
1st Year Mathematics – University of Guelma 1 Dr. Abderrahmane Kefali 

Chapter 2 : Simple sequential 

algorithm 
Dr. Abderrahmane Kefali 

Senior Lecturer Class A,  

Department of Computer Science,  

University of May 8, 1945 - Guelma 

kefali.abderrahmane@univ-guelma.dz 

 

This document is prepared for printing two pages per sheet 

 

1) Language and Algorithmic Language 

Natural languages are inherently ambiguous, so it is essential to write 

algorithms in a formal language with precisely defined semantics to avoid any 

ambiguity. This specialized language is called an algorithmic language or 

pseudo-language or pseudocode. 

1.1) What is an Algorithmic Language?  

An algorithmic language or pseudocode is a language that is close to natural 

language and, at the same time, takes into account machine characteristics 

while being more flexible than a programming language. It is used for 

describing algorithms.  

This language uses a set of keywords and structures to fully and clearly 

describe the objects manipulated by the algorithm and all the instructions to be 

executed on these objects to solve a problem.  

The pseudocode expresses instructions for solving a given problem 

independently of the specifics of a particular programming language. 

Therefore, algorithms written in algorithmic languages have the advantage of 

being easily translatable into a programming language. 

1.2) Elements of an Algorithmic Language  

An algorithmic language (like any other programming language) is defined by 

a set of words constituting its vocabulary, called keywords or reserved words, 

in addition to rules of syntax and grammar governing the assembly of these 

words. 

 

 

mailto:kefali.abderrahmane@univ-guelma.dz


Algorithms and Data Structures 1  Chapter 2. Simple Sequential Algorithm simple 

1st Year Mathematics – University of Guelma 2 Dr. Abderrahmane Kefali 

1.2.1) Keywords  

Keywords are predefined and reserved words used in algorithms that have a 

particular meaning (ALGORITHM, BEGIN, END, IF, THEN, ... etc.). 

2) Parts of an Algorithm  

A pseudocode algorithm consists of three essential parts: the algorithm header, 

the declaration part, and the algorithm's body. 

2.1) Algorithm Header 

The algorithm header's sole purpose is to identify the algorithm by specifying a 

name for it. The header starts with the keyword ALGORITHM followed by the 

algorithm's name. 

Examples:  

ALGORITHM Sum;  

ALGORITHM Calculation; 

2.2) Declaration Part 

The declaration part includes declarations of all data elements used in the 

algorithm's body. Declaration involves naming various objects, specifying their 

type, dimensions, etc. 

2.3) Algorithm Body 

The algorithm's body includes all instructions and operations to be performed 

on the data to solve the problem. These instructions involve basic computer 

operations.  

The processing part begins with the keyword BEGIN and ends with the 

keyword END. indicating the end of the algorithm.  

All instructions must end with a semicolon ";" which serves as a separator 

between instructions. 

3) Data: Variables and Constants 

In an algorithm, you will frequently need to temporarily store objects on which 

all the algorithm's processing will be based. These objects can come from the 

hard drive or be provided by the user (keyboard input). They can also be results 

obtained by the algorithm, whether intermediate or final. Whenever you need 

to store information during an algorithm, you use a variable or a constant. 

These can be of different types: text, numeric, logical, etc. 



Algorithms and Data Structures 1  Chapter 2. Simple Sequential Algorithm simple 

1st Year Mathematics – University of Guelma 3 Dr. Abderrahmane Kefali 

3.1) Variables  

In algorithmics, a variable is a data element with a name and a value that can 

change during the algorithm's execution.  

From the computer's perspective, a variable is just a memory location at an 

arbitrary address identified by a name and capable of storing data of a type 

defined in advance. The name is used to locate this memory location so that 

the computer can access it directly.  

The variable can be schematized as a box labeled with a name, having a size, 

content, and memory address. 

Example:  

Let's assume we have a variable named x; it can be represented in memory 

as follows: 

   RAM 

   00  

Variable 

name 
X ............... 01 Adresses 

  02  

Memory 

areas 

  ... Variable 

content   ... 

 

To be able to use a variable, we must first declare it in the declaration part of 

the algorithm in order to allocate memory space for it. 

3.2) Constants  

Constants are fixed data (values) that do not change during the execution of 

the algorithm. A constant is identified by a name and has a value that must be 

set before the algorithm is executed. The value of the constant can be numeric, 

textual, logical, etc.  

Just like a variable, a constant from the computer's perspective is a memory 

area labeled with a name that stores a value, but this value remains unchanged 

during the execution of the algorithm. 

