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2 Characteristic polynomial

In this section we consider only the characteristic polynomial of an n by n matrix which is
a polynomial of degree n, from which we give a practical way to �nd the eigenvalues of a
given square matrix A.

De�nition 1 Let A 2 Mn (R) be a square matrrix. The characteristic polynomial of A is
the polynomial of degree n given by pA (x) = det (A� xIn), where In is the identity n-by-n
matrix1.

Proposition 2 Let A 2Mn (R). The characteristic polynomial pA (x) is given by

pA (x) = (�1)n xn +
n�1X
i=0

cix
i with cn�1 = (�1)n�1 tr (A) and c0 = det (A) .

The leading coe¢ cient of pA (x) is �1 (i.e. pA (x) is monic.

For example, if A =
�
1 2
3 4

�
then tr (A) = 5 and det (A) = �2: Moreover, by de�nition

we have

pA (x) = det (A� xI2) =
���� 1� x 2

3 4� x

���� = x2 � 5x� 2
= (�1)2 x2 +�tr (A)x+ det (A) :

Remark 3 Recall that the roots of pA (x) are called eigenvalues of A. Also, we have the
notation:

Sp (A) = f� 2 K ; � is an eigenvalue of Ag ,
which is called the spectral set of A. Thus, � 2 Sp (A), pA (�) = 0.

1In some references the characteristic polynomial of A is the polynomial of degree n given by pA (x) =
det (xIn �A).
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Example 4 Calculate the characteristic polynomial of the following matrix:

A =

�
2 1
1 2

�
.

From de�nition, we obtain

pA (x) =

���� 2� x 1
1 2� x

���� c1
#

c1 + c2
(the �rst column c1 becomes c1 + c2)

=

���� (3� x) 1
(3� x) 2� x

���� = (3� x) ���� 1 1
1 2� x

���� = (3� x) (2� x� 1)
= (3� x) (1� x) :

Thus, pA (x) = (1� x) (3� x), and so Sp (A) = f1; 3g :

Example 5 Consider the matrix

A =

0@ 1 1 1
1 1 1
1 1 1

1A .
In the same manner, we get

pA (x) =

������
1� x 1 1
1 1� x 1
1 1 1� x

������ =
������
�x 0 1
x �x 1
0 x 1� x

������
= x2

�������
+

�1
�
0

+

1
1 �1 1
0 1 1� x

�������
= x2 [� (x� 1� 1) + (1� 0)]
= x2 (3� x) :

Hence, pA (x) = x2 (3� x), and so Sp (A) = f0; 3g :

Example 6 Calculate the characteristic polynomial of each of the following:

A1 =

0@ 4 2 �1
2 7 �2
�1 �2 4

1A ; A2 =
0@ 13 �12 �6

6 �5 �3
18 �18 �8

1A
A3 =

0@ 1 �1 �1
�1 1 �1
�1 �1 1

1A ; A4 =
0@ 4 1 �1
2 5 �2
1 1 2

1A
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(i) From the de�nition of the characteristic polynomial, we get

pA1 (x) = det (A1 � xI3)

=

������
4� x 2 �1
2 7� x �2
�1 �2 4� x

������
1stcolumn

#
1st + 3rd

=

������
(3� x) 2 �1
0 7� x �2

(3� x) �2 4� x

������ = (3� x)
������
1 2 �1
0 7� x �2
1 �2 4� x

������
2ndcolumn

#
2� 3rd + 2nd

= (3� x)

������
1 0 �1
0 3� x �2
1 2 (3� x) 4� x

������ = (3� x)2
�������
+

1
�
0

+

�1
0 1 �2
1 2 4� x

�������
= (3� x)2 [4� x+ 4� (0� 1)]
= (3� x)2 (9� x) :

That is, pA1 (x) = (3� x)
2 (9� x) :

(ii) Compute pA2 (x) :

pA2 (x) =

������
13� x �12 �6
6 �5� x �3
18 �18 �8� x

������ 1stcolumn
1st + 2nd

=

������
(1� x) �12 �6
(1� x) �5� x �3
0 �18 �8� x

������ 2ndcolumn
#

(�2)� 3rd + 2nd

=

������
(1� x) 0 �6
(1� x) (1� x) �3
0 (�2) (1� x) �8� x

������
= (1� x)2

�������
+

1
�
0

+

�6
1 1 �3
0 �2 �8� x

�������
= (1� x)2 (�8� x� 6� 6 (�2))
= (1� x)2 (�2� x) :

(iii) Computre pA3 (x) :

pA3 (x) =

������
1� x �1 �1
�1 1� x �1
�1 �1 1� x

������
c1
#

c2
#

c1 � c2 c2 � c3

=

������
(2� x) 0 �1
� (2� x) 2� x �1

0 � (2� x) 1� x

������ = (2� x)2
�������

+

1
�
0

+

�1
�1 1 �1
0 �1 1� x

�������
= (2� x)2 [1� x� 1� 1]
= � (1 + x) (2� x)2 :
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Thus, pA3 (x) = � (1 + x) (2� x)
2.

(iiii) Compute pA4 (x) :

pA4 (x) =

������
4� x 1 �1
2 5� x �2
1 1 2� x

������ 1stcolumn
#

1st + 3rd
2ndcolumn
2nd + 3rd

=

������
(3� x) 0 �1
0 3� x �2

(3� x) 3� x 2� x

������
= (3� x)2

�������
+

1
�
0

+

�1
0 1 �2
1 1 2� x

�������
= (3� x)2 (2� x+ 2 + 1)
= (3� x)2 (5� x) .

Example 7 (a) Calculate the characteristic polynomial of the following matrix:

A4 =

0BB@
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1CCA .
(b) Deduce the characteristic polynomial of the n� n matrix

An =

0BBB@
1 1 � � � 1
1 1 : : : 1
...
...
. . .

...
1 1 : : : 1

1CCCA 2Mn (R) :

For the matrix A4; we see that

pA4 (x) =

��������
1� x 1 1 1
1 1� x 1 1
1 1 1� x 1
1 1 1 1� x

��������
=

��������
�x 0 0 1
x �x 0 1
0 x �x 1
0 0 x 1� x

�������� = x
3

���������
+

�1
�
0

+

0
�
1

1 �1 0 1
0 1 �1 1
0 0 1 1� x

���������
= x3 (�1)

������
�1 0 1
1 �1 1
0 1 1� x

������+ x3 (�1)
������
1 �1 0
0 1 �1
0 0 1

������
= x3 (x� 4) :
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Remark 8 For the matrix An, we can easily prove that

pAn (x) =

�
xn�1 (x� n) , if n is even
xn�1 (n� x) , if n is odd.

Example 9 Calculate the characteristic polynomial of the following matrix:

A =

0@ 7 �6 �2
2 0 �1
2 �3 2

1A .
It is clear that

pA (x) =

������
7� x �6 �2
2 �x �1
2 �3 2� x

������
c1
#

2� c3 + c1

=

������
(3� x) �6 �2
0 �x �1

2 (3� x) �3 2� x

������
= (3� x)

������
1 �6 �2
0 �x �1
2 �3 2� x

������
c2
#

3� c3 � c2

= (3� x)

������
1 0 �2
0 � (3� x) �1
2 3 (3� x) 2� x

������
= (3� x)2

�������
+

1
�
0

+

�2
0 �1 �1
2 3 2� x

�������
= (3� x)2 (�2 + x+ 3� 2 (2))
= (x� 3)3 :

Example 10 Consider the matrix

A =

0@ 3 2 �2
�1 0 1
1 1 0

1A .
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From de�nition, we obtain

pA (x) =

������
3� x 2 �2
�1 �x 1
1 1 �x

������
c2
#

c2 + c3

=

������
3� x 0 �2
�1 1� x 1
1 1� x �x

������
= (1� x)

������
3� x 0 �2
�1 1 1
1 1 �x

������
c1
#

c1 + c3

= (1� x)

������
1� x 0 �2
0 1 1

1� x 1 �x

������
= (1� x)2

�������
+

1
�
0

+

�2
0 1 1
1 1 �x

�������
= (1� x)2 [(�x� 1)� 2 (0� 1)]
= (1� x)3 :

Thus, pA (x) = (1� x)3 :

Example 11 Let A be the matrix given by

A =

0@ �3 1 �1
�7 5 �1
�6 6 �2

1A .
We have

pA (x) =

������
�3� x 1 �1
�7 5� x �1
�6 6 �2� x

������ =
������
�2� x 0 �1
�2� x 4� x �1
0 4� x �2� x

������
= � (2 + x) (4� x)

������
1 0 �1
1 1 �1
0 1 �2� x

������
= � (2 + x) (4� x) (�2� x+ 1� 1)
= (2 + x)2 (4� x) .

Hence, pA (x) = (2 + x)
2 (4� x).

Example 12 Calculate the determinant

�n =

�����������

1 1 1 : : : 1
1 1+ x 1 : : : 1
1 1 1+ x : : : 1
...

...
...

. . .
...

1 1 1 : : : 1+ x

�����������
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Solution. We compute �n :

� 1stcolumn �!1stcolumn

� 2ndcolumn �!2ndcolumn - 1stcolumn

� 3rdcolumn �!3rdcolumn - 1stcolumn, .... and so on. We obtain

�n =

�����������

1 0 0 : : : 0
1 x 0 : : : 0
1 0 x : : : 0
...
...
...
. . .

...
1 0 0 : : : x

�����������
= xn�1.

Therefore, �n = x
n�1.

Proposition 13 Let A 2Mn (R) and r 2 R�. We have

prA (x) = r
npA

�x
r

�
.

Proof. Indeed, we see that

prA (x) =

���������
ra11 � x ra12 : : : ra1n
ra21 ra22 � x : : : ra2n
...

...
. . .

...
ran1 ran2 : : : rann � x

���������

=

������������

r
�
a11 �

x

r

�
ra12 : : : ra1n

ra21 r
�
a22 �

x

r

�
: : : ra2n

...
...

. . .
...

ran1 ran2 : : : r
�
ann �

x

r

�

������������

= rn

�����������

a11 �
x

r
a12 : : : a1n

a21 a22 �
x

r
: : : a2n

...
...

. . .
...

an1 an2 : : : ann �
x

r

�����������
= rnpA

�x
r

�
:

This completes the proof.

Exercise 14 Consider the vendermonde�s determinant 2:

� =

������
1 1 1
a b c
a2 b2 c2

������ .
2In linear algebra, a Vandermonde matrix is a matrix with a geometric progression in each row. It takes

its name from the French mathematician Alexandre-Théophile Vandermonde. It is, in particular, used in
numerical analysis for solving a system formed by polynomial interpolation.
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Prove that � = (b� a) (c� a) (c� b), and give a generalization formula.

Solution 15 We have

� =

������
1 1 1
a b c
a2 b2 c2

������
c1
#

c2 � c1

c2
#

c3 � c2

=

������
0 0 1

b� a c� b c
b2 � a2 c2 � b2 c2

������ = (b� a) (c� b)
������

0 0 1
1 1 c

b+ a c+ b c2

������
= (b� a) (c� b) (c� a) :

In the general case, the vendermonde�s determinant is given by

�n =

�����������

1 1 � � � 1
x0 x1 � � � xn
x20 x21 � � � x2n
...

... � � � ...
xn0 xn1 � � � xnn

�����������
=
Y
i>j

(xi � xj) :

2.1 Problems.

Ex 01. Consider the following two matrices:

A =

0@ 0 1 1
1 0 1
1 1 0

1A ; B =
0@ 1 1 1

2 1 �1
�3 2 4

1A .
Calculate pA (x) and pB (x). Ans.

pA (x) = (1 + x)
2 (2� x) and pB (x) = � (x� 2)3 .

Ex 02. Let A be the matrix given by

A =

0@ 1 0 0
1 2 �3
1 �1 0

1A .
Verify that pA (x) = (x+ 1) (x� 1) (x� 3).

Ex 03. Let

A =

0@ �3 1 �1
�7 5 �1
�6 6 �2

1A .
Verify that pA (x) = (2 + x)

2 (4� x) :
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Ex 04. Let A 2Mn (R) be the tridiagonal matrix given by

A =

0BBB@
a b

c a
. . .

. . . . . . b
c a

1CCCA , a; b; c 2 R.
Calculate pA (x).

Ex 05. Consider the matrix

A =

�
a b
c d

�
2M2 (R) .

Show that the characteristic polynomial pA(x) satisfying the following formula:

pA(x) = x
2 � tr (A)x+ det (A) .

Note that tr (A) is the trace of A:

Ex 06. Let A be the matrix

A =

0BB@
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

1CCA .
Verify that pA (x) = x4 � 1.

3 On the inverse of a square matrix

Criterion 16 Let A 2 Mn (R). If det (A) 6= 0; then A�1 exists. Moreover, the formula of
A�1 is given by:

A�1 =
1

det (A)
(Com (A))t ; (1)

where Com (A) denotes the comatrice of A: If A�1 exists, we say that A is invertible. By
French �inversible�.

Example 17 Let A =
�
a b
c d

�
2M2 (R). We have

det (A) = ad� cb and A�1 = 1

ad� cb

�
d �b
�c a

�
:

Example 18 Consider the matrix

A =

0@ 1 2 3
4 5 6
8 8 9

1A 2M3 (R) .
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By de�nition, we obtain

det (A) =

�������
+

1
�
2

+

3
4 5 6
8 8 9

������� =
���� 5 6
8 9

����� 2 ���� 4 6
8 9

����+ 3 ���� 4 5
8 8

����
= �3 + 24� 24
= �3 6= 0:

From (1), we have

A�1 =
�1
3

0@ c11 c12 c13
c21 c22 c23
c31 c32 c33

1At

=
�1
3

0BBBBBB@

���� 5 6
8 9

���� �
���� 4 6
8 9

���� ���� 4 5
8 8

����
�
���� 2 3
8 9

���� ���� 1 3
8 9

���� �
���� 1 2
8 8

�������� 2 3
5 6

���� �
���� 1 3
4 6

���� ���� 1 2
4 5

����

1CCCCCCA

t

=
�1
3

0@ �3 12 �8
6 �15 8
�3 6 �3

1At

=
�1
3

0@ �3 6 �3
12 �15 6
�8 8 �3

1A :
As required.

3.1 Problems

Ex 01. Consider the matrix

A =

0BBBBB@
1 ��

1 ��
. . . . . .

1 ��
1

1CCCCCA ; � 2 R

Prove that

A�1 =

0BBBBB@
1 � �2 : : : �n�1

1 � : : : �n�2

. . . . . .
...

1 �
1

1CCCCCA .

Ex 02. Let A;B 2 M2 (R). Assume that one of the matrices A or B is invertible. Show that
AB amd BA have the same characteristic polynomial, i.e., pAB (x) = pBA (x) :
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4 Eigenvalues and Eigenvectors

Throughout this chapter K denotes the �eld R or C, andMn (K) denotes the vector space
of n by n matrices over K.

De�nition. Let A be an n � n square matrix. When Ax = �x has a non-zero vector
solution x, then

� � is called an eigenvalue of A.

� x is called an eigenvector of A corresponding to �.

� The couple (�; x) is called an eigenpair of A.

Notes: (i) eigenvectors must be non-zero. (ii) But, eigenvalue � can be zero, can be
non-zero.

Conclusion 19 A vector x 2 E is an eigenvector of A if

1. x is non-zero,

2. there exists � 2 K, Ax = �x:

The eigenspace of A corresponding to � is the subspace:

E� = fv 2 Kn ; Av = �vg :

Note that E� is a vector subspace of Kn. This is the kernel of the matrix A � �In. So
E� consists of all solutions v of the equation Av = �v. In other words, E� consists of all
eigenvectors with eigenvalue �, together with the zero vector.

Example 20 Let A = I2. Then any non-zero vector v of R2will be an eigenvector of A
corresponding to eigenvalue � = 1.

Example 21 Consider the matrix

A =

�
1 2
2 1

�
.

Calculate the eigenvalues and eigenvectors of A.

Solution.

1. First, we �nd the eigenvalues of A. We start with calculating the characteristic poly-
nomial of A. From de�nition, we obtain

pA (x) =

���� 2� x 1
1 2� x

���� c1
#

c1 + c2
(the �rst column c1 becomes c1 + c2)

=

���� (3� x) 1
(3� x) 2� x

���� = (3� x) ���� 1 1
1 2� x

���� = (3� x) (2� x� 1)
= (3� x) (1� x) :

Hence, pA (x) = (1� x) (3� x), and so the eigenvalues are �1 = 1 and �2 = 3.
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1. Second, we �nd the eigenvectors. By de�nition, the eigenspace E�1 is given by

E�1 =

�
(x; y) 2 R2; x+ 2y = x

2x+ y = y

�
=

�
(x; y) 2 R2; y = �x

	
= V ect f(1;�1)g :

Thus, v1 = (1;�1).
Using the same manner, the eigenspace E�2 is given by

E�2 =

�
(x; y) 2 R2; x+ 2y = 3x

2x+ y = 3y

�
=

�
(x; y) 2 R2; y = x

	
= V ect f(1; 1)g .

That is, v2 = (1; 1).

De�nition 22 The geometric multiplicity for a given eigenvalue �, denoted by Gm (�),
is the dimension of the eigenspace E�. That is,

Gm (�) = dimE�:

The algebraic multiplicity for a given eigenvalue �, denoted by Am (�), is the num-
ber of times the eigenvalue is repeated. For example, if the characteristic polynomial is
(x� 1)2 (x� 5)3 then for � = 1 the algebraic multiplicity is 2 and for � = 5 the algebraic
multiplicity is 3.

Remark 23 The algebraic multiplicity is greater than or equal to the geometric multiplicity.
That is, we always have Am (�) � Gm (�) :

Examples. Calculate eigenvalues and eigenvectors of the following matrices. Deduce
the algebraic multiplicity and the geometric multiplicity of each eigenvalue of A:

A =

�
1 2
3 2

�
:

Ans. We have �1 = 4; v1 = (2; 3) and �2 = �1; v2 = (1;�1) :

A =

�
cos � sin �
� sin � cos �

�
:

Ans. We have �1 = ei�; v1 = (�i; 1) and �2 = e�i�; v2 = (i; 1) :

A =

�
1 2
0 5

�
:

Ans. We have �1 = 1; E1 = V ect f(1; 0)g and �2 = 5; E5 = V ect f(1; 2)g :

A =

�
2 6
0 2

�
:
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Ans. We have � = 2 (double, i.e., the algebraic multiplicity is 2); E� = V ect f(1; 0)g :

A =

0@ 1 2 3
0 2 3
0 0 �5

1A :
Ans. We have �1 = 1; E1 = V ect f(1; 0; 0)g ; �2 = 2; E2 = V ect f(2; 1; 0)g and �3 =
�5; E�5 = V ect f(5; 6;�14)g :

A =

0@ 1 0 0
1 2 0
1 0 2

1A :
Ans. We have �1 = 1; E�1 = V ect f(�1; 1; 1)g ; �2 = 2 (double, , i.e., the algebraic
multiplicity is 2); E�2 = V ect f(0; 1; 0) ; (0; 0; 1)g :

A =

0@ 0 1 1
0 0 0
0 0 0

1A :
Ans. We have � = 0 (triple eigenvalue, , i.e., the algebraic multiplicity is 3), E� =
V ect f(1; 0; 0) ; (0; 1;�1)g : The eigenspace corresponding to � = 0 is of dimension 2:

A =

0@ 2 0 0
1 2 0
0 3 2

1A :
Ans. We have � = 2 (the algebraic multiplicity is 3), E� = V ect f(0; 0; 1)g : The eigenspace
corresponding to � = 2 is of dimension 1:

A =

0@ 1 1 0
1 1 0
0 0 2

1A :
Ans. We have �1 = 0 (simple eigenvalue), E�1 = V ect f(�1; 1; 0)g and �2 = 2 (double
eigenvalue), E�2 = V ect f(0; 0; 1) ; (1; 1; 0)g : The eigenspace corresponding to �1 is of dimen-
sion 1 and the eigenspace corresponding to �2 = 2 is of dimension 2:

A =

0@ a 2 3
0 2a 8
0 0 3a

1A ; a 2 R.
Ans. We have �1 = a and E�1 = V ect f(1; 0; 0)g, �2 = 2a and E�2 = V ect

��
2

a
; 1; 0

��
,

�3 = 3a and E�3 = V ect
��

1

2a2
(3a+ 16) ;

8

a
; 1

��
.

