determine the eigenvectors.
(c) Diagonalize the matrix A.
(d) Using the result of the diagonalization, compute and simplify A* for each positive
integer k.

Exercise 28. Consider the complex matrix

V2cosz isinz 0
A= isinx 0 —isinx ,
0 —is8inx —\/icosa:

where x is a real number between 0 and 27. Determine for which values of x the matrix A
is diagonalizable. When A is diagonalizable, find a diagonal matrix D so that P71 AP = D
for some nonsingular matrix P.

Exercise 29. Consider the Hermitian matrix

1 3

EE

(a) Find the eigenvalues of A.

(b) For each eigenvalue of A, find the eigenvectors.

(c) Diagonalize the Hermitian matrix A by a unitary matrix. Namely, find a diagonal
matrix D and a unitary matrix U such that U 1AU = D.

Exercise 30. Let A be an n x n complex matrix. Let S be an invertible matrix.

(a) If SAS™! = AA for some complex number A, then prove that either A" =1 or A is a
singular matrix.

(b) If n is odd and SAS™! = — A, then prove that 0 is an eigenvalue of A.

(c) Suppose that all the eigenvalues of A are integers and det(A) > 0. If n is odd and
SAS™t = A7L, then prove that 1 is an eigenvalue of A.

Exercise 31. Let A be a real skew-symmetric matrix, that is, A’ = —A. Then prove
the following statements.

(a) Each eigenvalue of the real skew-symmetric matrix A is either 0 or a purely imaginary
number.

(b) The rank of A is even.

Exercise 32. Let A be an n x n real symmetric matrix. Prove that there exists an
eigenvalue \ of A such that for any vector v € R", we have the inequality v - Av < X ||v]|>.

Exercise 33. A real symmetric n x n matrix A is called positive definite if 2'Az > 0
for all nonzero vectors x in R".

(a) Prove that the eigenvalues of a real symmetric positive-definite matrix A are all
positive.

(b) Prove that if eigenvalues of a real symmetric matrix A are all positive, then A is
positive-definite
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Exercise 34. Suppose A is a positive definite symmetric n X n matrix.
(a) Prove that A is invertible.

(b) Prove that A~! is symmetric.

(c) Prove that A~ is positive-definite.

= (43)

(a) Find eigenvalues of the matrix A.

(b) Find eigenvectors for each eigenvalue of A.

c¢) Diagonalize the matrix A. That is, find an invertible matrix S and a diagonal matrix
D such that S7'AS = D.

(d) Diagonalize the matrix A% — 5A4% + 3A + I, where [ is the 2 x 2 identity matrix.

(e) Calculate A'. (You do not have to compute 5'°.)

(f) Calculate (A% —5A4% + 3A + )19, Let w = 2'%°. Express the solution in terms of w.

Exercise 35. Let

Exercise 36. Prove that if A is a diagonalizable nilpotent matrix, then A is the zero
matrix O.

Exercise 37. Let A be a square matrix. A matrix B satisfying B%2 = A is call a square
root of A. Find all the square roots of the matrix

2 2
A_<2 2).
Exercise 38.

Let A be an n x n idempotent complex matrix. Then prove that A is diagonalizable.

Exercise 39. Let A be an n x n real skew-symmetric matrix.
(a) Prove that the matrices I — A and I + A are nonsingular.
(b) Prove that B = (I — A)(I + A)~! is an orthogonal matrix.

Exercise 40. Let A be a real symmetric n X n matrix with 0 as a simple eigenvalue
(that is, the algebraic multiplicity of the eigenvalue 0 is 1), and let us fix a vector v € R".

(a) Prove that for sufficiently small positive real ¢, the equation Az +ez = v has a unique
solution z = z(g) € R™.

(b) Evaluate limez(e) in terms of v, the eigenvectors of A, and the inner product (.,.) on
R". e—0

Exercise 41. Prove that a positive definite matrix has a unique positive definite square
root.

25 Cayley-Hamilton Theorem

Theorem 182 (The Cayley-Hamilton Theorem) If p(t) is the characteristic polyno-
mial for an n X n matriz A, then the matriz p(A) is the n X n zero matrix.
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Example 183 Let A = [ 1 é } The characteristic polynomial p(t) of A is
p(t):det(A—t]):‘ 1? Sit ‘ =t* — 4t + 2.

Then the Cayley-Hamilton theorem says that the matriz p(A) = A% — 4A + 21 is the 2 x 2
zero matriz. In fact, we can directly check this

p(A)=A2—4A+QI:“:§H}§] 4“H+2[é(1)]
= [421140]+{j —_142] { ] { ]
Exercise 1. Let

1
=120
0

O = O
[NOR i V]

Calculate and simplify the expression —13 + 472 + 5T — 21, where I is the 3 x 3 identity
matrix.
Exercise 2. Find the inverse matrix of the matrix

11
A=19 2
5 0

w O N

using the Cayley—Hamilton theorem.
Exercise 3. Find the inverse matrix of the 3 x 3 matrix

T2 =2
A=\ -6 -1 2
6 2 -1

using the Cayley-Hamilton theorem.
Exercise 4. Let

1 -1
A= ( L ) .
Find the eigenvalues and the eigenvectors of the matrix
B=A"—3A%+3A* - 24 +38I.
Exercise 5. Let A, B be complex 2 x 2 matrices satisfying the relation A = AB — BA.