3.3) Notion of Identifier 

An identifier is the name assigned to an object in the algorithm, whether it's the 

algorithm itself, a variable, a constant, etc. This name allows the computer to 

distinguish them and humans to understand and refer to them. An identifier is 



Algorithms and Data Structures 1  Chapter 2. Simple Sequential Algorithm simple 

1st Year Mathematics – University of Guelma 4 Dr. Abderrahmane Kefali 

a sequence of alphanumeric characters that must adhere to the following 

criteria: 

• It must start with a letter or an underscore (_). 

• It continues with any number of letters, digits, or underscores (no 

symbols or spaces). 

• It cannot be a keyword. 

Note:  

In algorithmics, there is no distinction between lowercase and uppercase 

letters. 

Examples:  

A, DELTA, X1, VAL, i, K, MM, B_727 are valid identifiers.  

END, 12MOT, VAL*2 are invalid identifiers. 

4) Data Types 

The data manipulated by the algorithm and stored in variables are not all of the 

same type. This is why it is necessary to assign a data type to each variable to 

specify what it can contain.  

Types serve various purposes, including: 

• Defining the set of values that a variable can take. For example, a 

variable defined as an integer cannot receive the value 7.46. 

• Specifying the set of operations, typically called operators, that can be 

applied to the variable. For instance, you cannot perform multiplication 

on two string variables. 

• Informing the compiler about the amount of memory required to store the 

variable's value. Thus, an integer and a real number do not have the 

same size and do not occupy the same space in memory. 

In algorithmics, there are several data types, which can be categorized into two 

classes: 

• Elementary types 

• Structured or composite types 

In this chapter, we focus on elementary types. Structured types will be the 

subject of other chapters. 

4.1) Elementary Types 

These are simple types, meaning a variable of these types contains only one 

value at a time. In elementary types, we distinguish between standard types 

and non-standard types. 



Algorithms and Data Structures 1  Chapter 2. Simple Sequential Algorithm simple 

1st Year Mathematics – University of Guelma 5 Dr. Abderrahmane Kefali 

4.1.1) Standard Types 

In algorithmics, there are five standard types, also known as elementary data 

types or primitive data types: 

a) Integer 

The integer type includes integer numerical values, both positive and negative. 

It is denoted by the name: Integer. 

b) Real  

The real type includes real (floating-point) values, both positive and negative. 

It is denoted by the name: Real.  

The usual representation for real numbers is the decimal notation "a.b," for 

example: 3.14, -7.22, ... 

c) Character  

The character type represents the domain of characters, including lowercase 

and uppercase alphabetic letters, numerical characters, special characters (., 

?, !, <, >, =, , +, ... etc.), and the space character. This type is denoted by the 

name: Character.  

However, a variable of this type can only contain a single character at a time. 

Characters are enclosed in single quotes (apostrophes) " ' ".  

Examples: 'R', '5', '*', ... 

d) String 

This type refers to the set of strings that can be formed by composing 

characters. It is denoted by the name: String.  

Strings of characters are delimited by double quotes.  

Examples: "Algo", "123", "True". 

e) Boolean (Logical) 

The Boolean type is also called the logical type and represents the logical 

domain, which contains only two values (True and False). It is denoted by the 

name: Boolean. 

f) Note on Types 

Each type has a specific size and representation in computer memory. 

Different forms of constants should not be confused.  

Examples: 

• The value 3 (integer type) 

• The value 3.0 (real type) 



Algorithms and Data Structures 1  Chapter 2. Simple Sequential Algorithm simple 

1st Year Mathematics – University of Guelma 6 Dr. Abderrahmane Kefali 

• The value '3' (character type) 

• The value "3" (string type). 

4.1.2) Non-Standard Types (or User-Defined Types)  

Here, we distinguish between enumerated types and interval types. 

a) Enumerated Type  

The enumerated type is defined by the algorithm's designer and is not known 

to the compiler. In defining an enumerated type, the designer lists a finite and 

ordered sequence of values that a variable of this type can take. The defined 

type must be declared in the declaration part of the algorithm using the keyword 

TYPE.  The declaration of an enumerated type is done as follows:  

TYPE name_Type = (val1, val2, ..., valn); 

Where name_Type is an identifier representing the name of the type, and 

val1 ... valn are the values of this type.  

Example:  

The Season type can be defined as follows:  

TYPE Season = (Spring, Winter, Autumn, Summer); 

b) Interval Type  

This type allows us to define a range of values of a scalar type by specifying 

its lower and upper bounds. The types of the constants that are the bounds of 

the interval specify the type of the scalar from which the interval is derived. 

However, the interval can be a range of integer or character values but not real 

numbers or strings.  

Like the enumerated type, an interval type is not known to the compiler and 

must be declared in the declaration part of the algorithm using the TYPE 

keyword as follows:  

TYPE name_Type = lower_Bound..upper_Bound; 

Where name_Type represents the name of the type, and lower_Bound 

and upper_Bound are respectively the lower and upper bounds of the 

interval. 