Corollary 24 Let (�; x) be an eigenpair of A. Then
�
�k; x

�
is an eigenpair of Ak:
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Proof. In fact, we see that

Ax = �x) A2x = A (�x) = �Ax = �2x.

Therefore,
Ax = �x) 8 k � 0 : Akx = �kx:

The result is proved.

Corollary 25 Let A be an invertible matrix and let (�; x) be an eigenpair of A with � 6= 0.

Then
�
1

�
; x

�
is an eigenpair of A�1.

Proof. By de�nition, we have

A�1x = A�1 (1:x) = A�1
�
�

�
:x

�
=
1

�
A�1 (�x)

=
1

�
A�1 (Ax) (since Ax = �x)

=
1

�
x.

Thus, A�1x =
1

�
x. The proof is �nished.

4.1 Problems

Ex 01. Calculate the eigenvalues and eigenvectors of the following matrix:

A =

0@ �3 1 �1
�7 5 �1
�6 6 �2

1A .
Ans. �1 = �2, v1 = (1; 1; 0) and �2 = 4, v2 = (0; 1; 1) :

Ex 02. Let P 2 GLn (R) and let D be the following diagonal matrix:

D =

0BBB@
�1

�2
. . .

�n

1CCCA
Calculate the eigenpairs of D, then deduce the eigenpairs of the matrix PDP�1:

Ex 03. Let A 2Mn (R) and � 2 R�. Prove that

v is an eigenvector of A) �v is also an eigenvector of A.

Ex 04. Let A 2Mn (R) and �1; �2 be two eigenvalues of A with �1 6= �2. Prove that

E�1 \ E�2 = f0Rng :

Recall that E� = fx 2 Rn ; Ax = �xg :
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5 Similar Matrices

We will now introduce the notion of similarity.

De�nition 26 Let A and B be two n-by-n matrices. We say that A is similar to B if
there exists an invertible matrix P such that

A = PBP�1:

In linear algebra, two n-by-n matrices A and B are called similar if there exists an
invertible n-by-n matrix P such that A = PBP�1: We also write: A and B are similar if
A = PBP�1 for some invertible matrix P .

Notation 27 The notation A � B means that the matrix A is similar to the matrix B.

Next, we give an example.

Example 28 Let A and B be the two matrices given by

A =

�
�4 7
3 0

�
, B =

�
13 �8
25 �17

�
.

Then A is similar to B because for the matrix P =
�

4 �3
�1 1

�
, we have after few compu-

tation

PBP�1 =

�
4 �3
�1 1

��
13 �8
25 �17

��
1 3
1 4

�
=

�
�4 7
3 0

�
= A.

But, the question we ask here: How to �nd the invertible matrix P so that A = PBP�1?
We have the following properties:

Theorem 29 Let A and B be two n-by-n similar matrices; i.e., there exists an invertible
matrix P such that A = PBP�1. Then

1. For each positive integer k, Ak = PBkP�1:

2. pA (x) = pB (x), that is A and B have the same characteristic polynomial.

Proof. Let us show the theorem as follows:

1. Assume that A and B are two similar matrices, and let P be an invertible matrix such
that A = PBP�1. For each integer k � 0 we have

Ak =
�
PBP�1

� �
PBP�1

�
:::
�
PBP�1

�| {z }
k�times

= P BB:::B| {z }
k�times

P�1

= PBkP�1:

16



2. We prove the following implication

A � B ) pA (x) = pB (x) : (2)

That is, if the matrices A and B are similar to each other, then A and B have the
same characteristic equation, and hence have the same eigenvalues. In fact, we have

pA (x) = det (A� xI)
= det

�
PBP�1 � xPP�1

�
, since PP�1 = In 2 R

= det
�
P (B � xI)P�1

�
, since x 2 R

= det (P ) det (B � xI) det
�
P�1

�
(3)

= det (B � xI) (4)

= pB (x) :

Note that the passage from (3) to (4) because det (P�1) =
1

det (P )
.

The proof is �nished.

Remark 30 The converse of (2) is false. For example, for

A =

�
1 1
0 1

�
and B =

�
1 0
0 1

�
= I2

We see that pA (x) = pB (x). Therefore, Sp (A) = Sp (B) = f1g and det (A) = det (B) : Further,
if A is similar to B then there exists an invertible matrix P such that

A = PBP�1 = PI2P
�1 = I2:

A contradiction since A 6= I2. Thus, A is not similar to B (we denote A � B).

Conclusion: We can also write8<:
Sp (A) = Sp (B); A � B,
pA (x) = pB (x); A � B,
det (A) = det (B); A � B.

Remark 31 By applying the following rule:

det (A) = 0, 0 2 Sp (A) : (5)

Let A and B be two similar matrices, i.e., there exists an invertible matrix P such that
A = PBP�1. We can also prove that Sp (A) = Sp (B) : Let � 2 Sp (A), there exists a
nonzero vector x tel que Ax = �x. That is,

(A� �I)x = 0 = 0:x

Which gives 0 2 Sp (A� �I). On the other hand, we have

A� �I = P (B � �I)P�1: (6)

Asssume that 0 =2 Sp (B � �I). By (5) and (6) we have B � �I 2 GLn (R). Consequently,
A� �I 2 GLn (R). From (5), 0 =2 Sp (A� �I). A contradiction.
Finally, we deduce that 0 2 Sp (B � �I) ; and hence � 2 Sp (B). Thus, Sp (A) � Sp (B) :

17



Corollary 32 Two similar matrices A and B have the same determinant.

Proof. Let P be an invertible matrix P such that A = PBP�1. It follows that

det (A) = det
�
PBP�1

�
= det (P ) det (B) det

�
P�1

�
= det (B) ;

and so det (A) = det (B). This completes the proof.

Example 33 Consider the following two matrices:

A =

�
2 1
�1 �1

�
and B =

�
5 2
4 1

�
.

How can we tell (rather quickly) that the matrices A and B are not similar to each other?
In fact, A � B because det (A) = �1 6= det (B) = �3. Thus, we have the result:

det (A) 6= det (B)) A � B.

Theorem 34 The relation " � " similarity is an equivalence relation.

Proof. This relation is what we call an equivalence relation, because we have the following
three properties:

1. The relation " � " is re�exive, because for each matrix A 2Mn(R) we have

A = InAI
�1
n .

Then A � A:

2. The relation " � " is symmetric, because for all matrices A;B 2Mn(R) we have

A � B ) 9 P 2 GLn (R) such that A = PBP�1.

It follows that
B = P�1|{z}

C

AP = CAC�1 and C 2 GLn (R) .

Thus, B � A (i.e., we can just say that A and B are similar to each other). For the
matrices A, B, and P of Example 28, verify by direct computation that A = PBP�1

and that B = P�1AP .

3. The relation " � " is transitive, because for all matrices A;B;C 2Mn(R) we have

A � B
B � C

�
)
�
9 P 2 GLn (R) such that A = PBP�1,
9 Q 2 GLn (R) such that B = QCQ�1.

Which gives

A = P
�
QCQ�1

�
P�1 = (PQ)| {z }

R

C (PQ)�1 = RCR�1 with R 2 GLn (R) :

Hence, A � C:
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Proposition 35 Let P 2 GLn (R). De�ne the mapping TP by:

TP : Mn(R)!Mn(R)
A 7! TP (A) = P

�1AP:

Then the following statements hold:

1. TP (In) = In

2. TP (A+B) = TP (A) + TP (B)

3. TP (AB) = TP (A)TP (B)

4. TP (rA) = rTP (A)

5. TP
�
Ak
�
= (TP (A))

k

6. TP (A�1) = (TP (A))
�1

7. TP
�
eA
�
= eTP (A)

8. TQ (TP (A)) = TPQ (A) :

Proof. We have

1. In fact, TP (In) = P�1InP = P�1P = In.

2. TP (A+B) = P�1 (A+B)P = P�1AP + P�1BP = TP (A) + TP (B).

3. TP (AB) = P�1ABP = P�1APP�1BP = (P�1AP ) (P�1BP ) = TP (A)TP (B).

4. TP (rA) = P�1 (rA)P = r (P�1AP ) = rTP (A).

5. TP
�
Ak
�
= P�1AkP = (P�1AP )

k
= (TP (A))

k.

6. TP (A�1) = P�1A�1P = (P�1AP )
�1
= (TP (A))

�1.

7. TP
�
eA
�
= P�1eAP = eP

�1AP = eTP (A).

8. It is clear that

TQ (TP (A)) = Q
�1TP (A)Q = Q

�1 �P�1AP�Q = (PQ)�1A (PQ) = TPQ (A) :
This completes the proof.

Remark. Let A;B 2Mn(R). If A � B, then

A 2 GLn (R), B 2 GLn (R) .

In fact, we have A = PBP�1 , B = P�1AP .
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Conclusion 36 Let A 2 Mn(R), and let B = P�1AP 2 Mn(R) be a matrix similar to A.
Then A and B have the same characteristic polynomial. Furthermore, q(A) = Pq(B)P�1

for each q 2 K[X], and in particular Ak = PBkP�1for k � 1.

Corollary 37 Let A;B 2Mn(R). If A and B are similar, then Tr(A) = Tr(B).

Proof. We know that

8 M;N 2Mn(R) : Tr (MN) = Tr (NM) :

Then
Tr (A) = Tr

�
PBP�1

�
= Tr

�
BPP�1

�
= Tr (B) .

Corollary 38 Two similar matrix have the same rank.

Proof. Assume that A = PBP�1 for some invertible square matrix P . We have rk (B) �
rk (PBP�1) = rk (A). Now note thatB = P�1AP , so we similarily get rk (A) � rk (P�1AP ) =
rk (B).

Conclusion 39 Two similar matrices have the same determinant, same trace, same rank,
same characteristic polynomial, same eigenvalues.

On the other hand, we have the following absolutely remarkable result.

Theorem 40 In dimension 2 and 3, two matrices are similar i¤ they have the same minimal
polynomial and the same characteristic polynomial.

5.1 Additional Problems

Ex 01. Let A and B be two similar matrices, i.e., there exists an invertible matrix P such that
A = PBP�1. Prove that

(�; x) is an eigenpair of A)
�
�; P�1x

�
is an eigenpair of B:

Ex 02. Let A;B Mn(R) and f (x) = a0 + a1x + ::: + anxn 2 R [x] be a polynomial of degree
n. Prove that

A � B ) f (A) � f (B) :

Ex 03. Consider the two matrices:

A =

0@ 1 0 4
1 1 3
2 1 7

1A et B =

0@ 1 0 1
0 1 1
3 1 2

1A :
Prove that A � B ; i.e., A and B are not similar.
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Ex 04. Show that
A� �In � B ) A � B + �nI.

Ex 05. Using two methods. Prove that similar matrices have the same eigenvalues.

Ex 06. Prove that
A � B ) eA � eB:

Ex 07. Without calculating, neither eigenvalues nor eigenvectors, show that�
1 �1
3 1

�
�
�

1 3
�1 1

�
:

Ex 08. Show by direct computation that the matrices A and B of Example 28 have the same
characteristic equation. What are the eigenvalues of A and B?

6 Diagonalizable Matrices

De�nition 41 Let A = (aij) 2Mn(R) be a square matrix. A is said to be diagonal, if and
only if

aij = 0, 8 i 6= j.
Or, equivalently

A =

0BBB@
a11

a22
. . .

ann

1CCCA :
In this case, A is denoted by D. We also write D = diag fa11; a22; :::; anng.

De�nition 42 Let A be a square matrix. We say that A is diagonalizable if A is similar
to a diagonal matrix D. That is, there exists an invertible matrix P such that P�1AP is
diagonal, say D. That is,

A is diagonalizable, 9 P 2 GLn (R) such that A = PDP�1;

where D = diag f�1; �2; :::; �ng and �1; �2; :::; �n are the eigenvalues of A.

Example 43 Consider the following matrices

A =

�
5 �4
2 �1

�
; D =

�
1 0
0 3

�
and P =

�
1 2
1 1

�
:

Compute PDP�1. What can we conclude?
By computation, we obtain

PDP�1 =

�
1 2
1 1

��
1 0
0 3

��
�1 2
1 �1

�
=

�
1 6
1 3

��
�1 2
1 �1

�
=

�
5 �4
2 �1

�
= A.

Thus, A = PDP�1 and so A is diagonalizable.
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But the question posed is how to determine P and D if they exist? How to diagonalize
a matrix?. Here is the following theorem.

Theorem 44 (Necessary and su¢ cient condition for diagonalization) Let A 2Mn(R)
be a square matrix. A is diagonalizable, if and only if, there exists a basis B of Rn formed
by n eigenvectors of A.

Proof. Assume that A is diagonalizable. That is, there exists an invertible matrix P such
that

A = PDP�1.

Or, equivalently
P�1AP = D:

Setting
P =

�
y1 y2 : : : yn

�
=
�
Pe1 Pe2 : : : P en

�
;

where (ei)1�i�n is the canonical basis of Rn and let

D =

0BBB@
d1

d2
. . .

dn

1CCCA = diag fd1;d2; :::; dng

=
�
d1e1 d2e2 : : : dnen

�
:

It follows that �
Ay1 Ay2 : : : Ayn

�
= AP = InAP = PP

�1AP = PD

= P
�
d1e1 d2e2 : : : dnen

�
=

�
d1Pe1 d2Pe2 : : : dnPen

�
=

�
d1y1 d2y2 : : : dnyn

�
:

We deduce that for each i 2 1; n, Ayi = diyi: Then yi is an eigenvector of A corresponding
to di. Since P is invertible, then the familly B = fy1; y2; :::; yng is a basis of Rn:
Conversely, assume that Rn has a basis B = fx1; x2; :::; xng formed by n eigenvectors of

A. In this case, we put
P =

�
x1 x2 : : : xn

�
.

It follows that

AP =
�
Ax1 Ax2 : : : Axn

�
=

�
�1x1 �2x2 : : : �nxn

�
;

where (�i)1�i�n are the eigenvalues of A associated with (xi)1�i�n, respectively. Therefore,

AP =

0BBB@
�1x11 �2x21 : : : �nxn1
�1x12 �2x22 : : : �nxn2
...

... : : :
...

�1x1N �2x2N : : : �nxnn

1CCCA =

0BBB@
x11 x21 : : : xn1
x12 x22 : : : xn2
...

... : : :
...

x1N x2N : : : xnn

1CCCA
0BBB@
�1

�2
. . .

�n

1CCCA
= PD.

Hence A = PDP�1, where D is diagonale and P is invertible. The proof is �nished.
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Corollary 45 Let A 2 Mn(R) be a diagonalizable matrix. There exists a basis B =
fx1; x2; :::; xng of Rn formed by n eigenvectors A:

Proof. Assume that A = PDP�1. We know that fe1; e2; :::; eng are eigenvectors of D
associated with diag(D), i.e.,

Dei = P
�1APei = �iei, for i = 1; 2; :::; n:

Hence
APei = �iPei, for i = 1; 2; :::; n:

That is, fPeig1�i�n are eigenvectors of A. Since P is invertible, then fPeig1�i�n is a basis
of Rn.
Conclusion. Let A 2Mn(R) be a square matrix and let �1; �2; :::; �k be its eigenvalues.

Let Am (�i) and Gm (�i) denote the algebraic multiplicity and the geometric multiplicity of
�i, respectively. Then A is diagonalizable if and oly if

Am (�i) = Gm (�i) , for i = 1; 2; :::; k.

Corollary 46 Let A 2Mn(R) be a square matrix. Assume that

pA (x) = (x� �1)�1 (x� �2)�2 ::: (x� �k)�k , where k � n:

Then A is diagonalizable if and only if dimE�i = �i, for i = 1; 2; :::; k:

Example 47 For the following matrices, by calculating the eigenpairs one has:

Matrix pA (x) Sp (A) Am (�) Gm (�)

A =

0@ 1 1 0
1 1 0
0 0 2

1A x (x� 2)2 0
2

1
2

1
2

B =

0@ 2 1 1
2 1 �2
�1 0 �2

1A (x+ 1)2 (x� 3) �1
3

2
1

1
1

C =

0@ 1 0 0
1 2 �3
1 �1 0

1A (x+ 1) (x� 1) (x� 3)
�1
1
3

1
1
1

1
1
1

We deduce that A and C are diagonalizable, but B is not.

We see also the following example:

Example 48 Show that the following matrix is diagonalizable.

A =

0BB@
4 1 1 1
1 4 1 1
1 1 4 1
1 1 1 4

1CCA
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Solution. The characteristic polynomial is pA (x) = (x� 7) (x� 3)3. The eigenvalues of
A are �1 = 7 (simple), and �2 = 3 (triple). The associated eigenvectors are v1 = (1; 1; 1; 1)
for �1, v2 = (�1; 1; 0; 0), v3 = (�1; 0; 1; 0) and v4 = (�1; 0; 0; 1) for �2: The matrix A is
therefore diagonalizable since dimE�i = Am (�i), for i = 1; 2:
From Theorem 44, we have the following corollary:

Corollary 49 Let A 2 Mn(R) be a square matrix. If A has n distinct eigenvalues, then A
is diagonalizable.

Proof. Since A 2Mn(R) and A has n distinct eigenvalues, then dimE�i = 1 = Am (�i), for

i = 1; 2; :::; n: Then A is diagonalizable.

Proposition 50 Let A and B be two diagonalizable matrices with P�1AP = D1 and P�1BP =
D2 for some invertible matrix P . Then AB = BA.

Proof. We can easily verify that if P�1AP = D1 and P�1BP = D2, it follows that�
A = PD1P

�1

B = PD2P
�1.

Note that D1D2 = D2D1, and therefore

AB = PD1D2P
�1 = PD2D1P

�1 = PD2P
�1PD1P

�1 = BA:

Hence the result.

Corollary 51 Let A 2 Mn(R) be a square matrix, and assume that A has a unique eigen-
value �. Then A is diagonalizable if and only if A = �In.

Proof. It is clear that if A = �In, then A is diagonalizable. Conversely, assume that
A 2Mn(R) is diagonalizable and has a unique eigenvalue �, there is therefore an invertible
matrix P such P�1AP is diagonal. We put P�1AP = D, where diag (D) = Sp (A) = f�g :
It follows that

A = P

0BBB@
�
�
. . .

�

1CCCAP�1 = �P
0BBB@
1
1
. . .

1

1CCCAP�1 = �PInP�1 = �In:
This completes the proof.

