Guelma University Department of Mathematics

Second academic year(license in mathematics) Average time : 4 weeks
Sheet1l : Infinite Series

EXERCICE L.
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B: Determine if the following series converges or diverges. If it converges determine its sum.
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EXERCICE 2. Determine if the following series converge or diverge. If they converge give the value of the

series.
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(2) Use the results from the previous example to determine the value of the following series.
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(3) Telescoping Series : Determine if the following series converges or diverges. If it converges find its
value.
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EXERCICE 3. Integral, p— series, Comparison and Limit comparison test Determine if the following
series are convergent or divergent
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EXERCICE 4. Alternating series and Absolute Convergence :
(A): Determine if the following series is convergent or divergent.
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(B): Determine if each of the following series are absolute convergent, conditionally convergent or di-
vergent.
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(C): Let u, = sin (77 LT;L

(D): Give the number required to approximate the sum of the following to within 2 decimal places(0.01)

_1\n+1 7’L2
DD =SSt SE U S

]) . Show that : Y u, is an alternating series, then determine its nature
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