Examples:  

The Month and Alphabet types are declared as follows:  

TYPE Month = 1..12;   // Interval derived from Integer type  

TYPE Alphabet = 'a'..'z';  // Interval derived from Character type 



Algorithms and Data Structures 1  Chapter 2. Simple Sequential Algorithm simple 

1st Year Mathematics – University of Guelma 7 Dr. Abderrahmane Kefali 

4.2) Declaration of Variables and Constants  

4.2.1) Declaration of Variables  

Declaring a variable involves assigning it a name (identifier) and a type.  

The declaration of a variable begins with the keyword VAR, followed by the 

variable name, followed by a colon " : " and then the variable type. The 

declaration syntax is as follows:  

VAR name_Variable: type_Variable; 

Example:  

VAR age: Integer;  

VAR moy: Real;  

VAR prenom: String;  

VAR admis: Boolean;  

VAR sitFam: Character;  

VAR m: Month;  

Remarks: 

• Declaring a variable involves reserving memory space corresponding to 

the declared variable's type. 

• You can declare multiple variables using a single VAR keyword, even of 

different types. 

• Variables of the same type can be declared together, separated by 

commas. 

• It is possible to place multiple variable declarations in the same line 

separated by semicolons.  

Example:  

 VAR  a : Integer ;   VAR  avg : Real ; 

 VAR  b : Integer ;   VAR  s : Season ; 

 VAR  c : Integer ; 

These declarations can be refined as follows:  

VAR a,b,c : Integer; avg : Real; s: Season; 

4.2.2) Declaration of Constants  

The declaration of a constant begins with the keyword CONST, followed by the 

constant name, followed by the equals sign " = ", and then the constant value. 

The declaration syntax is as follows:  



Algorithms and Data Structures 1  Chapter 2. Simple Sequential Algorithm simple 

1st Year Mathematics – University of Guelma 8 Dr. Abderrahmane Kefali 

CONST name_Constant = value_Constant;  

Example:  

CONST pi = 3.14;  

CONST FirstName = "Mohammed";  

CONST Nb = 10;  

CONST Point = '.';  

Remarks: 

• A single CONST keyword is sufficient to declare multiple constants. 

• You can place multiple constant declarations in the same line, separated 

by semicolons. 

• Character constants should be enclosed in single quotes " ' " and string 

constants in double quotes (quotation marks). 

• The declaration of constants comes before the declaration of variables.  

Example:  

The previous example is equivalent to this one:  

CONST pi=3.14; FirstName="Mohammed"; Nb=10; Point='.'; 

5) Basic Operations 

Let's first discuss the concepts of operators, operands, and expressions. 

5.1) Operator and Operand 

An operator is a symbol of an operation that allows to perform actions on 

variables or carry out calculations.  

An operand is an entity (variable, constant, or expression) used by an operator. 

There are several types of operators. 

5.1.1) Arithmetic Operators 

These are the usual arithmetic operations. 

+ : Addition   Div : Integer division 

- : Subtraction  Mod : Modulo (remainder of integer division) 

* : Multiplication  ^ : Exponentiation (Power) 

/ : Division 

Finally, you can use parentheses with the same rules as in mathematics.  

The above operators are binary operators, except for "-" which can also be 

unary and signifies a change of sign.  



Algorithms and Data Structures 1  Chapter 2. Simple Sequential Algorithm simple 

1st Year Mathematics – University of Guelma 9 Dr. Abderrahmane Kefali 

Addition, subtraction, multiplication, and division are applicable to both 

integer and real operands, while div and mod are only applicable to 

integer operands. 

5.1.2) Logical Operators 

These operators are used to connect logical or boolean operands. These 

operators are NOT, AND, OR.  

NOT is a unary operator that negates a logical value. AND and OR are binary 

operators that combine two logical operands. 

5.1.3) Comparison Operators 

Comparison operators allow you to compare two values of the same type and 

return a boolean result (true or false) based on order relations: natural order 

for integers and real numbers, and ASCII lexicographic order for characters 

and strings. These operators are "<", ">", "=", "≠", "≤", "≥".  

Comparison operators can be applied to operands of type integer, real, 

character, or string. 

5.1.4) Alphanumeric Operator 

This operator allows you to concatenate, or in other words, join two strings of 

characters. It is symbolized by the "+" sign.  

This sign, when applied to numbers, performs addition, and when applied to 

strings of characters, performs concatenation.  

Example:  

"Hello" + " world" gives "Hello world". 

5.2) Expression 

An expression is a set of operands connected by operators and is equivalent 

to a single value. The operands can be direct values, constants, variables, or 

other expressions.  

Each expression is associated with a type, which is the type of the value it 

represents. 

Examples:  

Let a and b be two integer variables: 

• 12.5 * a + (b/2)   is an arithmetic expression. 