Proposition 52 Let A be a diagonalizable matrix 3 with Sp (A) = f�1; �2; ::::; �ng. Then

det (A) = �1�2::::�n: (7)

3Note that the result of Equation (7) is always true for any matrix A 2 Mn(C) which may or may not
be diagonalizable.
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Proof. Assume that A = PDP�1, where D = diag f�1; �2; ::::; �ng. Then

det (A) = det
�
PDP�1

�
= det (P ) det (D) det

�
P�1

�
= det (D)

= �1�2::::�n:

This commpletes the proof.

De�nition 53 � 2 R is called the eigenvalue of multiplicity m if and only if

pA (x) = (x� �)m q (x) with q (�) 6= 0.

Example 54 Let

A =

0@ 2 1 1
2 1 �2
�1 0 �2

1A
Then pA (x) = (x� 3) (x+ 1)2 and A cannot be diagonalizable on either R or C. Indeed, we
have

E�1 = V ect f(1;�2;�1)g
In R3 or C3, E�1 is a vector space of dimension 1 equipped by (1;�2;�1). Since �1 is an
eigenvalue of A of multiplicity 2, A is not diagonalizable.

6.1 Applications of diagonalization

6.1.1 Computing of the power of a matrix

A classical application is the computing of the powers of a matrix A. Assume that A is given
to be diagonalizable. That is, there exist P and D such that

D =

0BBB@
�1 0 : : : 0
0 �2 : : : 0

. . .
0 0 : : : �n

1CCCA
and D = P�1AP . For each k � 0 we have

Ak = PDkP�1:

The preceding formula then generalizes to k 2 Z. The matrix A is then invertible if, and
only if, D is invertible and

A�1 = PD�1P�1.

Exercise 55 Consider the matrix

A =

�
2 �1
�1 2

�
.

Calculate An for every n � 0.
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Solution 56 We start by computing the characteristic polynomial of A

pA (x) =

���� 2� x �1
�1 2� x

���� = ���� 1� x �1
1� x 2� x

����
= (1� x)

���� 1 �1
1 2� x

���� = (1� x) (3� x) .
Then Sp (A) = f1; 3g :
Next, we �nd the eigenvectors of A :

E1 =

�
(x; y) 2 R2; 2x� y = x

�x+ 2y = y

�
= V ect f(1; 1)g :

and also we have

E3 =

�
(x; y) 2 R2; 2x� y = 3x

�x+ 2y = 3y

�
= V ect f(1;�1)g .

We put

P =

�
1 1
1 �1

�
, D =

�
1 0
0 3

�
It follows that

An =

�
1 1
�1 1

��
1n 0
0 3n

��
1 1
�1 1

��1
(8)

=

�
1 1
1 �1

��
1 0
0 3n

��
1
2

1
2

1
2
�1
2

�

=

0B@ 1 + 3n

2

1� 3n
2

1� 3n
2

1 + 3n

2

1CA :
Example 57 Consider the matrix

A =

0B@ 1

2

1

2
1

4

3

4

1CA .
Calculate lim

n!+1
An:

First, let us calculate the eigenvalues and eigenvectors of A. From computation, we �nd(
�1 = 1; v1 = (1; 1) ;

�2 =
1

4
; v2 = (�2; 1) :
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Since A = PDP�1, then Ak = PDkP�1, where P =

�
1 �2
1 1

�
and D =

 
1 0

0
1

4

!
. It

follows that

lim
n!+1

An = lim
n!+1

�
1 �2
1 1

�0@ 1n 0

0

�
1

4

�n 1A
0B@ 1

3

2

3

�1
3

1

3

1CA
=

�
1 �2
1 1

�0@ 1 0

0 lim
n!+1

�
1

4

�n 1A
0B@ 1

3

2

3

�1
3

1

3

1CA
=

�
1 �2
1 1

��
1 0
0 0

�0B@ 1

3

2

3

�1
3

1

3

1CA
=

0B@ 1

3

2

3
1

3

2

3

1CA :
Example 58 Consider the mapping

f : R3 [X] �! R3 [X]
p 7! f (p) = 3xp�

�
x2 � 1

�
p0

and let B = f1; x; x2; x3g be the canonical basis of R3 [X].

1. Calculate Mf (B) :

2. Is f diagonalizable? if so, give the diagonalization.

Solution. There are two steps:
. The calculation of Mf (B). We see that8>><>>:

f (1) = 3x = 0 + 3x+ 0x2 + 0x3

f (x) = 1 + 2x2 = 1 + 0x+ 2x2 + 0x3

f (x2) = 2x+ x3 = 0 + 2x+ 0x2 + 1x3

f (x3) = 3x2 = 0 + 0x+ 3x2 + 0x3

Which gives

Mf (B) =

0BB@
0 1 0 0
3 0 2 0
0 2 0 3
0 0 1 0

1CCA .
. Let us calculate the characteristic polynomial of Mf (B). Indeed, we have

pMf (B) (x) =

��������
�x 1 0 0
3 �x 2 0
0 2 �x 3
0 0 1 �x

�������� = x
4 � 10x2 + 9.
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The eigenvalues of A are f�1; 1;�3; 3g : From Corollary ??, Mf (B) is diagonalizable.
. Diagonalization ofMf (B) : First, let us calculate the eigenvectors ofMf (B), we obtain

Mf (B) =

0BB@
1 1 1 1
�3 �1 1 3
3 �1 �1 3
�1 1 �1 1

1CCA
0BB@
�3 0 0 0
0 �1 0 0
0 0 1 0
0 0 0 3

1CCA
0BB@

1
8
�1
8

1
8

�1
8

3
8
�1
8
�1
8

3
8

3
8

1
8

�1
8
�3
8

1
8

1
8

1
8

1
8

1CCA :
6.2 Problems

Ex 01. Let A 2M3(R) be a square matrix such that

pA (x) = (x� 1) (x� 2)2 :

Is it diagonalizable ?

Ex 02. Let f be a diagonalizable endomorphism over a vector space E. Prove that

E = ker f � Im f:

Ex 03. Let f be a diagonalizable endomorphism over a vector space satisfying fk = idE for
some natural integer k. Show that f 2 = idE:

Ex 04. Let A be a 3-by-3 matrix given by

A =

0@ 0 1 0
�4 4 0
�2 1 2

1A :
1. Is the matrix A diagonalizable?

2. Calculate (A� 2I3) and (A� 2I3)n for every n 2 N. Deduce an explicit formula of An:

Ex 05. Let M be a complex square matrix satisfying Mk = I for some positive integer k.
Prove that M is diagonalizable.

Ex 06. Study the diagonalization of the matrix

A =

0@ 3 0 0
4 1 2
a 0 3

1A ; a 2 R
Ans. A is diagonalizable , a = 0.

Ex 07. Verify that the matrix

A =

0@ 2 �2 2
0 1 1
�4 8 3

1A
is diagonalizable. Ans : Sp (A) = f1; 2; 3g :
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Ex 08. Study the diagonalization of the matrix

A =

0@ a 1 �1
0 a 2
0 0 b

1A ; a; b 2 R.
Ex 09. Check that the matrices of the form

A =

�
1 c
0 1

�
; c 6= 0

are not diagonalizable.

Ex 10. Consider the two matrices

A =

0@ 2 1 �1
0 2 �1
�3 �2 3

1A and B =

0@ 2 2 1
1 3 1
1 2 2

1A :
� Check that A and B have the same eigenvalues.

� Prove that A � B:

Ex 11. Find a matrix A 2M2(R) which is not diagonalizable.

Ex 12. Let

A = S

�
�1 0
0 �2

�
S�1; S 2 GL2 (R) and �1;�2 2 R.

Calculate the determinant of A and A�1:

Ex 13. Calculate the eigenvalues and the eigenvectors of the following matrices. Are they
diagonalizable? If so, determine a basis of eigenvectors.

�
4 1
0 3

�
;

�
2 4
1 1

�
;

�
2 �1
1 3

�
;

0@ 1 �1 1
�1 1 �3
1 �3 1

1A ;
0@ 1 �2 �1
2 1 �2
2 2 �3

1A ;
0@ 1 1 1
1 1 1
1 1 1

1A ;
0@ 1 1 1
0 1 1
0 0 1

1A

;

0@ �7 �2 1
28 8 �4
31 10 �5

1A ;
0BB@

7 4 0 0
�12 �7 0 0
20 11 �6 �7
�12 �6 6 6

1CCA
Ex 14. Let A 2Mn(R). Prove that A is diagonalozable , At is diagonalizable.
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Ex 15. Study the diagonalization of the following matrix

A =

0BB@
1 a b c
0 1 d e
0 0 2 f
0 0 0 3

1CCA ; a 6= 0 and b; c; d; e; f 2 R.
Ex 16. Study the diagonalization of the following matrices

A1 =

0@ 1 0 1
0 1 0
0 0 2

1A and A2 =

0@ 1 1 0
0 1 0
0 0 2

1A
Ans. A1 : yes, A2 : no

Ex 17. Discuss the diagonalization, according to a; b 2 R of the matrix

A =

0@ a b a� b
b 2b �b

a� b �b a

1A ; ab 6= 0
and �nd �; � and 
 for which

A3 = �A2 + �A+ 
I3:

Ans. pA (x) = x (x� 3b) (x� 2a+ b) :

Ex 18. Determine the real number a for which the matrix

A =

0BB@
0 0 0 0
1 0 0 1
0 1 0 a
0 0 1 �a

1CCA
is diagonalizable.

Ex 19. Let A 2 Mn(R) be a diagonalizable matrix with Sp (A) = f�1; 1g. Prove that A =
A�1:

Ex 20. Let

A =

0@ 9 0 0
�5 4 0
�8 0 1

1A .
i) Prove that A is diagonalizable and �nd a matrix P 2 GL3 (R) for which P�1AP is
diagonal.
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ii) Calculate An, n 2 N and deduce an explicit formula of eA:

Ex 21. Let A 2Mn(R) such that A2 = A. Prove that A is diagonalizable.

Ex 22. Calculate p(A) = 2A8 � 3A5 + A4 + A2 � 4I3, where A is given by

A =

0@ 1 0 2
0 �1 1
0 1 0

1A .
Ex 23. Consider the matrix

A� (n) =

0@ 1
�

n��
n

1

1A
Prove that

lim
n!+1

A� (n) =

�
cos� sin�
� sin� cos�

�
.

Ex 24. Let A be the matrix given by

A =

�
0:6 0:8
0:4 0:2

�
Verify that

lim
n!+1

An =

0B@ 2

3

2

3
1

3

1

3

1CA
Ex 25. Consider the matrix

A =

0@ 9 0 0
�5 4 0
�8 0 1

1A
Calculate An, for n 2 N. Ans.

An =

0@ 9n 0 0
4n � 9n 4n 0
1� 9n 0 1

1A .
Ex 26. Let

A =

0@ 1 2 0
0 1 0
0 0 3

1A , B =
0@ 1 0 0
2 3 0
0 0 1

1A
1. Diagonalize the matrix B:

2. Is matrix A similar to B?

Ex 27. Let n � 2: Let A be the real n � n matrix of coe¢ cients aij = 0 if i = j and aij = 1;
otherwise. We put B = A+ In:
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1. What is the rank of the matrix B? Deduce that �1 is an eigenvalue of A and determe
the dimension of the associated eigenspace.

2. Calculate

A

0B@ 1
...
1

1CA ,
and deduce a new eigenvalue of A.

3. Justify that A is diagonalizable, and give its characteristic polynomial.

4. Give an invertible matrix P and a matrix D such that A = PDP�1 (one does not ask
to calculate P�1).

7 The Matrix Exponential

Note that the exponential of a matrix deals in particular in solving systems of linear dif-
ferential equations. In the following section, we present some remarkable de�nitions and
properties on the exponential of a square matrix which may or may not be diagonalizable.

De�nition 59 For each n�n complex matrix A, de�ne the exponential of A to be the matrix

eA =
1X
k=0

Ak

k!
= In +

A

1!
+
A2

2!
+ :::+

Ak

k!
+ :::.

This is the matrix exponential of A.

Note that if A = 0 (the zero matrix); we have e0 = In. Indeed, we see that

e0 = In +
0

1!
+
0

2!
+ :::+

0

k!
+ ::: = In.

We also have for every k 2 Z, ekA =
�
eA
�k
:

Example 60 Consider the matrix

A =

0@ 1 1 3
5 2 6
�2 �1 �3

1A :
Calculate A2 and A3. Deduce eA:
Indeed, according computation, we have

A2 =

0@ 1 1 3
5 2 6
�2 �1 �3

1A0@ 1 1 3
5 2 6
�2 �1 �3

1A =

0@ 0 0 0
3 3 9
�1 �1 �3

1A
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Moreover,

A3 =

0@ 1 1 3
5 2 6
�2 �1 �3

1A0@ 0 0 0
3 3 9
�1 �1 �3

1A =

0@ 0 0 0
0 0 0
0 0 0

1A :
Using De�nition 59, we obtain

eA = I3 +
A

1!
+
A2

2!

= I3 + A+
A2

2

=

0@ 1 0 0
0 1 0
0 0 1

1A+
0@ 1 1 3

5 2 6
�2 �1 �3

1A+ 1
2

0@ 0 0 0
3 3 9
�1 �1 �3

1A

=

0BBB@
2 1 3
13

2

9

2

21

2�5
2

�3
2

�7
2

1CCCA :
It is easy to calculate the exponential of a diagonal matrix. We have

Corollary 61 Let D be a diagonal matrix, i.e.,

D =

0BBB@
�1

�2
. . .

�n

1CCCA = diag f�1; �2; :::; �ng .

Then

eD =

0BBB@
e�1

e�2

. . .
e�n

1CCCA = diag
�
e�1 ; e�2 ; :::; e�n

	
. (9)

Proof. In fact, for each k � 0 we have

Dk =

0BBB@
�k1

�k2
. . .

�kn

1CCCA .
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From de�nition 59, we get

eD =

+1X
k=0

Dk

k!

=
+1X
k=0

1

k!

0BBB@
�k1

�k2
. . .

�kn

1CCCA

=

0BBBBBBBBB@

+1P
k=0

�k1
k!

+1P
k=0

�k2
k!

. . .
+1P
k=0

�kn
k!

1CCCCCCCCCA

=

0BBB@
e�1

e�2

. . .
e�n

1CCCA :
This completes the proof.

Example 62 Let

A =

�
�1 0
0 2

�
.

Calculate eA:
In fact, by (9), we have

eA =

�
e�1 0
0 e2

�
:

Proposition 63 Let A 2Mn(R) be a diagonalizable matrix. Then eA is also diagonalizable.
In addition, we have

A = PDP�1 ) eA = PeDP�1.

Proof. Let A 2 Mn(R) be a diagonalizable matrix. Then there exists an invertible matrix
P such that A = PDP�1 with D is diagonal. Therefore,

eA =
+1X
k=0

Ak

k!
=

+1X
k=0

(PDP�1)
k

k!

=

+1X
k=0

PDkP�1

k!

= P

 
+1X
k=0

Dk

k!

!
P�1

= PeDP�1:
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As required.

Theorem 64 Let S 2 GLn (R) be an invertible matrix and let A 2Mn(R). We have

eSAS
�1
= SeAS�1:

Proof. Let S 2 GLn (R) and let A 2Mn(R). From De�nition 59, we have

eSAS
�1

= In +
SAS�1

1!
+
(SAS�1)

2

2!
+
(SAS�1)

3

3!
+ :::

= In +
SAS�1

1!
+
SA2S�1

2!
+ +

SA3S�1

3!
+ :::

= SInS
�1 +

SAS�1

1!
+
SA2S�1

2!
+ +

SA3S�1

3!
+ :::

= S

�
In +

A

1!
+
A2

2!
+
A3

3!
+ :::

�
S�1

= SeAS�1:

The proof is �nished.

Corollary 65 Let A 2 Mn(R) and let (�; x) be an eigenpair of A. Then
�
e�; x

�
is an

eigenpair of eA:

Proof. Assume that (�; x) is an eigenpair of A. By de�nition, we have

eAx =

 
+1X
k=0

Ak

k!

!
x =

+1X
k=0

Akx

k!

=
+1X
k=0

�kx

k!
=

 
+1X
k=0

�k

k!

!
x

= e�x:

This completes the proof.

Lemma 66 We have the following two properties:

(i) For any A 2Mn(R) and for any t 2 R,

AeAt = eAtA:

(ii) For any A 2Mn(R) and for any t 2 R,

etIn = etA:
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Proof. By the de�nition, we have

AeAt = A

+1X
i=0

Aktk

k!
=

+1X
i=0

Ak+1tk

k!
=

 
+1X
i=0

Aktk

k!

!
A = eAtA:

Likewise, we have

etIn = e

0BBBB@
t
. . .

t

1CCCCA
=

0B@ et

. . .
et

1CA = et

0B@ 1
. . .

1

1CA = etIn:

The proof is �nished.

Remark 67 According to the previous lemma, we have

etInIn = e
tIn = etIn:

Note that etIn 6= et; because etIn 2Mn(R) and et 2 R.

The integer series which de�nes the exponential of a real, or complex number, is also
convergent for a matrix. In addition, we have

Theorem 68 For any matrix A 2Mn(C), the series
+1X
k=0

Ak

k!

is absolutely convergent (therefore convergent) inMn(C).

Proof. For each k � 0, we have 



Akk!




 � kAkk

k!

and according to d�Alembert�s Rule4, we obtain

lim
k!+1

���������
kAkk+1

(k + 1)!

kAkk

k!

��������� = lim
k!+1

kAk
k + 1

= 0 < 1:

4Let
P
un be a series with positive terms. If the limit (�nite or not)

l = lim
un+1
un

exists, then

1. The series
P
un is convergent if l < 1;

2. The series
P
un is divergent if l > 1:
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Thus,
+1P
k=0

Ak

k!
is convergent. Since 






+1X
k=0

Ak

k!






 �
+1X
k=0

kAkk

k!
;

It follows that
+1P
k=0

Ak

k!
is therefore absolutely convergent.

Also we have the following proposition.

Proposition 69 Let A be a square matrix. Then

lim
x!0

exA � I
x

= A.

Proof. We know that

exA � I � xA = (xA)2

2!
+
(xA)3

3!
+ :::

So we can write 

exA � I � xA

 =






(xA)22!
+
(xA)3

3!
+ :::







� kxAk2

2!
+
kxAk3

3!
+ :::

= ekxAk � 1� kxAk .

For every x 6= 0, we obtain



exA � Ix
� A





 � ekxAk � 1� kxAk
jxj =

�
ejxj:kxk � 1

jxj � kAk
�
! 0:

As required.

7.1 Problems

Ex 01. Are the matrices

A =

�
�1 0
0 �1

�
; B =

�
�1 1
0 �1

�
, C =

�
�1 0
0 �4

�
exponentials of matrices?

Ex 02. Prove that the matrix

J2 =

�
�1 1
0 �1

�
is neither the square nor the exponential of any matrix ofM2(R); but the matrices

J4 =

�
J2 0
0 J2

�
and J3 =

�
J2 I2
0 J2

�
are the square and the exponential of a matrix ofM4(R):
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Ex 03. Let

A =

0@ a b c
0 a b
0 0 a

1A .
Calculate eA:

Ex 04. Let

A =

�
1 0
0 2

�
and B =

�
0 1
0 0

�
:

Calculate eAeB; eA+B and eBeA:

Ex 05. Considère the following matrices

A =

�
1 1
0 0

�
and B =

�
1 �1
0 0

�
:

Calculate C = eA+B, D = eAeB and F = eBeA. Check that C 6= D 6= F:

Ex 06. Consider the matrix

A =

�
1 1

2
1
2
1

�
:

Calculate logA: i.e., �nd a matrix B 2M2 (C) such that A = eB:

Ex 07. Consider the matrices

A =

�
1 1
0 0

�
and B =

�
1 �1
0 0

�
:

Calculate eA; eB. Deduce the expression of eF , where

F =

0BB@
1 1 0 0
0 0 0 0
0 0 1 �1
0 0 0 0

1CCA .