Prove that A% = O, where O is the 2 x 2 zero matrix.

Exercise 6. In each of the following cases, can we conclude that A is invertible? If
so, find an expression for A~! as a linear combination of positive powers of A. If A is not
invertible, explain why not.
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(a) The matrix A is a 3 X 3 matrix with eigenvalues A =i, A = —i, and A\ = 0.

(b) The matrix A is a 3 x 3 matrix with eigenvalues A =i, A = —i, and A = —1.

Exercise 7. Suppose that A is 2 x 2 matrix that has eigenvalues —1 and 3. Then for
each positive integer n find a, and b, such that A"*!' = a,A + b,I, where I is the 2 x 2
identity matrix.

Exercise 8. Suppose that the 2 x 2 matrix A has eigenvalues 4 and —2. For each integer
n > 1, there are real numbers b,,c, which satisfy the relation A" = b, A + ¢,I, where [ is
the identity matrix. Find b, and ¢, for 2 < n < 5, and then find a recursive relationship to
find b,,c, for every n > 1.

Exercise 9. Let n > 1 be a positive integer. Let V' = M,,«,,(C) be the vector space over
the complex numbers C consisting of all complex n x n matrices. The dimension of V is n?.
Let A € V and consider the set

Sy={I=A%A A% .. A"}

of n? elements. Prove that the set S, cannot be a basis of the vector space V for any
AecV.

Exercise 10. Let A be a 3 x 3 real orthogonal matrix with det(A) = 1.
1. If _HT‘/‘;” is one of the eigenvalues of A, then find all the eigenvalues of A.
2. Let A0 = qA2% + bA + cl, where I is the 3 x 3 identity matrix.

Using the Cayley-Hamilton theorem, determine a, b, c.

Exercise 11. Let A and B be 2 X 2 matrices such that (AB)* = O, where O is the 2 x 2
zero matrix. Determine whether (BA)? must be O as well. If so, prove it. If not, give a
counter example.

26 Nilpotent Matrices and Non-Singularity of Such Ma-
trices

Definition 184 In linear algebra, a nilpotent matriz is a square matrix N such that
Nk =0,

for some positive integer k. The smallest such k is sometimes called the index of N.

=00

is nilpotent with index 2, since A% = 0.

Example 185 The matriz
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More generally, any triangular matrix with zeros along the main diagonal is nilpotent,
with index < n. For example, the matrix

o O OO
OO O N
O O = =
S W N

is nilpotent, with B* = 0. The index of B is therefore 4.
Although the examples above have a large number of zero entries, a typical nilpotent
matrix does not. For example,

5 -3 2
C=\|1 -9 6 |, C*=0,
10 —6 4

although the matrix has no zero entries.

Theorem 186 For an n X n square matriz N with real (or complex) entries, the following
are equivalent:

1. N is nilpotent.
2. The minimal polynomial for N is % for some positive integer k < n.
3. he characteristic polynomial for N is z™.

4. The only complex eigenvalue for N is A = 0.
5. tr (Nk) =0 for all k > 0.

This theorem has several consequences, including:

e The determinant and trace of a nilpotent matrix are always zero. Consequently, a
nilpotent matrix cannot be invertible.

e The only nilpotent diagonalizable matrix is the zero matrix.

26.1 Problems

Exercise 1. Let A be an n x n nilpotent matrix, that is, A™ = O for some positive integer
m, where O is the n x n zero matrix. Prove that A is a singular matrix and also prove that
I — A, I + A are both nonsingular matrices, where [ is the n x n identity matrix.
Exercise 2. Suppose that A is an n X n nilpotent matrix and B is an n X n invertible
matrix. Is the matrix B— A invertible? If so, give a proof. Otherwise, give a counterexample.
Exercise 3. Is the sum of a nilpotent matrix and an invertible matrix invertible?
Exercise 4. A square matrix A is called nilpotent if there exists a positive integer k
such that A*¥ = O, where O is the zero matrix.
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1. If A is a nilpotent n x n matrix and B is an n X n matrix such that AB = BA. Show
that the product AB is nilpotent.

2. Let P be an invertible n x n matrix and let N be a nilpotent n x n matrix. Is the
product PN nilpotent? If so, prove it. If not, give a counterexample.

Theorem 187 Every singular matriz can be written as a product of nilpotent matrices.

Theorem 188 If N is nilpotent, then det (I + N) = 1, where I denotes the n x n identity
matriz. Conversely, if A is a matriz and det (I + N) = 1 for all values of t, then A is
nilpotent. In fact, since p(t) = det (I +tA) — 1 is a polynomial of degree n, it suffices to
have this hold for n 4+ 1 distinct values of t.

Theorem 189 If N is nilpotent, then {\displaystyle I + N is invertible, where I is the n xn
identity matriz. The inverse is given by

I+N)"'=) (-N)'=I-N+N—N 4+ N*' - N°+
k=0

where only finitely many terms of this sum are nonzero.

End.
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