8 Special Matrices

De�nition 70 A matrix with all zero entries is called a zero matrix and is denoted by 0.
That is,

A =

0BBB@
0 0 � � � 0
0 0 � � � 0
...
...
. . .

...
0 0 � � � 0

1CCCA .
Also, A is called the null matrix.
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De�nition 71 A square matrix A = (aij) is diagonal if aij = 0 for i 6= j. In this case, we
write D = diag f�1; �2; :::; �ng. So, a diagonal matrix is given by

D =

0BBB@
�1 0 � � � 0
0 �2 � � � 0
...

...
. . .

...
0 0 � � � �n

1CCCA :
� Every computation on diagonal matrices are quite easy. For example,

p
D, Dk, D�1,

eD, cosD, lnD; :::

De�nition 72 The unit matrix or the identity matrix:

In =

0BBB@
1 0 � � � 0
0 1 � � � 0
...
...
. . .

...
0 0 � � � 1

1CCCA
This is a diagonal matrix; but, all the diagonal elements are equal to 1.

For any A 2Mn (R) we have

A � In = In � A = A:

De�nition 73 A square matrix is upper triangular if all entries below the main diagonal
are zero. The general form of an upper triangular matrix is given by

U =

0BBB@
a11 a12 � � � a1n
0 a22 � � � a1n
...

...
. . .

...
0 0 � � � ann

1CCCA .
A is called lower triangular if all entries above the main diagonal are 0. The general form
of a lower triangular matrix is given by

L =

0BBB@
a11 0 � � � 0
a21 a22 � � � 0
...

...
. . .

...
an1 an2 � � � ann

1CCCA .
De�nition 74 Strictly triangular matrices are of the form:

0BBB@
0 a12 � � � a1n
0 0 � � � a1n
...

...
. . .

...
0 0 � � � 0

1CCCA or

0BBB@
0 0 � � � 0
a21 0 � � � 0
...

...
. . .

...
an1 an2 � � � 0

1CCCA .
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8.1 Symmetric Matrices

De�nition 75 The transpose of an m � n matrix A, denoted by At, is the n �m matrix
obtained by interchanging rows and columns of A. That is,

if A = (aij)1�i�m
1�j�n

2Mm;n (K)
then) At = (aji)1�j�n

1�i�m
2Mn;m (K) .

It is cleat that the mapping A 7! At fromMm;n (K) toMn;m (K) is linear, and that if
A 2Mm;n (K), then �

At
�t
= A.

Further, if A 2Mm;n (K) and B 2Mn;p (K), we have

(AB)t = BtAt 2Mp;m (K) .

Properties of transpose:

� (At)t = A.

� (A+B)t = At +Bt.

� For scalar �, (�A)t = �At.

� (AB)t = BtAt.

Example 76 For the matrix

A =

0@ 1 2
3 4
5 6

1A 2M3;2 (R) ,

we have

At =

�
1 3 5
2 4 6

�
2M2;3 (R) :

Theorem 77 Let A 2Mn (R). Then A and At have the same eigenvalues.

Proof. Let x 2 R. We have

pA (x) = det (A� xI) = det
�
(A� xI)t

�
(since detB = detBt)

= det
�
At � xI

�
= pAt (x) .

Thus, A and its transpose have the same characteristic polynomial.

De�nition 78 Let A = (aij)1�i;j�n be a square matrix. A is said to be symmetric if
At = A. That is, aij = aji for each i; j 2 1; n. So, an n� n matrix A is called symmetric if
it is equal to its transpose.
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Example 79 The matrix

A =

0@ 1 2 3
2 0 5
3 5 1

1A
is symmetric; since At = A.

Corollary 80 For every matrix A 2Mn (R), AtA and AAt are always symmetric.

Proof. It is clear that �
AtA

�t
= At

�
At
�t
= AtA.

That is, for each A 2Mn (R), AtA is symmetric.

Proposition 81 The eigenvalues of a real symmetric matrix are real numbers.

Proof. See Theorem 97.

Corollary 82 Let A 2Mn (R) be a symmetric matrix and let �0; �1; :::; �m 2 R withm � 1.
The matrix

�0I + �1A+ :::+ �mA
m

is also symmetric.

Proof. (Easy).

8.2 Skew-symmetric Matrices

De�nition 83 Let A = (aij)1�i;j�n be a square matrix. A is said to be skew-symmetric if
At = �A. That is, aij = �aji for each i; j 2 1; n.

For example, the matrix

A =

�
0 2
�2 0

�
is skew-symmetric since At = �A.

Lemma 84 Every square matrix M 2 Mn (R) can be written as A + B, where A is skew-
symmetric and B is symmetric.

Proof. It is clear that for each M 2Mn (R) we have

A =
1

2

�
M �M t

�
| {z }
skew-symmetric

+
1

2

�
M +M t

�
| {z }

symmetric

:

Theorem 85 Let B be a skew-symmetric matrix; i.e., Bt = �B. Then the matrix A = I�B
is invertible.
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Remark 86 Note that a matrix A is invertible if and only if (Ax = 0) x = 0).

Proof of Theorem 85.
It su¢ ces to prove that Ax = 0 implies x = 0. In fact, if Ax = 0, it follows that Bx = x.

Therefore,
hx; xi = hx;Bxi .

On the other hand, we have

xtx = xtBx

) xtx = xtBtx (since
�
xtx
�t
= xtx and

�
xtBx

�t
= xtBtx)

) xtx = xt (�B)x (since B is skew-symmetric)

) xtx = �xtBx
) xtx = �xtx
) xtx = 0.

Setting x =
�
x1 x2 : : : xn

�t
, we �nd

xtx =
�
x1 x2 : : : xn

�
0BBB@
x1
x2
...
xn

1CCCA = x21 + x
2
2 + :::+ x

2
n = 0:

Thus, xi = 0 for each i 2 1; n, and so x = 0.

8.2.1 Problems.

1. Let

A =

0@ 0 �2 3
2 0 4
�3 �4 0

1A
Verify that A is skew-symmetric.

2. Prove thatMn (R) = Sn (R)�An (R), where Sn (R) is the subspace of all symmetric
matrices and An (R) is the subspace of all skew-symmetric matrices.

8.3 Orthogonal Matrices

De�nition 87 A matrix A 2Mn (R) is called orthogonal if At = A�1:

Example 88 The matrix

A =

�
cos � � sin �
sin � cos �

�
; � 2 R
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is orthogonal, since

AtA = AAt =

�
cos � � sin �
sin � cos �

��
cos � sin �
� sin � cos �

�
=

�
1 0
0 1

�
= I2:

An orthogonal matrix has the following properties:

1. its column vectors (rows) are orthonormal,

2. AtA = AAt = In;

3. At = A�1;

4. For every x 2 Rn : kAxk = kxk ;

5. For every x; y 2 Rn : hAx;Ayi = hx; yi :

Corollary 89 Let A 2Mn (R) be an orthogonal matrix. Then

det (A) = �1.

Proof. Since At = A�1, then AtA = In. It follows that

det
�
AtA

�
= det

�
At
�
det (A) = (det (A))2 = det (In) = 1.

Hence det (A) = �1:

Theorem 90 Let A 2Mn (R) be an orthogonal matrix. The following properties are equiv-
alent.

1) A is orthogonal.

2) For every x 2 Rn : kAxk = kxk :

3) For every x; y 2 Rn : hAx;Ayi = hx; yi :

Proof. 1))2). Assume that A is orthogonal. Let x 2 Rn, we have

kAxk2 = hAx;Axi =


x;AtAx

�
= hx; Inxi = hx; xi = kxk2 :

Therefore, kAxk = kxk :
2))3). Assume that 8 x 2 Rn : kAxk = kxk : Let x; y 2 Rn, we have

kA (x+ y)k2 = kx+ yk2 ;

That is,
hAx+ Ay;Ax+ Ayi = hx+ y; x+ yi ;
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and so
hAx;Axi+ hAy;Ayi+ 2 hAx;Ayi = hx; xi+ hy; yi+ 2 hx; yi

Thus, hAx;Ayi = hx; yi :
3))1). Assume that 8 x; y 2 Rn : hAx;Ayi = hx; yi : It follows that


x;AtAy
�
= hx; yi

i.e., 

x;AtAy � y

�
= 0

In particular, for x = xtAy � y, we obtain

AtAy � y

2 = 0:
Hence AtAy = y, and therefore AtA = In:

Exercise 91 Consider the matrix

A =

�
0 �1
1 0

�
For each � 2 R, prove that e�A is orthogonal5.

Exercise 92 Let A be an orthogonal matrix. Prove the following properties:

1. A�1 is orthogonal.

2. For every � 2 Sp (A)) j�j = 1:

3. If A1 and A2 are two orthogonal matrices, then A1A2 is also orthogonal.

8.4 Hermitian Matrices

De�nition 93 Let A = (aij)1�i;j�n 2 Mn (C). That is aij is a complex number for 1 �
i; j � n. The matrix (aij)1�i;j�n is called conjugate of A, denoted by A. The transpose

conjugate matrix of A is called the adjoint of A, denoted by A�. Note that A� = At =
�
A
�t
.

De�nition 94 A matrix A 2Mn (C) is called Hermitian6 if A� = A: Thta is, if At = A.

Example 95 The matrix

A =

0@ 1 1 + i 2 + 3i
1� i �2 �i
2� 3i i 0

1A
is Hermitian; because A� = A:

5See the chapter of exponential of square matrices.
6On the other hand, a matrix A is said to be skew-Hermitian if A� = �A:
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Proposition 96 The diagonal coe¢ cients of a Hermitian matrix are real.

Proof. From De�nition 93, the result is obvious since aii = aii for 1 � i � n.

Theorem 97 The eigenvalues of a Hermitian matrix are real.

Proof. Proof. Let (�; x) be an eigenpair of a Hermitian matrix A (note that x 6= 0). We
can write

� hx; xi = h�x; xi
= hAx; xi
= (Ax)t x

= xtAtx

= xt
��
A
�t�t

x (since
�
A
�t
= A)

= xtAx

= xtAx

= hx;Axi
= hx; �xi
= � hx; xi :

That is, � = �:

Remark 98 Let A 2Mn (C) : We can easily prove that the matrices A+A�; AA� and A�A
are Hermitian.

8.5 Unitary Matrices

De�nition 99 A matrix U 2Mn (C) is said to be unitary if U�1 = U�. In other words, a
square matrix U with complex coe¢ cients is said to be unitary if it satis�es the equalities:

U�U = UU� = In:

� The unitary matrices with real coe¢ cients are the orthogonal matrices.

� Note that a complex square matrix A is normal if it commutes with its conjugate
transpose A�. That is, A�A = AA�. Thus, unitary, Hermitian and skew-Hermitian
matrices are normal.

Example 100 The matrix

A =

�
0 �i
i 0

�
is unitary; since

AA� = A�A =

�
0 �i
i 0

��
0 �i
i 0

�
=

�
1 0
0 1

�
= I2:
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Any unitary matrix U satis�es the following properties:

a. its determinant has modulus 1;

b. its eigenvectors are orthogonal;

c. U is diagonalizable, i.e.,
U = V DV �,

where V is a unitary matrix and D is a unitary diagonal matrix.

d. U can be written as an exponential of a matrix:

U = eiH ;

where i is the imaginary unit and H is a Hermitian matrix.

Proposition 101 Let U be a square matrix of size n with complex coe¢ cients; the following
�ve propositions are equivalent:

1. U is unitary;

2. U� is unitary;

3. U is invertible and its inverse is U�;

4. the columns of U form an orthonormal basis for the canonical Hermitian product over
Cn;

5. U is normal and its eigenvalues have modulus 1.

8.6 Idempotent matrix

De�nition 102 Let A 2Mn (K). Then A is called idempotent if A2 = A.

Examples of 2� 2 idempotent matrices are:�
1 0
0 1

�
;

�
3 �6
1 �2

�
Theorem 103 If A is idempotent, then A is diagonalizable.

Proof. Since A2 = A, it follows that mA (x) = x (x� 1) which has simple roots, and hence
A is diagonalizable.
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9 Matrx norms

De�nition 104 Let E be a vector space over K ( R or C). The norm over E, denoted by
k:k, is a mapping

k:k : E ! R+
x 7! kxk (we say: the norm of x)

satisfying the following properties:

1. For all x 2 E : kxk � 0 and kxk = 0, x = 0E;

2. For all x 2 E and scalar � 2 K : k�xk = j�j : kxk ;

3. For all x; y 2 E : kx+ yk � kxk+ kyk :

In this case, the couple (E; k:k) is called normed vector space or normed space. So,
a normed space E is a vector space with a norm de�ned on it.

Example 105 In this lesson, we use only the vector spaces, Kn andMn (K) with K = R or
C.

1. De�ne over Kn the following norms:

kxk1 =
nX
i=1

jxij ; kxk2 =
 

nX
i=1

jxij2
! 1

2

;

kxk1 = max
1�i�n

(jxij) .

2. De�ne overMn (K) the following norms:

kAk1 = max
j

nX
i=1

jaijj and kAk1 = maxi

nX
j=1

jaijj

kAk2 =

 
nX
i;j

jaijj2
! 1

2

.

As an application, for x =
�
�1 1 �2

�t
, we have

kxk1 = 4; kxk2 =
p
6 and kxk1 = 2:

and for A =
�
�1 �2
7 3

�
2Mn (R), we also have

kAk1 = max (8; 5) = 8; kAk2 = 3
p
7 and kAk1 = max (3; 10) = 10:

Lemma 106 For each matrix A 2 Mn (K) and for each x 2 Kn, we have the following
inequality:

kAxk � kAk kxk :
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10 Scalar Product (Inner product)

De�nition 107 Let E be real vectot space. The inner product of E (over E) is a function
h:; :i de�ned by

h:; :i : E � E ! R
(x; y) 7! hx; yi

satisfying the following properties:

1. For all x 2 E : hx; xi � 0 and hx; xi = 0, x = 0:

2. For all x; y 2 E : hx; yi = hy; xi :

3. For all x 2 E and scalar � 2 R : h�x; yi = � hx; yi

4. For all x; y; z 2 E : hx+ y; zi = hx; zi+ hy; zi :

De�ne on the vector space Rn the inner product h:; :i by

8 x =
�
x1 x2 : : : xn

�t
; y =

�
y1 y2 : : : yn

�t 2 Rn
we have

hx; yi =
nX
i=1

xiyi:

Remark 108 For each (x; y) 2 Rn � Rn, we have

hx; yi = xty:

Also, the inner product over Cn is given by

hx; yi = xty; (10)

where y is the conjugate of y.

Example 109 Let A 2Mn (R). Find a symmetric matrix B 2 Sn (R) such that

xtAx = xtBx for every x 2 Rn.

In fact, for every x 2 Rn, we have

xtAx =
�
xtAx

�t
(since xtAx = a 2 R)

= xtAtx;

It follows that

xtAx =
1

2
xtAx+

1

2
xtAtx = xt

�
A+ At

2

�
x:

Note that the matrix B =
A+ At

2
is symmetric.

48



Also, de�ne over the vector space C([a; b]) the inner product

8 f; g 2 C([a; b]) : hf; gi =
Z b

a

f (x) g (x) dx.

Proposition 110 Let A be a symmetric matrix and let (�; x); (�; y) be two eigenpairs of A
with � 6= �. Then x and y are orthogonal, i.e., x ? y. Or, equivalently, hx; yi = 0.

Proof. Indeed, we have

� hx; yi = h�x; yi = hAx; yi =


x;Aty

�
= hx;Ayi = hx; �yi = � hx; yi ,

and since � 6= �, it follows that hx; yi = 0.

10.1 Problems.

Ex 01. Consider the equation
ax2 + 2hxy + by2 = 0. (11)

Write (11) in the form X tAX = 0, where A 2M2 (R) and X =

�
x
y

�
:

Ans. A =
�
a h
h b

�
:

Ex 02. Write the equation �1x21 + �2x
2
2 = 0 in the form X tAX = 0, where A 2 M2 (R) and

X =

�
x1
x2

�
:

Ex 03. Let A 2Mn (R). We ask if xtAx = 0; 8 x 2 Rn ) A = 0 ?

Ans. No, take the matrix A =
�
0 �1
1 0

�
:

11 System of linear recurrence sequences

11.1 Form I (without initial values)

Let (xn) and (yn) be two sequences given by the following relation:�
xn+1 = a11xn + a12yn
yn+1 = a21xn + a22yn

;

�
x0
y0

�
=

�
a
b

�
: (12)

In the matrix form, we get�
xn+1
yn+1

�
Xn+1

=

�
a11 a12
a21 a22

�
A

�
xn
yn

�
Xn

.
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Or, equivalently, we write (12) in the form

Xn+1 = AXn , where X0 =

�
x0
y0

�
:

Consequently,
Xn = AXn�1 = A (AXn�2) = A

2Xn�2 = ::: = A
nX0: (13)

Remark 111 If it is given to us X1, we have only Xn = A
n�1X1.

In the general case, a system of k linear recurrence sequences x(i)n , i = 1; 2; :::; k is given
by 8>>><>>>:

x
(1)
n+1 = a11x

(1)
n + a12x

(2)
n + :::+ a1kx

(k)
n

x
(2)
n+1 = a21x

(1)
n + a22x

(2)
n + :::+ a2kx

(k)
n

...
x
(k)
n+1 = ak1x

(1)
n + ak2x

(2)
n + :::+ akkx

(k)
n

; x
(i)
0 2 R, for i = 1; 2; :::; k: (14)

In the matrix form0BBB@
x
(1)
n+1

x
(2)
n+1
...

x
(k)
n+1

1CCCA
Xn+1

=

0BBB@
a11 a12 : : : a1k
a21 a22 : : : a2k
...

... : : :
...

ak1 ak2 : : : akk

1CCCA
A

0BBB@
x
(1)
n

x
(2)
n

...
x
(k)
n

1CCCA
Xn

,

where X0 =

0BBB@
x
(1)
0

x
(2)
0
...
x
(k)
0

1CCCA. As in (13), we get
Xn = A

nX0:

These problems (the solution of (12) or (14)) reduce to the computation of An:
Consider the following example:

Example 112 Solve the system of linear recurrence sequences�
xn+1 = 2xn � yn
yn+1 = �xn + 2yn

; (x0; y0) = (0;�1) : (15)

Solution. First, we write the system (15) according to the equivalent matrix form�
xn+1
yn+1

�
Xn+1

=

�
2 �1
�1 2

�
A

�
xn
yn

�
Xn

; X0 =

�
0
�1

�
.

From (13), we have Xn = AnX0. Moreover, from the previous computation, an explicit
formula if An in terms of n is given by

An =

0B@ 1 + 3n

2

1� 3n
2

1� 3n
2

1 + 3n

2

1CA ; n � 0: (16)
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It follows that

Xn = A
nX0 =

0B@ 1 + 3n

2

1� 3n
2

1� 3n
2

1 + 3n

2

1CA� 0
�1

�
=

0B@ 3n � 1
2�3n � 1
2

1CA : (17)

11.2 Form II (with initial values)

Consider the system of linear recurrence sequences x(i)n , for i = 1; 2; :::; k:8>>><>>>:
x
(1)
n+1 = a11x

(1)
n + a12x

(2)
n + :::+ a1kx

(k)
n + c1

x
(2)
n+1 = a21x

(1)
n + a22x

(2)
n + :::+ a2kx

(k)
n + c2

...
x
(k)
n+1 = ak1x

(1)
n + ak2x

(2)
n + :::+ akkx

(k)
n + ck

; ci; x
(i)
0 2 R, for i = 1; 2; :::; k:

In the matrix form0BBB@
x
(1)
n+1

x
(2)
n+1
...

x
(k)
n+1

1CCCA
Xn+1

=

0BBB@
a11 a12 : : : a1k
a21 a22 : : : a2k
...

... : : :
...

ak1 ak2 : : : akk

1CCCA
A

0BBB@
x
(1)
n

x
(2)
n

...
x
(k)
n

1CCCA
Xn

+

0BBB@
c1
c2
...
ck

1CCCA
C

,

where X0 =

0BBB@
x
(1)
0

x
(2)
0
...
x
(k)
0

1CCCA. This means that
Xn = AXn�1 + C = A (AXn�2 + C) + C = A

2Xn�2 + (A+ I)C

= :::

= AnX0 +
�
An�1 + An�2 + :::+ A+ I

�
C: (18)

These problems are reduced to the computation of An and
n�1P
i=0

Ai:

Example 113 Solve the system of linear recurrence sequences�
xn+1 = 2xn � yn � 1
yn+1 = �xn + 2yn + 2

; (x0; y0) = (0;�1) : (19)

Solution. The system (19) can be written in the following matrix form:�
xn+1
yn+1

�
Xn+1

=

�
2 �1
�1 2

�
A

�
xn
yn

�
Xn

+

�
�1
2

�
C

It su¢ ces to compute An�1 + An�2 + :::+ A+ I. Indeed, in view of (16) we can write

An =

0B@ 1 + 3n

2

1� 3n
2

1� 3n
2

1 + 3n

2

1CA =
1

2
U +

3n

2
V ,
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where

U =

�
1 1
1 1

�
and V =

�
1 �1
�1 1

�
.

It follows that

An�1 + An�2 + :::+ A+ I =
n

2
U +

�
1 + 3 + :::+ 3n�1

2

�
V

=
n

2
U +

�
3n � 1
4

�
V:

Finally, from (18) we have

Xn =

�
1

2
U +

3n

2
V

�
X0 +

�
n

2
U +

�
3n � 1
4

�
V

�
C =

�
1

2

�
1 1
1 1

�
+
3n

2

�
1 �1
�1 1

���
0
�1

�
+

�
n

2

�
1 1
1 1

�
+

�
3n � 1
4

��
1 �1
�1 1

���
�1
2

�

=

0B@ 2n� 3n + 1
4

2n+ 3n � 5
4

1CA ; n � 0:
Exercise 114 Let A 2M2 (R) : Assume (A� I2)�1 exists, prove that

An�1 + An�2 + :::+ A+ I = (An � I2) (A� I2)�1 :

12 Linear Systems of di¤erential equations, Part I

De�ne the linear system of di¤erential equations (x01 (t) ; x
0
2 (t) ; :::; x

0
n (t)) by8>>><>>>:

x01 (t) = a11x1 (t) + a12x2 (t) + :::+ a1nxn (t) + f1 (t)
x02 (t) = a21x1 (t) + a22x2 (t) + :::+ a2nxn (t) + f2 (t)

...
x0n (t) = an1x1 (t) + an2x2 (t) + :::+ annxn (t) + fn (t) ,

(20)

where aij 2 R. The unknowns are the functions x1 (t) ; x2 (t) ; :::; xn (t) which are derivable
and fi (t) are some given functions.

The system is called homogeneous if all fi = 0, otherwise it is called non-homogeneous.
Matrix Notation

A non-homogeneous system of linear equations (20) is written as the equivalent vector-
matrix system

X 0 (t) = A �X (t) + f (t) ,
where

X (t) =

0BBB@
x1 (t)
x2 (t)
...

x2 (t)

1CCCA ; A =
0BBB@
a11 a12 � � � a1n
a21 a22 � � � a2n
...

...
. . .

...
an1 an2 � � � ann

1CCCA ; f =
0BBB@
f1
f2
...
f2

1CCCA
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In this section, we consider only homogeneous systems: We wish to solve the system

X 0 = AX: (21)

There are two cases:
Case 1. Assume that A is diagonalizable. There exists an invertible matrix P such that

A = PDP�1, where D is diagonal. Thus,8<:
X 0 = PDP�1X = PY 0

Y 0 = DY
Y = P�1X:

The system (21) becomes
Y 0 = DY ,

which is easier to solve since D is diagonal. Then after, we solve the equation Y = P�1X,
that is, X = PY .

Example 115 Solve the system of di¤erential equations:

X 0 = AX, A =
�
1 2
3 2

�
, where X (0) =

�
3
2

�
:

Solution. At �rst, the eigenvalues of A are �1 = �1 and �2 = 4. The corresponding
eigenvectors are v1 = (1;�1) and v2 = (2; 3). Thus, we have

D =

�
�1 0
0 4

�
, P =

�
1 2
�1 3

�
.

We put X =

�
x1
x2

�
and Y =

�
y1
y2

�
. It follows that

Y 0 = DY ,
�
y01 = �y1
y02 = 4y2

,
�
y1
y2

�
=

�
c1e

�t

c2e
4t

�
,

and hence

X = PY =

�
1 2
�1 3

��
c1e

�t

c2e
4t

�
=

�
c1e

�t + 2c2e
4t

�c1e�t + 3c2e4t
�
.

Since X (0) =
�
3
2

�
, then

�
c1 + 2c2 = 3
�c1 + 3c2 = 2

) c1 = c2 = 1.

Thus is, �
x1 = e

�t + 2e4t

x2 = �e�t + 3e4t:
We present another method to solve the system X 0 = AX, where A is diagonalizable.
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Proposition 116 Let A 2Mn (R) be diagonalizable matrix and let

P =
�
X1 Xn ::: Xn

�
be the invertible matrix formed by n linearly eigenvectors X1; X2; :::; Xn of A. Then the
system X 0 = AX has a unique solution given by

X (t) = c1e
�1tX1 + c2e

�2tX2 + :::+ cne
�ntXn; (22)

where c1; c2; :::; cn 2 Rn and �1; �2; :::; �n are the eigenvalues of A.

Proof. It is clear that X 0 = AX implies

X (t) = eAt:�, where � 2Mn;1 (R) :

Since A is diagonalizable, then

X (t) = PeDtP�1 = P

0BBB@
e�1t

e�2t

. . .
e�nt

1CCCAP�1:� (23)

Setting

P�1:� =

0BBB@
c1
c2
...
cn

1CCCA = C:

It follows from (23) that

X (t) =
�
X1 Xn ::: Xn

�
0BBB@
e�1t

e�2t

. . .
e�nt

1CCCA
0BBB@
c1
c2
...
cn

1CCCA

=
�
e�1tX1 e�2tXn ::: e�ntXn

�
0BBB@
c1
c2
...
cn

1CCCA
= c1e

�1tX1 + c2e
�2tX2 + :::+ cne

�ntXn:

Therefore,
X (t) = c1e

�1tX1 + c2e
�2tX2 + :::+ cne

�ntXn: (24)

This completes the proof.

Example 117 Solve the system of di¤erential equations:

X 0 = AX, A =
�
1 2
3 2

�
, where X (0) =

�
3
2

�
:
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Solution. After the computation of the eigenvalues and eigenvectors of the matrix A.
It follows from (24) that

X (t) = c1e
�t
�

1
�1

�
+ c2e

4t

�
2
3

�
:

Hence �
x (t) = c1e

�t + 2c2e
4t;

y (t) = �c1e�t + 3c2e4t:

Since X (0) =
�
3
2

�
, then �

x1 = e
�t + 2e4t

x2 = �e�t + 3e4t:

Example 118 Solve the system of di¤erential equations:

X 0 = AX with A =

0@ 1 0 0
1 2 0
1 0 2

1A :
Solution. Simple computation we get�

�1 = 1; v1 = (�1; 1; 1)
�1 = 2; v2 = (0; 1; 0) and v3 = (0; 0; 1) :

The matrix A is diagonalizable, and by (22) we obtain

X (t) = c1e
t

0@ �1
1
1

1A+ c2e2t
0@ 0
1
0

1A+ c3e2t
0@ 0
0
1

1A ;
where c1; c2; c3 are constants. That is,8<:

x (t) = �c1et
y (t) = c1e

t + c2e
2t

z (t) = c1e
t + c3e

2t:

Remark 119 In another way, which is very long and based on the calculation of P and P�1

with A = PDP�1. From which it follows that

eAt = PeDtP�1: (25)

Let A =
�
1 2
3 2

�
. The solution of the di¤erential system X 0 = AX is X (t) = eAt:C, where

C is an arbitrarily constant. Since X (0) =
�
3 2

�t
, then C =

�
3 2

�t
. Therefore,

X (t) = eAt �X (0) : (26)
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Simple computation gives

P =

�
2 1
3 �1

�
and P�1 =

0B@ 1

5

1

5
3

5

�2
5

1CA :
Hence

X (t) = eAt � C0 =
�
2 1
3 �1

��
e4t 0
0 e�t

�0B@ 1

5

1

5
3

5

�2
5

1CA� 3
2

�

=

�
2e4t + e�t

3e4t � e�t
�
:

12.1 Problems

Ex 01. Calculate eAt for each t 2 R, where

A =

0@ 0 �1 1
0 0 1
�1 0 1

1A :
Deduce the general solution of the system of di¤erential equations:8<:

p0 = �q + r
q0 = r
r0 = �p+ r

Ex 02. Solve the system of di¤erential equations:8>><>>:
x0 (t) = y (t)
y0 (t) = z (t)
z0 (t) = w (t)
w0 (t) = x (t)

Ex 03. Solve the system of di¤erential equations X 0 = A �X, where A =

0@ 1 1 0
1 1 0
0 0 2

1A.
13 The square root of a diagonalizable matrix

By Bellaouar D.

Lemma 120 Let

D =

0BBB@
�1

�2
. . .

�n

1CCCA , where �i > 0 (1 � i � n).
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Then

p
D =

0BBB@
p
�1 p

�2
. . . p

�n

1CCCA :
Proof. It is clear by computation that

p
D
p
D = D:

Proposition 121 Let A 2 Mn(R) be a diagonalizable matrix with Sp (A) � R+. Thenp
A 2Mn(R).

Proof. Assume that A = PDP�1; where Sp (D) � R+. We put

H = P
p
DP�1 2Mn(R):

Since
p
D
p
D = D, it follows that

H2 =
�
P
p
DP�1

��
P
p
DP�1

�
= PDP�1 = A:

Thus,
p
A = H:

Example 122 Consider the matrix

A =

0@ 11 �5 5
�5 3 �3
5 �3 3

1A :
Calculate

p
A:

After simple computation, the eigenpairs of A are:8<:
�1 = 0; E�1 = V ect f(0; 1; 1)g ;
�2 = 1; E�2 = V ect f(�1;�1; 1)g ;
�3 = 16; E�3 = V ect f(2;�1; 1)g :

Further, we see that

P =

0@ 0 �1 2
1 �1 �1
1 1 1

1A ; D =
0@ 0 0 0
0 1 0
0 0 16

1A and P�1 =

0@ 0 1
2

1
2

�1
3
�1
3

1
3

1
3

�1
6

1
6

1A .
Which gives

p
A = P

p
DP�1

=

0@ 0 �1 2
1 �1 �1
1 1 1

1A0@ p
0 0 0

0
p
1 0

0 0
p
16

1A0@ 0 1
2

1
2

�1
3
�1
3

1
3

1
3

�1
6

1
6

1A
=

0@ 3 �1 1
�1 1 �1
1 �1 1

1A :
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De�nition 123 Let A = PDP�1 be a diagonalizable matrix whose eigenvalues are given by
the diagonal matrix

D = diag f�1; �2; :::; �ng .
For any function f(x) de�ned at the points (�i)1�i�n , we have

f (A) = Pf (D)P�1 = P

0BBB@
f (�1)

f (�2)
. . .

f (�n)

1CCCAP�1.
For example, if A 2Mn(R) with A = PDP�1 then8>>>><>>>>:

f (x) = xk ) f (A) = Ak = PDkP�1 for k � 0
f (x) =

p
x) f (A) =

p
A = P

p
DP�1

f (x) = cosx) f (A) = cosA = P (cosD)P�1

f (x) = ex ) f (A) = eA = PeDP�1

:::

13.1 Problems.

Ex 01. Let M be a real n by n matrix. We denote by cosM the real part of eiM and sinM
its imaginary part.

1. Show that cosM and sinM commute and that

(cosM)2 + (sinM)2 = In.

2. Let � be a real number. Calculate

cos

�
� 1
0 �

�
and sin

�
� 1
0 �

�
:

Ex 02. Let

A =

�
0 i
i 0

�
2M2(C).

Calculate
p
A:

14 Cayley-Hamilton Theorem

The goal of this section is to prove the famous Cayley-Hamilton Theorem, which asserts that
if p(x) is the characteristic polynomial of an n by n matrix A, then p(A) = 0.

De�nition 124 Let p (x) = a0 + a1x+ :::+ akxk 2 K [X], and let A 2Mn (K). De�ne the
matrix p (A) by

p (A) = a0In + a1A+ :::+ akA
k:

In other words, p (A) is the matrix obtained by replacing xi by Ai, for each i = 0; 1; :::; k, in
the expression of p, with the convention A0 = In.
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Remark 125 If we replace x by A in the formula of the characteristic polynomial pA (x),
which gives

pA (A) = det (A� A) = det (0) = 0.
This is impossible since pA (A) 2Mn (K) and det (A� A) = det (0) 2 K.

Let us recall the statement of one of the very classical theorem.

Theorem 126 (Cayley-Hamilton Theorem) Let A 2Mn (R) and let pA (x) be its char-
acteristic polynomial. Then pA (A) = 0:

In the proof, we need to use the following lemma.

Lemma 127 For each A 2Mn (R), we have

A (com (A))t = (com (A))tA = detAIn. (27)

In particular, if A is invertible, its inverse is given by

A�1 =
1

det (A)
(com (A))t .

For example, if A =
�
a b
c d

�
2M2 (R), we have

A: (com (A))t =

�
a b
c d

��
d �b
�c a

�
=

�
ad� bc 0
0 ad� bc

�
= (ad� bc)

�
1 0
0 1

�
= det (A) I2:

Proof of Cayley-Hamilton Theorem. Let

A =

0BBB@
a11 a12 : : : a1n
a21 a22 : : : a2n
...

...
. . .

...
an1 an2 : : : ann

1CCCA 2Mn (R) .

Assume further that pA (x) = xn + cn�1xn�1 + cn�2xn�2 + ::: + c1x + c0. Applying Lemma
127 using the matrix xIn � A, we obtain

(xIn � A) com (xI � A)t = det (xIn � A) In,

where

xI � A =

0BBB@
x� a11 a12 : : : a1n
a21 x� a22 : : : a2n
...

... : : :
...

an1 an2 : : : x� ann

1CCCA .
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Hence

com (xI � A) =

0BBB@
p
(1;1)
n�1 (x) p

(1;2)
n�1 (x) : : : p

(1;n)
n�1 (x)

p
(2;1)
n�1 (x) p

(2;2)
n�1 (x) : : : p

(2;n)
n�1 (x)

...
...

...
...

p
(n;1)
n�1 (x) p

(n;2)
n�1 (x) : : : p

(n;n)
n�1 (x)

1CCCA ,
where p(i;j)n�1 are polynomials of degree n� 1. Setting

com (xI � A)t = B0 + xB1 + x2B2 + :::+ xn�1Bn�1, where (Bi)i=0;1;:::;n�1 2Mn (R) .

We deduce that

(xI � A)
�
B0 + xB1 + x

2B2 + :::+ x
n�1Bn�1

�
= det (xIn � A) :In
= xnIn + cn�1x

n�1In + :::+ c1xIn + c0In:

It follows that

xnBn�1 + x
n�1 (Bn�2 � ABn�1) + :::+ x (B0 � AB1)� AB0

= xnIn + cn�1x
n�1In + :::+ c1xIn + c0In.

Then 8>>>>><>>>>>:

Bn�1 = In
Bn�2 � ABn�1 = cn�1xn�1In

...
B0 � AB1 = c1In
�AB0 = c0In.

Which gives

pA (A) = c0In + c1A+ :::+ cn�1A
n�1 + An

= �AB0 + A (B0 � AB1) + :::+ An�1 (Bn�2 � ABn�1) + AnBn�1
= 0:

This completes the proof.

Example 128 Let A =
�
0 1
2 3

�
. Find a polynomial p(x) of degree 2 such that p(A) = 0.

Ans. p(x) = x2 � 3x� 2:

Corollary 129 Let A 2Mn (R) with

pA (x) = x
n + cn�1x

n�1 + cn�2x
n�2 + :::+ c1x+ c0,

where c0 2 R� and c1; c2; :::; cn�1 2 R. Then

A�1 =
�1
c0

 
n�1X
i=1

ciA
i�1 + An�1

!
:
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Proof. Since
pA (A) = c0I + c1A+ c2A

2 + :::+ cn�1A
n�1 + An = 0;

it follows that �
c1I + c2A+ :::+ cn�1A

n�2 + An�1
�
A = �c0I;

and so
A�1 =

�1
c0

�
c1I + c2A+ :::+ cn�1A

n�2 + An�1
�
:

This completes the proof.

Example 130 Using Cayley-Hamilton Theorem, calculate the inverse of the matrix

A =

0@ 1 1 0
�1 0 0
2 0 �1

1A :
Solution. First, let us calculate pA (x) :

pA (x) =

�������
+

x� 1
�
1

+

0
�1 x 0
2 0 x+ 1

�������
= (x� 1) [x (x+ 1)] + (x+ 1)
= (x� 1)

�
x2 � x+ 1

�
= x3 + 1:

Therefore, pA (x) = x3 + 1, and hence

pA (A) = 0) A3 + I3 = 0

) A�1 = �A2:

Finally, we get

A�1 = �

0@ 1 1 0
�1 0 0
2 0 �1

1A0@ 1 1 0
�1 0 0
2 0 �1

1A =

0@ 0 �1 0
1 1 0
0 �2 �1

1A :
15 Minimal Polynomial

We introduce here a second polynomial extracted from the characteristic polynomial of a
square matrix.

De�nition 131 Let A be a square matrix and let pA(x) be its characteristic polynomial.
The minimal polynomial of A, denoted by mA(x), is a polynomial satisfying the following
two properties:

1. mA(x)jpA (x) ; i.e., mA(x) divides the characteristic polynomial pA (x) :
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2. mA(A) = pA (A) = 0 (the zero matrix). That is, mA (x) satis�es Cayley-Hamilton
Theorem as does pA(x).

Theorem 132 The eigenvalues of a matrix A are the roots of mA(x).

Proof. Let � be an eigenvalue of A and let x be its eigenvector. We do the Euclidean
division of mA(x) by x� �, we obtain

mA (x) = Q (x) (x� �) + c, c 2 R and Q 2 R [X] .

It follows that
0 = mA (A) = Q (A) (A� �I) + cI.

If we apply this to the vector x, we get

0 = Q (A) (Ax� �x) + cx:

Hence cx = 0: Since x is not zero, we get c = 0, and so mA (x) = Q (x) (x� �) : This means
that � is a root of mA (x).

Remark 133 The minimal polynomial of A is a polynomial satisfying the following three
properties:

1. mA(x)jpA (x) ;

2. mA(A) = pA (A) = 0 (the zero matrix),

3. For any � 2 Sp (A) : mA (�) = 0.

Example 134 Calculate the minimal polynomial of the matrices:

1. A =
�
2 1
1 2

�
;

2. B =
�
1 1
0 1

�
.

Solution.

1. We can easily prove that pA (x) = (1� x) (3� x), and so mA (x) = pA (x).

2. First, the characteristic polynomial is pA (x) = (x� 1)2. Hence,

mA (x) = (x� 1) or mA (x) = (x� 1)2 ;

and since A� I2 6= 0; then mA (x) = pA (x) = (x� 1)2.

Example 135 Determine the minimal polynomials of the following matrices:

A =

24 0 1 1
0 0 0
0 0 0

35 ; B =
24 4 1 1
1 4 1
1 1 4

35 ; C = � 2 �1
1 0

�
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� It is clear that pA (x) = x3. Then, mA (x) = x
3 or x2 or x: On the other hand, we have

mA (x) = x
2; since A 6= 0 and A2 = 0.

� Note that after computation, pB (x) = (x� 3)2 (x� 6). Since pB (x) andmB (x) having
the same roots and mB (x) divides pB (x), then mB (x) = (x� 3) (x� 6) or mB (x) =
(x� 3)2 (x� 6). But,

(B � 3I3) (B � 6I3) =

24 1 1 1
1 1 1
1 1 1

3524 �2 1 1
1 �2 1
1 1 �2

35
=

24 0 0 0
0 0 0
0 0 0

35 .
It follows that mB (x) = (x� 3) (x� 6).

� From simple computation, we get pC (x) = (x� 1)2. Since A� I2 6= 0; then

mC (x) = (x� 1)2 = pC (x) :

Corollary 136 Let A 2 Mn (R) with mA (x) = (x� a) (x� b); a; b 2 R. Then An can be
written in terms of A and I.

Proof. The proof is by induction on n. Indeed,for n = 1, we have

A1 = 1:A+ 0:I:

Moreover, for n = 2, A2 = (a+ b)A�abI, since mA (A) = 0: Assume that An can be written
in terms of A and I, i.e.,

An = anA+ bnI.

Therefore,

An+1 = AAn = A (anA+ bnI)

= anA
2 + bnA

= an ((a+ b)A� abI) + bnA
= ((a+ b) an + bn)A� abanI
= f (A; I) .

This means that An+1 can be written in terms of A and I.

Corollary 137 The matrix A is diagonalizable if and only if the roots of mA (x) are simple.

Example 138 Let

A =

0@ 0 1 1
1 0 1
1 1 0

1A .
Verify that A is diagonalizable.
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Solution. From computation, we get

pA (x) = (1 + x)
2 (x� 2) .

This means that mA (x) = (1 + x) (x� 2) or mA (x) = (1 + x)
2 (x� 2). But,

(I + A) (A� 2I) =

0@ 1 1 1
1 1 1
1 1 1

1A0@ �2 1 1
1 �2 1
1 1 �2

1A
=

0@ 0 0 0
0 0 0
0 0 0

1A .
Thus, mA (x) = (1 + x) (x� 2). It is clear that the roots of mA (x) are simple, and hence

A is diagonalizable.

Example 139 Study the diagonalization of the matrix

A =

0@ a 0 0
1 a 0
1 1 a

1A , where a 2 R:
Since A is a lower triangular matrix, then pA (x) = (x� a)3. Since (A� aI) 6= 0; then
mA (x) can not be (x� a). This means that the roots of mA (x) are not simple, and so A is
not diagonalizable.

Example 140 Consider the matrix

A =

0@ a b b
b a b
b b a

1A .
Show that A is diagonalizable.
In fact, we have

A = a

0@ 1 0 0
0 1 0
0 0 1

1A+ b
0@ 0 1 1
1 0 1
1 1 0

1A = aI3 + bB:

It su¢ ces to prove that B is diagonalizable. After computation we obtain

mB (x) = (x+ 1) (x� 2) ;

and hence B is diagonalizable. That is, B can be written in the form B = PDP�1, from
which it follows that

A = aI3 + bPDP
�1

= P (aI3 + bD)P
�1:

Since aI3 + bD is diagonal, then A is diagonalizable.
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Example 141 Cnsider the matrix

A =

0@ 1 1 1
1 1 1
1 1 1

1A .
By computation, mA (x) = x (x� 3). This means that A is diagonalizable since the roots of
mA (x) are simple.

15.1 Problems

Ex 01. Find minimal polynomial of the matrix

A =

0@ 2 2 �5
3 7 �15
1 2 �4

1A .
Deduce that A is diagonalizable. Ans.

pA (x) = (x� 3) (x� 1)2 and mA (x) = (x� 3) (x� 1) :

Ex 02. Consider the matrix

A =

0@ 1 1 0
1 1 0
0 0 2

1A :
Calculate the minimal polynomial of A. Ans. mA (x) = x (x� 2) :

Ex 03. Calculate the characteristic polynomial of the matrix0BB@
4 1 1 1
1 4 1 1
1 1 4 1
1 1 1 4

1CCA :
Deduce its minimal polynomial. Ans.

pA (x) = (3� x)3 (7� x) and mA (x) = (3� x) (7� x) :

Ex 04. Calculate the minimal polynomial of the following matrices0@ 3 0 0
0 3 0
0 0 4

1A ;
0@ 3 0 0
1 3 0
0 0 4

1A ;
0@ 3 0 0
1 3 0
0 1 4

1A ;
0@ 3 1 0
0 3 1
1 0 4

1A :
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Ex 05. Verify that all matrices of the forn

A =

�
1 �
0 1

�
; � 2 R�

are not diagonalizable.

Ex 06. Calculate the minimal polynomial of the matrix

A =

0BBBBB@
�
1 �
. . . . . .

1 �
1 �

1CCCCCA , � 2 R.

Is it diagonalizable ?

Ex 07. Let A 2M3(R) given by

A =

0@ 3 2 �2
�1 0 1
1 1 0

1A :
a) Determine the characteristic polynomial of A.
b) Determin the minimal polynomial of A.
c) Is the matrix A diagonalizable?

Ex 08. Find all the matrices A 2M2(C) whose minimal polynomial is x2 + 1:

Ex 09. Calculate the minimal polynomial of the matrix:

A =

0BBBBBBBBBB@

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1CCCCCCCCCCA
.

Ans. mA (x) = x (x� 8) :

Ex 10. Calculate the characteristic polynomial and its minimal polynomial of the matrix

A =

0BBBB@
2 5 0 0 0
0 2 0 0 0
0 0 4 2 0
0 0 3 5 0
0 0 0 0 7

1CCCCA .
Ans. pA (x) = (x� 2)3 (x� 7)2 and mA (x) = (x� 2)2 (x� 7) :
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16 Linear recurrence sequences of order k

Let (a0; a1; :::; ak�1) be a system of k real numbers not all zero. A linear recurrence
sequence of order k is de�ned as follows:�

xn+k = a0xn + a1xn+1 + :::+ ak�1xn+k�1,
x0; x1; :::; xk�1 2 R are given.

Thus, a sequence de�ned by a linear recurrence relation is uniquely determined by its
�rst k terms: x0; x1; :::; xk�1. As an example, for k = 2 :�

xn+2 = a0xn + a1xn+1,
x0; x1 2 R are given.

(S)

In the equivalent vector-matrix system, we obtain�
xn+2
xn+1

�
=

�
a1 a0
1 0

��
xn+1
xn

�
,

or equivalently �
xn+1
xn+2

�
Xn+2

=

�
0 1
a0 a1

�
A

�
xn
xn+1

�
Xn+1

, (S1)

from which it follows that

Xn = AXn�1 = A
2Xn�2 = ::: = A

n�1X1; (28)

where X1 =

�
x0
x1

�
. Thus, we must compute An for n � 0.

Application. Consider the following example:

Example 142 Let (xn) be the sequence given by

xn+2 =
2

1

xn
+

1

xn+1

; x0; x1 2 R�+. (29)

Find the formula of xn in terms of n, then calculate lim
n!+1

xn:

Solution. In fact, we write (29) in the form

2

xn
=

1

xn�2
+

1

xn�1
.

Setting
2

xn
= yn, we get

2yn = yn�1 + yn�2, that is, yn =
1

2
yn�1 +

1

2
yn�2.
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In the equivalent vector-matrix system, we have

�
yn
yn�1

�
=

�
1
2

1
2

1 0

��
yn�1
yn�2

�
;

8><>:
y0 =

1

x0

y1 =
1

x1

Therefore, �
yn
yn�1

�
= An�1

�
y1
y0

�
, where A =

�
1
2

1
2

1 0

�
.

From the computation (the matrix diagonalizable), we obtain

An�1 =

0B@ 1

3

h
2 +

��1
2

�n�1i 1

3

h
1�

��1
2

�n�1i
1

3

h
2� 2

��1
2

�n�1i 1

3

h
1 + 2

��1
2

�n�1i
1CA ,

and so

yn =
1

3

"
2 +

�
�1
2

�n�1#
y1 +

1

3

"
1�

�
�1
2

�n�1#
y0.

Since xn =
1

yn
, it follows that

xn =
3"

2 +

�
�1
2

�n�1#
1

x1
+

"
1�

�
�1
2

�n�1#
1

x0

.

Passing to the limit as n tends to in�nity, we get

lim
n!+1

xn =
3

2

x1
+
1

x0

:

17 System of linear di¤erential equations, Part II

Consider the system of di¤erential equations:8>>><>>>:
x01 = a11x1 + a12x2 + :::+ a1nxn
x02 = a21x1 + a22x2 + :::+ a2nxn

...
x0n = an1x1 + an2x2 + :::+ annxn,

(30)

which is written by the following equivalent vector-matrix system:

X 0 = A �X,

where the matrix A is non-diagonalizable. In this case, the general solution of (30) can
be given by:

X (t) = etAc;
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where c =
�
c1 c2 : : : cn

�t
is a constant.

In this program, we only consider certain cases. For example, A 2 Mn(R) but has a
unique eigenvalue or when A 2 Mn(R) with n � 4: The situation is particularly simple
whenever A 2 M2(R).

Corollary 143 Let A 2Mn(R) be a square matrix having a unique eigenvalue, say �. Then

etA = e�t
n�1X
k=0

(A� �In)k
tk

k!
.

Proof. We �rst have pA (x) = (x� �)n since A has a unique eigenvalue �. We have

etA = e�tIn+t(A��In) (31)

= e�tInet(A��In) (because �tIn and t (A� �In) commute)
= e�tet(A��In) (because e�InB = e�B for any B 2Mn(R) and � 2 R)

= e�t
+1X
k=0

(A� �In)k
tk

k!
(32)

= e�t
n�1X
k=0

(A� �In)k
tk

k!
;

where
+1P
k=n

(A� �In)k = 0; this is obtained by Cayley-Hamilton theorem since pA (A) =

(A� �In)n = 0:

Remark 144 In particular, by Corollary 143, if A 2M2(R) with Sp (A) = f�g then

etA = e�t fI2 + (A� �I2) tg : (33)

If A 2M3(R) with Sp (A) = f�g then

etA = e�t
�
I3 + (A� �I3) t+

1

2
(A� �I3)2 t2

�
. (34)

Example 145 Solve the system of di¤érentiel equations�
x0 = 2x+ y
y0 = 2y

(35)

Let A be the matrix of (35), i.e.,

A =

�
2 1
0 2

�
.

From (33), we have

etA = e2t fI2 + (A� 2I2) tg

= e2t
��

1 0
0 1

�
+

��
2 1
0 2

�
� 2

�
1 0
0 1

��
t

�
=

�
e2t te2t

0 e2t

�
.
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Thus, the solution of (35) is given by

X (t) =

�
x (t)
y (t)

�
=

�
e2t te2t

0 e2t

��
c1
c2

�
=

�
c1e

2t + tc2e
2t

c2e
2t

�
;

where c1; c2 are constants.

Example 146 Solve the system of di¤erential equations:0@ x0

y0

z0

1A =

0@ �4 1 1
1 �1 �2
�2 1 �1

1A
A

0@ x
y
z

1A .
Solution: The characteristic polynomil of A is given by

pA (x) = (x+ 2)
3 .

This means that A has a unique eigenvalu, � = �2: From (34), we obtain

etA = e�2t
�
I3 + (A+ 2I3) t+

1

2
(A+ 2I3)

2 t2
�
,

where

A+ 2I3 =

0@ �2 1 1
1 1 �2
�2 1 1

1A and A+ 2I3 =

0@ 3 0 �3
3 0 �3
3 0 �3

1A .
Then

etA = e�2t
�
I3 + (A+ 2I3) t+

1

2
(A+ 2I3)

2 t2
�

= e�2t

8<:
0@ 1 0 0
0 1 0
0 0 1

1A+
0@ �2 1 1

1 1 �2
�2 1 1

1A t+ 1
2

0@ 3 0 �3
3 0 �3
3 0 �3

1A t2
9=;

= e�2t

0@ 3
2
t2 � 2t+ 1 t t� 3

2
t2

3
2
t2 + t t+ 1 �3

2
t2 � 2t

3
2
t2 � 2t t �3

2
t2 + t+ 1

1A :
Exercise 147 Solve the system of di¤erential equations

X 0 = A �X, where A =
�
3 �18
2 �9

�
.

Exercise 148 Solve the system of di¤erential equations0BB@
x01 (t)
x02 (t)
x03 (t)
x04 (t)

1CCA =

0BB@
1 2 1 3
0 1 1 �1
0 0 1 2
0 0 0 1

1CCA
0BB@
x1 (t)
x2 (t)
x3 (t)
x4 (t)

1CCA .
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Theorem 149 Let A 2 M3(R). If A has two distinct eigenvalues � and � (where � has
multiplicity 2), then

etA = e�t (I + t (A� �I)) + e
�t � e�t

(�� �)2
(A� �I)2 � te�t

�� � (A� �I)
2 : (36)

Proof. From (31) and (32), we have

etA = e�t
+1X
k=0

(A� �I)k t
k

k!

= e�t (I + (A� �I)) + e�t
+1X
k=2

(A� �I)k t
k

k!

= e�t (I + (A� �I)) + e�t
+1X
r=0

(A� �I)2+r t2+r

(2 + r)!
(37)

Now, let pA (x) = (x� �)2 (x� �) be the characteristic polynomial of A. First, we note that

A� �I = (A� �In)� (�� �) I.

By Cayley-Hamilton theorem, we get

0 = (A� �I)2 (A� �I) = (A� �I)3 � (�� �) (A� �I)2 ,

from which is follows that

(A� �I)3 = (�� �) (A� �I)2 .

By induction, for every r � 1;

(A� �I)2+r = (�� �)r (A� �I)2 .

It follows from (37) that

+1X
r=0

(A� �I)2+r t2+r

(2 + r)!
=

+1X
r=0

(�� �)r t2+r

(2 + r)!

r

(A� �I)2

=
1

(�� �)2
+1X
r=0

tk

k!
(�� �)k (A� �I)2 .

Finally, we obtain

etA = e�t (I + (A� �I)) + e�t

(�� �)2
�
e(���)t � 1� (�� �) t

	
(A� �I)2

= e�t (I + t (A� �I)) + e
�t � e�t

(�� �)2
(A� �I)2 � te�t

�� � (A� �I)
2 :

This completes the proof.
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Example 150 Solve the system of di¤erential equations0@ x01 (t)
x02 (t)
x03 (t)

1A =

0@ 2 �1 2
10 �5 7
4 �2 2

1A
A

0@ x1 (t)
x2 (t)
x3 (t)

1A .
We �rst �nd the characteristic polynomial of A. By computation, pA (x) = x2 (x+ 1) : This
means that A has two eigenvalues � = 0 (with multiplicity 2) and � = �1 (simple). It follows
from (36) that

eAt = I3 + tA+
�
t+ e�t � 1

�
A2:

Simple computation we obtain

eAt =

0@ 4t+ 2
et
� 1 1� 1

et
� 2t 3t+ 1

et
� 1

8t� 2
et
+ 2 1

et
� 4t 6t� 1

et
+ 1

4� 4
et

2
et
� 2 3� 2

et

1A :
18 On the powers of A

Example 151 Let

A =

0@ a b c
0 a b
0 0 a

1A .
Find An for n � 0.

Solution. Setting

A =

0@ a b c
0 a b
0 0 a

1A =

0@ a 0 0
0 a 0
0 0 a

1A
D

+

0@ 0 b c
0 0 b
0 0 0

1A
N

.

It is clear that N is nilpotent of index k = 3. Moreover, DN = ND. By Binomial formula
we have

An = (D +N)n = C0nD
n + C1nD

n�1N + C2nD
n�2N2,

where

N2 =

0@ 0 0 b2

0 0 0
0 0 0

1A .
That is,

An = Dn + nDn�1N +
n (n� 1)

2
Dn�2N2.

Problem 152 Let

Jn =

0BBBBB@
0 1
0 1
. . . . . .

0 1
0

1CCCCCA
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For example, we have

J2 =

�
0 1
0 0

�
; J3 =

0@ 0 1 0
0 0 1
0 0 0

1A ; J4 =
0BB@
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

1CCA ,
and so on. Prove that Jn�1n 6= 0 and Jnn = 0: That is, Jn is nilpotent with index n.

19 Nilpotent Matrices

De�nition 153 A nilpotent matrix is a square matrix N such that Nk = 0 for some
positive integer k.

In other words, a square matrix N is said to be nilpotent if there exists a positive integer
k such that Nk = 0. The smallest such k is called the index of N .

Example 154 The matrix

N =

�
0 1
0 0

�
is nilpotent with index 2, since N2 = 0.

Proposition 155 Let N be a nilpotent matrix. Then

� Sp (N) = f0g ;

� I �N is invertible.

***************************************************
Proof. Assume that Nk = 0 and Nk�1 6= 0 for some k � 1.

� Let (�; x) be an eigenpair of N , that is, Nx = �x and x 6= 0: It follows that �kx =
Nkx = 0, and hence � = 0.

� Let x 2 Rn such that (I �N)x = 0. Therefore, Nx = x, form which it follows that
Nkx = Nk�1x = 0. Since Nk�1 6= 0, then x = 0. Thus, I �N is invertible.

The proof is �nished.
***************************************************

Theorem 156 Let A be a nonzero nilpotent matrix. Then A is nondiagonalizable.

Proof. Assume, by the way of contradiction that A is diagonalizable, that is, A = PDP�1

for some invertible matrix P = 0. Since A is nilpotent, there exists a positive integer k such
that Ak = 0. It follows that D = P�1AP , and so

Dk = P�1AkP = 0.

Since D is diagonal, then D = 0. This means that A = 0, a contradiction.
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Theorem 157 Any strictely triangular matrix is nilpotent.

Proof. Setting

A =

0BBB@
0 0 � � � 0
a21 0 � � � 0
...

...
. . .

...
an1 an2 � � � 0

1CCCA .
Since pA (x) = xn. By Cayley-Hamilton theorem, An =. That is, 9 k � n such that Ak = 0,
and hence A is nilpotent.

Example 158 Determine the index of the following matrix:

N =

0@ 0 1 0
0 0 1
0 0 0

1A .
It is clear that

N2 =

0@ 0 0 1
0 0 0
0 0 0

1A and N3 =

0@ 0 0 0
0 0 0
0 0 0

1A .
Since N3 = 0 and N2 6= 0, then N is nilpotent of index k = 3:

Remark 159 The product of two non-zero matrices can be zero. Indeed, for a matrix A 2
Mn(R), we have

A2 = 0; A = 0:

For example, if A =
�
1 �1
1 �1

�
6= 0 we see that

A2 =

�
1 �1
1 �1

��
1 �1
1 �1

�
=

�
0 0
0 0

�
;

But, A 6= 0.

Example 160 Consider the matrix

A =

0@ 3 9 �9
2 0 0
3 3 �3

1A
Show that A is nilpotent.

Solution. First, we determine the characteristic polynomial of A.

pA (x) =

������
3� x 9 �9
2 �x 0
3 3 �3� x

������ =
������
3� x 0 �9
2 �x 0
3 �x �3� x

������
= �x

������
3� x 0 �9
2 1 0
3 1 �3� x

������
= �x3:

By Cayley-Hamilton theorem, A3 = 0. Since A2 6= 0; then A is nilpotente of index 3.
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Theorem 161 Let N be a nilpotent matrix of index k and let x 2 Rn be a nonzero vector
such that Nk�1x 6= 0. The family�

Ix;Nx;N2x; :::; Nk�1x
	

is free.

Proof. Let (�i)0�i�k�1 2 R such that

k�1X
i=0

�iN
ix = 0,

from which it follows that8>>>>><>>>>>:

�0N
k�1x+ �1N

kx+ :::+ �k�1N
2k�2x = 0

�0N
k�2x+ �1N

k�1x+ :::+ �k�1N
2k�3x = 0

...
�0Nx+ �1N

2x+ :::+ �k�1N
kx = 0

�0Ix+ �1Nx+ :::+ �k�1N
k�1x = 0

)

8>>>>><>>>>>:

�0N
k�1x = 0

�1N
k�1x
...

�k�2N
k�1x = 0

�k�1N
k�1x = 0

Since Nk�1x 6= 0, then �0 = �1 = ::: = �k�1 = 0. This completes the proof.

19.1 Problems

Ex 01. Let A 2Mn(R) be a nilpotent matrix. Prove that

det (A+ In) = 1.

Ex 02. We ask if A2 = 0) A = 0 ?

Ex 03. Verify that

A =

0@ 1 �3 �4
�1 3 4
1 �3 �4

1A
is nilpotent.

Ex 04. Let

A =

0@ 1 1 3
5 2 6
�2 �1 �3

1A
Calculate A3. What do you say ?

Ex 05. Prove the result: If N is nilpotent, then I +N and I �N are invertible, where I is the
identity matrix.

Ex 06. Prove that
A � 2A) A is nilpotent over R.
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20 Trigonalization

De�nition 162 Let A 2Mn(K). Then A is called trigonalizable if there exists an invert-
ible matrix P , that is, P 2 GLn (K), such that A = PTP�1, where T is an upper triangular
matrix having the same eigenvalues of A. Or, equivalently, A is similar to a triangular
matrix T .

Now, we present Schur Theorem decomposition of a square matrix A 2Mn(C).

Theorem 163 Any matrix with complex entries is trigonalizable overMn(C):

Proof. Let A 2 Mn(C). We will show that A is trigonalizable over Mn(C). We use
induction on n. Indeed, for n = 1 we have

A = (a11) , where a11 2 C.

In this case, we write

A = I(a11)I
�1 = PTP�1 with P = I = (1) and T = (a11) = A.

Assume that every matrix A1 2 Mn (C) is trigonalizable. Let (�; x) be an eigenpair of A,
and let fx; u2; :::; ung be a basis of Cn. We put U = (x; u2; :::; un), it follows that

AU = ( Ax Au2 : : : Aun ) =
�
�x Au2 : : : Aun

�
.

Now, calculate U�1AU . In fact, we have

U�1 = U�1Ue1 = e1,

where e1 = (1; 0; :::; 0). Therefore,

U�1AU = U�1
�
�x Au2 : : : Aun

�
=
�
�e1 U�1Au2 : : : U�1Aun

�
.

Also we obtain

U�1AU =

0BBB@
� � ::: �
0 � ::: �
...

...
. . .

...
0 � ::: �

1CCCA =

�
� C
0 A1

�
= T1,

where C 2 M1;n�1 (C) and A1 2 Mn�1 (C). From the hypothesis, there exists an invertible
matrix W such that�

1 C
0 W�1

��
� C
0 A1

��
1 0
0 W

�
=

�
� CW
0 W�1A1W

�
=

�
� CW
0 T 0

�
.

Hence

A � T1 �
�
� CW
0 T 0

�
= T ,

where T is upper triangular. That is, A � T .

76



Exercise 164 Trigonalize the following matrix:

A =

�
2 �1
1 4

�
.

Then, calculate An, for n � 0:

1. From simple computation, we haev

pA (x) = (x� 3)2 :

This means that � = 3 is an eigenvalue of A with multiplicity 2, and hence A is not
diagonalizable since A 6= 3I.
Next, we �nd the corresponding eigenvectors. In fact, we have

E� =

�
(x; y) 2 R2; 2x� y = 3x

x+ 4y = 3y

�
=

�
(x; y) 2 R2; y = �x

	
= V ect f(1;�1)g = V ect fv1g :

Let v2 be a nonzero vector for which fv1; v2g is a basis of R2. For example, we put
v2 = (1; 1), and let

P =

�
1 1
�1 1

�
.

Therefore,

P�1AP =

�
1
2
�1
2

1
2

1
2

��
2 �1
1 4

��
1 1
�1 1

�
=

�
3 �2
0 3

�
= T

That is, A � T:
Next, we compute An : We have

An = PT nP�1:

It su¢ ces to compute T n : We write T in the form

T =

�
3 �2
0 3

�
=

�
3 0
0 3

�
D

+

�
0 �2
0 0

�
N

, where N2 = 0:

Hence

T n = Dn + nDn�1N

=

�
3n 0
0 3n

�
+ n

�
3n�1 0
0 3n�1

��
0 �2
0 0

�
=

�
3n �2n� 3n�1
0 3n

�
; n � 0:

Finally, we deduce that

An =

�
1 1
�1 1

��
3n �2n � 3n�1
0 3n

��
1
2
�1
2

1
2

1
2

�
=

�
3n � n � 3n�1 �n � 3n�1
n � 3n�1 n � 3n�1 + 3n

�
; n � 0:
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Theorem 165 For any matrix A 2Mn(C), we have

det (A) =
Y

�2Sp(A)

�:

Recall that Sp (A) consists of all eigenvalues of A.

Proof. We know that A is trigonalizable, and so there exists an invertible matrix P 2
GLn (C) and an upper triangular matrix T such that

A = PTP�1 (T = (tij) with tii 2 Sp (A) ).

Therefore,

det (A) = det
�
PTP�1

�
= det (P ) det (T ) det

�
P�1

�
= det (T ) = t11t22:::tnn

=
Y

�i2Sp(A)

�i:

This completes the proof.

Corollary 166 Let A 2Mn(C). Then

0 =2 Sp (A)) A is invertible.

Proof. By Theorem 165, if we have 0 =2 Sp (A) then det (A) 6= 0, and so A is invertible.
Addional notes

21 Nonsingular Matrices

De�nition 167 Let A be an n� n matrix. A is nonsingular if the only solution to Ax = 0
is the zero solution x = 0.

De�nition 168 Let A be an n� n matrix.

� If A is nonsingular, then At is nonsingular.

� A is nonsingular if and only if the column vectors of A are linearly independent.

� Ax = b has a unique solution for every n � 1 column vector b if and only if A is
nonsingular.

De�nition 169 Nonsingular matrices are sometimes also called regular matrices. A square
matrix is nonsingular i¤ its determinant is nonzero.
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Exercise 1. Determine whether the following matrices are nonsingular or not.

A =

0@ 1 0 1
2 1 2
1 0 �1

1A ; B =
0@ 2 1 2
1 0 1
4 1 4

1A :
Exercise 2. Consider the matrix

M =

�
1 4
3 12

�
1. Show that M is singular.

2. Find a non-zero vector v such that Mv = 0, where 0 is the 2-dimensional zero vector.

Exercise 3. Let A be the following 3� 3 matrix

A =

0@ 1 1 �1
0 1 2
1 1 a

1A :
Determine the values of a so that the matrix A is nonsingular.

22 Inverse Matrices

De�nition 170 An n� n matrix A is said to be invertible if there exists an n� n matrix
B such that AB = BA = I; where I is the n�n identity matrix. Such a matrix B is unique
and called the inverse matrix of A, denoted by A�1:

� A is invertible if and only if A is nonsingular.

� Not all matrices have inverses. This is the �rst question we ask about a square matrix.

� If A and B are invertible then so is AB. The inverse of a product AB is

(AB)�1 = B�1A�1.

� If A is invertible, then At is invertible and (At)�1 = (A�1)t.

Exercise 1. Let A be the matrix

A =

0@ 1 �1 0
0 1 �1
0 0 1

1A :
Is the matrix A invertible? If not, then explain why it isn�t invertible. If so, then �nd the
inverse.
Exercise 2. Find the inverse matrix of

A =

0@ 1 1 2
0 0 1
1 0 1

1A
if it exists. If you think there is no inverse matrix of A, then give a reason.
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23 Introduction to Eigenvalues and Eigenvectors

� Let A be an n � n matrix. A scalar � is called an eigenvalue of A if the equation
Ax = �x has a nonzero solution x. Such a nonzero solution x is called an eigenvector
corresponding to the eigenvalue �.

� The characteristic polynomial of A is the polynomial of degree n given by p(t) =
det(A� tI).

� If p(t) = (t � �1)n1 � � � (t � �k)nk is a factorization of the characteristic polynomial of
A, where �1,. . . ,�k are distinct eigenvalues of A, then the algebraic multiplicity of the
eigenvalue �i is ni.

Let A be an n� n matrix and let p(t) be the characteristic polynomial of A.

� The degree of p(t) is n.

� � is an eigenvalue of A if and only if p(�) = det(A� �I) = 0.

� A has at least one eigenvalue and has at most n distinct eigenvalues.

� A has at most n distinct eigenvalues.

� The eigenvalues of a matrix A are roots of the characteristic polynomial of A.

� The eigenvalues of a triangular matrix are diagonal entries.

Exercise 1.
(a) True or False. If each entry of an n�n matrix A is a real number, then the eigenvalues

of A are all real numbers.
(b) Find the eigenvalues of the matrix

A =

�
�2 �1
5 2

�
.

Exercise 2. Find all the eigenvalues and eigenvectors of the matrix

A =

�
3 �2
6 �4

�
:

Show that the eigenvalues of the matrix0BB@
0 0 0 0
1 1 1 1
0 0 0 0
1 1 1 1

1CCA
are 0 and 2:
Exercise 4. Let

A =

�
a �1
1 4

�
be a 2�2 matrix, where a is some real number. Suppose that the matrix A has an eigenvalue
3.
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1. Determine the value of a.

2. Does the matrix A have eigenvalues other than 3?

Exercise 5. Determine all eigenvalues and their algebraic multiplicities of the matrix

A =

0@ 1 a 1
a 1 a
1 a 1

1A ;
where a is a real number.

Exercise 6. Suppose that
�
1
1

�
is an eigenvector of a matrix A corresponding to the

eigenvalue 3 and that
�
2
1

�
is an eigenvector of A corresponding to the eigenvalue �2.

Compute A2
�
4
3

�
.

Exercise 7. Suppose that A is an n � n matrix with eigenvalue � and corresponding
eigenvector v.

1. IfA is invertible, is v an eigenvector ofA�1? If so, what is the corresponding eigenvalue?
If not, explain why not.

2. Is 3v an eigenvector of A? If so, what is the corresponding eigenvalue? If not, explain
why not.

Exercise 8. Let A be a 2 � 2 real symmetric matrix. Prove that all the eigenvalues of
A are real numbers by considering the characteristic polynomial of A.
Exercise 9. Let

A =

�
a b
�b a

�
be a 2� 2 matrix, where a; b are real numbers. Suppose that b 6= 0. Prove that the matrix
A does not have real eigenvalues.

Exercise 10. Find all eigenvalues and corresponding eigenvectors for the matrix A if

A =

0@ 2 �3 0
2 �5 0
0 0 3

1A .
Exercise 11. Let A be an n� n matrix. We say that A is idempotent if A2 = A.
(a) Find a nonzero, nonidentity idempotent matrix.
(b) Show that eigenvalues of an idempotent matrix A is either 0 or 1.

Exercise 12. Let A be an n � n matrix. Suppose that all the eigenvalues � of A are
real and satisfy � < 1. Then show that the determinant det(I�A) > 0, where I is the n�n
identity matrix.
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Exercise 13. Consider the 2� 2 matrix

A =

�
cos � � sin �
sin � cos �

�
,

where � is a real number 0 � � < 2�.
(a) Find the characteristic polynomial of the matrix A.
(b) Find the eigenvalues of the matrix A.
(c) Determine the eigenvectors corresponding to each of the eigenvalues of A.

Exercise 14. Let A be an n�n matrix and let �1; : : : ; �n be its eigenvalues. Show that

1. det (A) =
nQ
i=1

�i,

2. tr (A) =
nP
i=1

�i.

Exercise 15.
(a) A 2� 2 matrix A satis�es tr(A2) = 5 and tr(A) = 3.
Find det(A).
(b) A 2� 2 matrix has two parallel columns and tr(A) = 5. Find tr(A2).
(c) A 2� 2 matrix A has det(A) = 5 and positive integer eigenvalues. What is the trace

of A?

Exercise 16. Let n be an odd integer and let A be an n � n real matrix. Prove that
the matrix A has at least one real eigenvalue.
Exercise 17. Let A be an n� n real matrix. Prove the followings:
(a) The matrix AAt is a symmetric matrix.
(b) The set of eigenvalues of A and the set of eigenvalues of At are equal.
(c) The matrix AAt is non-negative de�nite.
(An n� n matrix B is called non-negative de�nite if for any n dimensional vector x, we

have xtBx � 0.)
(d) All the eigenvalues of AAt is non-negative.

Exercise 18. Let A be an n � n matrix. Suppose that y is a nonzero row vector such
that yA = y. (Here a row vector means a 1 � n matrix.) Prove that there is a nonzero
column vector x such that Ax = x. (Here a column vector means an n� 1 matrix.)

Exercise 19.

(a) Let A be a real orthogonal n� n matrix. Prove that the length (magnitude) of each
eigenvalue of A is 1.
(b) Let A be a real orthogonal 3� 3 matrix and suppose that the determinant of A is 1.

Then prove that A has 1 as an eigenvalue.
Exercise 20. Let A and B be square matrices such that they commute each other:

AB = BA. Assume that A�B is a nilpotent matrix. Then prove that the eigenvalues of A
and B are the same.
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Exercise 21. LetA be an n�nmatrix. Suppose thatA has real eigenvalues �1; �2; : : : ; �n
with corresponding eigenvectors u1; u2; : : : ; un. Furthermore, suppose that j�1j > j�2j >
: : : > j�nj. Let

x0 = c1u1 + c2u2 + : : :+ cnun

for some real numbers c1; c2; : : : ; cn and c1 6= 0. De�ne xk+1 = Axk for k = 0; 1; 2; ::: and let

�k =
xtkxk+1
xtkxk

:

Prove that lim
k!1

�k ! �1.

24 Eigenvectors and Eigenspaces

De�nition 171 Let A be an n� n matrix. The eigenspace corresponding to an eigenvalue
� of A is de�ned to be

E� = fx 2 Cn; Ax = �xg :

Let A be an n� n matrix.

� The eigenspace E� consists of all eigenvectors corresponding to � and the zero vector.

� A is singular if and only if 0 is an eigenvalue of A.

� The nullity of A is the geometric multiplicity of � = 0 if � = 0 is an eigenvalue.

Problem 172 Let

A =

0BB@
0 0 0 0
1 1 1 1
0 0 0 0
1 1 1 1

1CCA :
One of the eigenvalues of the matrix A is � = 0. Find the geometric multiplicity of the
eigenvalue � = 0.

24.1 Problems about Similar Matrices

Let A;B be n� n matrices.

� We say that a matrixA is similar to a matrixB if there exists a nonsingular (invertible)
matrix P such that

A = PBP�1:

� A is diagonalizable if there exist a diagonal matrix D and nonsingular matrix P such

that P�1AP = D. (Namely, if A is diagonalizable if it is similar to a diagonal matrix.)
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� A is said to be defective if there is an eigenvalue � of A such that the geometric
multiplicity of � is less than the algebraic multiplicity of �.

� If A and B are similar, then the characteristic polynomials of A and B are the same.
Hence the eigenvalues of A;B and their algebraic multiplicities are the same.

� A is diagonalizable if and only if A is not defective.

� A is diagonalizable if and only if Rn has an eigenbasis of A (a basis consisting of
eigenvectors).

� A is diagonalizable if and only if there are n linearly independent eigenvectors of A.

� If A has n distinct eigenvalues, then A is diagonalizable.

� If v1; : : : ; vn are linearly independent eigenvectors of A corresponding to the eigenvalues
�1; : : : ; �n (not necessarily distinct), then S�1AS = D, where S = [v1; : : : ; vn] and
D = diag(�1; : : : ; �n).

De�nition 173 An n � n matrix A is said to be diagonalizable if it can be written on the
form

A = PDP�1;

where D is a diagonal n � n matrix with the eigenvalues of A as its entries and P is a
nonsingular n � n matrix consisting of the eigenvectors corresponding to the eigenvalues in
D.

The diagonalization theorem states that an n�n matrix A is diagonalizable if and only if
A has n linearly independent eigenvectors, i.e., if the matrix rank of the matrix formed by the
eigenvectors is n. Matrix diagonalization (and most other forms of matrix decomposition)
are particularly useful when studying linear transformations, discrete dynamical systems,
continuous systems, and so on.
How to Diagonalize a Matrix. Step by Step Explanation.

Diagonalization Procedure of a square matrix A
Step 1: Find the characteristic polynomial
Step 2: Find the eigenvalues
Step 3: Find the eigenspaces
Step 4: Determine linearly independent eigenvectors
Step 5: De�ne the invertible matrix P and �nd P�1

Step 6: De�ne the diagonal matrix D
Step 7: Finish the diagonalization: We verify that A = PDP�1

De�nition 174 A square matrix D is diagonal if the only nonzero entries in D are on
the diagonal of D.
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Example.

D =

0BB@
1 0 0 0
0 �1 0 0
0 0 4 0
0 0 0 3

1CCA
Digonalisability (an idea)
For a given n � n matrix A, we would like to write A = PDP�1 for some invertible

matrix P and some diagonal matrix D. Why? Finding powers of diagonal matrices is easy.

Powers of a diagonal matrix
Example. Consider

A =

�
7 2
�4 1

�
,

where A = PDP�1 with P =
�

1 1
�1 �2

�
and D =

�
5 0
0 3

�
. Find an expression for Ak

for any positive integer k:

Theorem 175 We have the following notions:

1. If A is similar to B, then B is similar to A.

2. A is similar to itself.

3. If A is similar to B and B is similar to C, then A is similar to C.

4. If A is similar to the identity matrix I, then A = I.

5. If A or B is nonsingular, then AB is similar to BA.

6. If A is similar to B, then Ak is similar to Bk for any positive integer k.

Problem 176 Let A;B, and C be n� n matrices and I be the n� n identity matrix. Prove
the following statements.

Problem 177 Show that if A and B are similar matrices, then they have the same eigen-
values and their algebraic multiplicities are the same.

1. If A is similar to B, then B is similar to A.

Proof. If A is similar to B, then there exists a nonsingular matrix P such that B = P�1AP .
Let Q = P�1. Since P is nonsingular, so is Q. Then we have

Q�1BQ = (P�1)�1BP�1 = PBP�1 = P (P�1AP )P�1 = IAI = A:

Hence B is similar to A.

2. We show that A is similar to itself.
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Proof. Since the identity matrix I is nonsingular and we have

A = I�1AI;

the matrix A is similar to A itself.

3. If A is similar to B and B is similar to C, then A is similar to C.

Proof. If A is similar to B, we have

B = P�1AP;

for some nonsingular matrix P . Also, if B is similar to C, we have

C = Q�1BQ;

for some nonsingular matrix Q. Then we have

C = Q�1BQ = Q�1(P�1AP )Q = (PQ)�1A(PQ):

Let R = PQ. Since both P and Q are nonsingular, R = PQ is also nonsingular. The above
computation yields that we have

C = R�1AR,

hence A is similar to C.

Theorem 178 Part (1); (2); (3) show that similarity is an equivalence relation.

Proposition 179 If A is similar to the identity matrix I, then A = I.

Proof. Since A is similar to I, there exists a nonsingular matrix P such that

A = P�1IP:

Since P�1IP , we have A = I.

Proposition 180 If A or B is nonsingular, then AB is similar to BA.

Proof. Suppose �rst that A is nonsingular. Then A is invertible, hence the inverse matrix
A�1 exists. Then we have

A�1(AB)A = A�1ABA = IBA = BA,

hence AB and BA are similar. Analogously, if B is nonsingular, then the inverse matrix
B�1 exists. We have

B�1(BA)B = B�1BAB = IAB = AB,

hence AB and BA are similar.
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Proposition 181 If A is similar to B, then Ak is similar to Bk for any positive integer k.

Proof. If A is similar to B, then we have

B = P�1AP

for some nonsingular matrix P . Then we have for a positive integer k

Bk = (P�1AP )k = (P�1AP )(P�1AP ) � � � (P�1AP )| {z }
k�times

= P�1AkP ,

since we can cancel P and P�1 in between. Hence Ak and Bk are similar.

24.2 Problems

Exercise 1.

Is the matrix A =
�
1 2
0 3

�
similar to the matrix B =

�
3 0
1 2

�
?

Is the matrix A =
�
0 1
5 3

�
similar to the matrix B =

�
1 2
4 3

�
?

Is the matrix A =
�
�1 6
�2 6

�
similar to the matrix B =

�
3 0
0 2

�
?

Is the matrix A =
�
�1 2
�2 6

�
similar to the matrix B =

�
1 2
�1 4

�
?

Exercise 2. If two matrices are similar, then their determinants are the same.
Exercise 3. Determine whether the matrix

A =

�
1 4
2 3

�
is diagonalizable. If so, �nd a nonsingular matrix S and a diagonal matrix D such that
S�1AS = D.

Exercise 4. Diagonalize the 2 � 2 matrix A =
�

2 �1
�1 2

�
by �nding a nonsingular

matrix S and a diagonal matrix D such that S�1AS = D.
Exercise 5. Diagonalize the matrix

A =

0@ 4 �3 �3
3 �2 �3
�1 1 2

1A
by �nding a nonsingular matrix S and a diagonal matrix D such that S�1AS = D.
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Exercise 6. Suppose that A and P are 3� 3 matrices and P is invertible matrix. If

P�1AP =

0@ 1 2 3
0 4 5
0 0 6

1A
then �nd all the eigenvalues of the matrix A2.

Exercise 7. Let A =
�
1 2
2 1

�
. Compute An for any n 2 N.

Exercise 8. Let A;B be matrices. Show that if A is diagonalizable and if B is similar
to A, then B is diagonalizable.

1. Is every diagonalizable matrix invertible?

2. Is every invertible matrix diagonalizable?

Exercise 9. Determine whether the matrix

A =

0@ 0 1 0
�1 0 0
0 0 2

1A
is diagonalizable. If it is diagonalizable, then �nd the invertible matrix S and a diagonal
matrix D such that S�1AS = D.
Exercise 10. For which values of constants a; b and c is the matrix

A =

0@ 7 a b
0 2 c
0 0 3

1A
diagonalizable?
Exercise 11. Let

A =

0@ 1 3 3
�3 �5 �3
3 3 1

1A and B =

0@ 2 4 3
�4 �6 �3
3 3 1

1A :
For this problem, you may use the fact that both matrices have the same characteristic
polynomial:

PA (�) = PB (�) = � (�� 1) (�+ 2)2 :

1. Find all eigenvectors of A.

2. Find all eigenvectors of B.

3. Which matrix A or B is diagonalizable?

4. Diagonalize the matrix stated in (3), i.e., �nd an invertible matrix P and a diagonal
matrix D such that A = PDP�1 or B = PDP�1.
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Exercise 12. Consider the matrix A =
�
a �b
b a

�
, where a and b are real numbers and

b 6= 0.

1. Find all eigenvalues of A.

2. For each eigenvalue of A, determine the eigenspace E�.

3. Diagonalize the matrix A by �nding a nonsingular matrix S and a diagonal matrix D
such that S�1AS = D.

Exercise 13. Determine all 2�2 matrices A such that A has eigenvalues 2 and �1 with
corresponding eigenvectors

�
1
0

�
and

�
2
1

�
, respectively.

Exercise 14. Let A and B be n � n matrices. Suppose that A and B have the same
eigenvalues �1; : : : ; �n with the same corresponding eigenvectors x1; : : : ; xn. Prove that if the
eigenvectors x1; : : : ; xn are linearly independent, then A = B.
Exercise 15. Suppose that A is a diagonalizable n � n matrix and has only 1 and �1

as eigenvalues. Show that A2 = In, where In is the n� n identity matrix.
Exercise 16. Let

A =

0BBBB@
1

7

3

7

3

7
3

7

1

7

3

7
3

7

3

7

1

7

1CCCCA
be 3� 3 matrix. Find lim

n!+1
An:

Exercise 17. Let

A =

0@ 0 0 1
1 0 0
0 1 0

1A
1. Find the characteristic polynomial and all the eigenvalues (real and complex) of A. Is
A diagonalizable over the complex numbers?

2. Calculate A2009.

Exercise 18. Let A be an n � n matrix with real number entries. Show that if A is

diagonalizable by an orthogonal matrix, then A is a symmetric matrix.
Exercise 19. Let

A =

0@ 2 �1 �1
�1 2 �1
�1 �1 2

1A :
Determine whether the matrix A is diagonalizable. If it is diagonalizable, then diagonalize
A.
Exercise 20. Let A be an n� n matrix with the characteristic polynomial

p (t) = t3 (t� 1)2 (t� 2)5 (t+ 2)4 :

Assume that the matrix A is diagonalizable.
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1. Find the size of the matrix A.

2. Find the dimension of the eigenspace E2 corresponding to the eigenvalue � = 2.

3. Find the nullity of A.

Exercise 21. Let A be an n � n real symmetric matrix whose eigenvalues are all non-
negative real numbers. Show that there is an n� n real matrix B such that B2 = A.

Exercise 22. Find a square root of the matrix

A =

0@ 1 3 �3
0 4 5
0 0 9

1A :
How many square roots does this matrix have?

Exercise 23. Suppose the following information is known about a 3� 3 matrix A.

A

0@ 1
2
1

1A = 6

0@ 1
2
1

1A ; A
0@ 1
�1
1

1A = 3

0@ 1
�1
1

1A ; A
0@ 2
�1
0

1A = 3

0@ 2
�1
0

1A
(a) Find the eigenvalues of A.
(b) Find the corresponding eigenspaces.
(c) Is A a diagonalizable matrix? Is A an invertible matrix? Is A an idempotent matrix?

Exercise 24. Diagonalize the matrix

A =

0@ 1 1 1
1 1 1
1 1 1

1A
Namely, �nd a nonsingular matrix S and a diagonal matrix D such that S�1AS = D.
Exercise 25. Prove that the matrix

A =

�
0 1
�1 0

�
is diagonalizable.
Prove, however, that A cannot be diagonalized by a real nonsingular matrix.
That is, there is no real nonsingular matrix S such that S�1AS is a diagonal matrix.

Exercise 26. Let

A =

�
1� a a
�a 1 + a

�
be a 2 � 2 matrix, where a is a complex number. Determine the values of a such that the
matrix A is diagonalizable.
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Exercise 27. Consider the 2� 2 complex matrix

A =

�
a b� a
0 b

�
(a) Find the eigenvalues of A.
(b) For each eigenvalue of A, determine the eigenvectors.
(c) Diagonalize the matrix A.
(d) Using the result of the diagonalization, compute and simplify Ak for each positive

integer k.

Exercise 28. Consider the complex matrix

A =

0@ p
2 cos x i sin x 0
i sin x 0 �i sin x
0 �i sin x �

p
2 cos x

1A ;
where x is a real number between 0 and 2�. Determine for which values of x the matrix A
is diagonalizable. When A is diagonalizable, �nd a diagonal matrix D so that P�1AP = D
for some nonsingular matrix P .
Exercise 29. Consider the Hermitian matrix

A =

�
1 i
�i 1

�
:

(a) Find the eigenvalues of A.
(b) For each eigenvalue of A, �nd the eigenvectors.
(c) Diagonalize the Hermitian matrix A by a unitary matrix. Namely, �nd a diagonal

matrix D and a unitary matrix U such that U�1AU = D.
Exercise 30. Let A be an n� n complex matrix. Let S be an invertible matrix.
(a) If SAS�1 = �A for some complex number �, then prove that either �n = 1 or A is a

singular matrix.
(b) If n is odd and SAS�1 = �A, then prove that 0 is an eigenvalue of A.
(c) Suppose that all the eigenvalues of A are integers and det(A) > 0. If n is odd and

SAS�1 = A�1, then prove that 1 is an eigenvalue of A.
Exercise 31. Let A be a real skew-symmetric matrix, that is, At = �A. Then prove

the following statements.
(a) Each eigenvalue of the real skew-symmetric matrix A is either 0 or a purely imaginary

number.
(b) The rank of A is even.
Exercise 32. Let A be an n � n real symmetric matrix. Prove that there exists an

eigenvalue � of A such that for any vector v 2 Rn, we have the inequality v � Av � � kvk2.

Exercise 33. A real symmetric n � n matrix A is called positive de�nite if xtAx > 0
for all nonzero vectors x in Rn.
(a) Prove that the eigenvalues of a real symmetric positive-de�nite matrix A are all

positive.
(b) Prove that if eigenvalues of a real symmetric matrix A are all positive, then A is

positive-de�nite
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Exercise 34. Suppose A is a positive de�nite symmetric n� n matrix.
(a) Prove that A is invertible.
(b) Prove that A�1 is symmetric.
(c) Prove that A�1 is positive-de�nite.

Exercise 35. Let

A =

�
1 2
4 3

�
(a) Find eigenvalues of the matrix A.
(b) Find eigenvectors for each eigenvalue of A.
(c) Diagonalize the matrix A. That is, �nd an invertible matrix S and a diagonal matrix

D such that S�1AS = D.
(d) Diagonalize the matrix A3 � 5A2 + 3A+ I, where I is the 2� 2 identity matrix.
(e) Calculate A100. (You do not have to compute 5100.)
(f) Calculate (A3 � 5A2 + 3A+ I)100. Let w = 2100. Express the solution in terms of w.

Exercise 36. Prove that if A is a diagonalizable nilpotent matrix, then A is the zero
matrix O.

Exercise 37. Let A be a square matrix. A matrix B satisfying B2 = A is call a square
root of A. Find all the square roots of the matrix

A =

�
2 2
2 2

�
:

Exercise 38.
Let A be an n� n idempotent complex matrix. Then prove that A is diagonalizable.

Exercise 39. Let A be an n� n real skew-symmetric matrix.
(a) Prove that the matrices I � A and I + A are nonsingular.
(b) Prove that B = (I � A)(I + A)�1 is an orthogonal matrix.

Exercise 40. Let A be a real symmetric n � n matrix with 0 as a simple eigenvalue
(that is, the algebraic multiplicity of the eigenvalue 0 is 1), and let us �x a vector v 2 Rn.
(a) Prove that for su¢ ciently small positive real ", the equation Ax+"x = v has a unique

solution x = x(") 2 Rn.
(b) Evaluate lim

"!0
"x(") in terms of v, the eigenvectors of A, and the inner product h:; :i on

Rn.
Exercise 41. Prove that a positive de�nite matrix has a unique positive de�nite square

root.

25 Cayley-Hamilton Theorem

Theorem 182 (The Cayley-Hamilton Theorem) If p(t) is the characteristic polyno-
mial for an n� n matrix A, then the matrix p(A) is the n� n zero matrix.
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Example 183 Let A =
�
1 1
1 3

�
. The characteristic polynomial p(t) of A is

p (t) = det (A� tI) =
���� 1� t 1

1 3� t

���� = t2 � 4t+ 2.
Then the Cayley-Hamilton theorem says that the matrix p(A) = A2 � 4A + 2I is the 2 � 2
zero matrix. In fact, we can directly check this

p(A) = A2 � 4A+ 2I =
�
1 1
1 3

� �
1 1
1 3

�
� 4

�
1 1
1 3

�
+ 2

�
1 0
0 1

�
=

�
2 4
4 10

�
+

�
�4 �4
�4 �12

�
+

�
2 0
0 2

�
=

�
0 0
0 0

�
.

Exercise 1. Let

T =

0@ 1 0 2
0 1 1
0 0 2

1A :
Calculate and simplify the expression �T 3 + 4T 2 + 5T � 2I, where I is the 3 � 3 identity
matrix.
Exercise 2. Find the inverse matrix of the matrix

A =

0@ 1 1 2
9 2 0
5 0 3

1A
using the Cayley�Hamilton theorem.
Exercise 3. Find the inverse matrix of the 3� 3 matrix

A =

0@ 7 2 �2
�6 �1 2
6 2 �1

1A
using the Cayley-Hamilton theorem.
Exercise 4. Let

A =

�
1 �1
2 3

�
.

Find the eigenvalues and the eigenvectors of the matrix

B = A4 � 3A3 + 3A2 � 2A+ 8I.

Exercise 5. Let A;B be complex 2� 2 matrices satisfying the relation A = AB �BA.

Prove that A2 = O, where O is the 2� 2 zero matrix.

Exercise 6. In each of the following cases, can we conclude that A is invertible? If
so, �nd an expression for A�1 as a linear combination of positive powers of A. If A is not
invertible, explain why not.
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(a) The matrix A is a 3� 3 matrix with eigenvalues � = i; � = �i, and � = 0.
(b) The matrix A is a 3� 3 matrix with eigenvalues � = i; � = �i, and � = �1:
Exercise 7. Suppose that A is 2 � 2 matrix that has eigenvalues �1 and 3. Then for

each positive integer n �nd an and bn such that An+1 = anA + bnI, where I is the 2 � 2
identity matrix.

Exercise 8. Suppose that the 2�2 matrix A has eigenvalues 4 and �2. For each integer
n � 1, there are real numbers bn,cn which satisfy the relation An = bnA + cnI, where I is
the identity matrix. Find bn and cn for 2 � n � 5, and then �nd a recursive relationship to
�nd bn,cn for every n � 1.
Exercise 9. Let n > 1 be a positive integer. Let V =Mn�n(C) be the vector space over

the complex numbers C consisting of all complex n� n matrices. The dimension of V is n2.
Let A 2 V and consider the set

SA = fI = A0; A;A2; : : : ; An
2�1g

of n2 elements. Prove that the set SA cannot be a basis of the vector space V for any
A 2 V .

Exercise 10. Let A be a 3� 3 real orthogonal matrix with det(A) = 1.

1. If �1+
p
3i

2
is one of the eigenvalues of A, then �nd all the eigenvalues of A.

2. Let A100 = aA2 + bA+ cI, where I is the 3� 3 identity matrix.

Using the Cayley-Hamilton theorem, determine a; b; c.
Exercise 11. Let A and B be 2� 2 matrices such that (AB)2 = O, where O is the 2� 2

zero matrix. Determine whether (BA)2 must be O as well. If so, prove it. If not, give a
counter example.

26 NilpotentMatrices and Non-Singularity of SuchMa-
trices

De�nition 184 In linear algebra, a nilpotent matrix is a square matrix N such that

Nk = 0;

for some positive integer k. The smallest such k is sometimes called the index of N .

Example 185 The matrix

A =

�
0 1
0 0

�
is nilpotent with index 2, since A2 = 0.
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More generally, any triangular matrix with zeros along the main diagonal is nilpotent,
with index � n. For example, the matrix

B =

0BB@
0 2 1 6
0 0 1 2
0 0 0 3
0 0 0 0

1CCA
is nilpotent, with B4 = 0. The index of B is therefore 4.
Although the examples above have a large number of zero entries, a typical nilpotent

matrix does not. For example,

C =

0@ 5 �3 2
15 �9 6
10 �6 4

1A ; C2 = 0;
although the matrix has no zero entries.

Theorem 186 For an n� n square matrix N with real (or complex) entries, the following
are equivalent:

1. N is nilpotent.

2. The minimal polynomial for N is xk for some positive integer k � n.

3. he characteristic polynomial for N is xn.

4. The only complex eigenvalue for N is � = 0.

5. tr
�
Nk
�
= 0 for all k > 0.

This theorem has several consequences, including:

� The determinant and trace of a nilpotent matrix are always zero. Consequently, a
nilpotent matrix cannot be invertible.

� The only nilpotent diagonalizable matrix is the zero matrix.

26.1 Problems

Exercise 1. Let A be an n� n nilpotent matrix, that is, Am = O for some positive integer
m, where O is the n� n zero matrix. Prove that A is a singular matrix and also prove that
I � A; I + A are both nonsingular matrices, where I is the n� n identity matrix.
Exercise 2. Suppose that A is an n � n nilpotent matrix and B is an n � n invertible

matrix. Is the matrix B�A invertible? If so, give a proof. Otherwise, give a counterexample.
Exercise 3. Is the sum of a nilpotent matrix and an invertible matrix invertible?
Exercise 4. A square matrix A is called nilpotent if there exists a positive integer k

such that Ak = O, where O is the zero matrix.
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1. If A is a nilpotent n� n matrix and B is an n� n matrix such that AB = BA. Show
that the product AB is nilpotent.

2. Let P be an invertible n � n matrix and let N be a nilpotent n � n matrix. Is the
product PN nilpotent? If so, prove it. If not, give a counterexample.

Theorem 187 Every singular matrix can be written as a product of nilpotent matrices.

Theorem 188 If N is nilpotent, then det (I +N) = 1, where I denotes the n � n identity
matrix. Conversely, if A is a matrix and det (I +N) = 1 for all values of t, then A is
nilpotent. In fact, since p (t) = det (I + tA) � 1 is a polynomial of degree n, it su¢ ces to
have this hold for n+ 1 distinct values of t.

Theorem 189 If N is nilpotent, then {ndisplaystyle I+N is invertible, where I is the n�n
identity matrix. The inverse is given by

(I +N)�1 =

1X
k=0

(�N)k = I �N +N2 �N3 +N4 �N5 + :::,

where only �nitely many terms of this sum are nonzero.

End.
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