• a > b and b ≥ c   is a logical expression. 

• "Algo" + "rithm"   is a string expression. 

 



Algorithms and Data Structures 1  Chapter 2. Simple Sequential Algorithm simple 

1st Year Mathematics – University of Guelma 10 Dr. Abderrahmane Kefali 

5.2.1) Validity of an Expression  

To ensure the validity of an expression and determine its type, you need to 

check the syntax of the expression, the compatibility of the operand types it 

consists of, and the validity of the operators. The type of the operands defines 

the type of the expression, so it's essential that the operand types of an 

operator are compatible. For example, adding an integer and a character 

doesn't make sense. 

5.2.2) Evaluating an Expression 

The evaluation of an expression is based on the priority rules between 

operators the following order (from highest to lowest precedence): 

1. Unary operators: Logical NOT, Unary - 

2. Power operator: ^ 

3. Multiplicative operators: *, /, div, mod, Logical AND 

4. Additive operators: +, -, Logical OR 

5. Relational operators: <, ≤, >, ≥, =, ≠ 

Remarks: 

• For operators with the same precedence (priority), the expression is 

evaluated from left to right. 

• If there are parentheses, innermost ones are evaluated first. 

Example:  

Consider the following declarations: 

Const i = 3; 

Var  j, k: Integer; x, y, z: Real; 

A, B: Boolean; c: Char; ch1, ch2: String; 

Evaluate and determine the type of the following expressions: 

• 12 * 3 + 5   is correct and has a value of 41 (integer type). 

• 12 * (3 + 5.1)  is correct and has a value of 97.2 (real type). 

• -x - k div 3  is correct and has a real type. 

• z mod j + i   incorrect because MOD is not valid for real type. 

• NOT y AND B>0  incorrect: NOT should be applied to a boolean. 

• c='c' OR c='t'  incorrect: OR is not valid for character type. 

• (c='c') OR (c='t') is correct and has a boolean type. 



Algorithms and Data Structures 1  Chapter 2. Simple Sequential Algorithm simple 

1st Year Mathematics – University of Guelma 11 Dr. Abderrahmane Kefali 

6) Basic Instructions  

An instruction is a fundamental action that commands the computer to perform 

a calculation or communicate with one of its input or output devices. 

6.1) Assignment Statement 

Assignment is an operation that assigns a value to a variable. It is denoted by 

the symbol "". The syntax of this instruction is as follows:  

variable  Value; 

It is read as: variable receives value or  variable gets value. 

The left-hand side of an assignment must be a variable name, while the right-

hand side (value) can be a direct value, a constant, another variable, or an 

expression. In the case of an expression, it is evaluated, and its result is stored 

in the variable. 

Examples:  

A  3; assign the direct value 3 to variable A.  

B  A; assign the content of variable A, which is 3, to variable B.  

B  B - 2; evaluate the expression B-2 and put the result (equal to 1) 

into variable B.  

Course  "Physics"; assign the string "Physics" to the variable Course. 

Remarks: 

1) Assignment copies the value from the right-hand side to the variable on the 

left-hand side without modifying the right-hand side. 

2) In an assignment, the type of the value (right-hand side) must match the 

type of the variable (left-hand side). 

6.2) Input/Output Instructions  

6.2.1) Reading (input) 

Reading is a basic action that allows to enter a value from the keyboard and 

assign it to a variable. The syntax of this instruction is as follows:  

READ(variable); 

This instruction means to place the value entered via the keyboard by the user 

into the memory location reserved for the variable. 

Example:  

Var x, y: integer; a: real;  

READ(x);  



Algorithms and Data Structures 1  Chapter 2. Simple Sequential Algorithm simple 

1st Year Mathematics – University of Guelma 12 Dr. Abderrahmane Kefali 

READ(y);  

READ(a); 

Remarks: 

• The value entered via the keyboard must be compatible with the receiving 

variable. 

• Several reading instructions can be grouped together into a single 

instruction by separating the variables to be read with commas. 

READ(v1); READ(v2); …; READ(vn);  

is equivalent to: READ(v1,v2,…,vn); 

Example:  

The reading instructions in the previous example can be combined into a single 

instruction:  READ(x,y,z); 

6.2.2) Writing  

The writing is an instruction allowing to display a value on the screen. This 

value can be a direct value, a constant, the content of a variable, a message, 

the result of an expression, etc.  

The syntax of this instruction is as follows:  

WRITE(Value); 

Example:  

WRITE("The mark: "); displays the message "The mark: ".  

WRITE(mark); displays the content of the variable mark.  

WRITE(6*2+5); evaluates the expression 6*2+5 and displays its result (17). 

Remarks:  

• Multiple writing instructions can be grouped into a single instruction by 

separating the values to be displayed with commas. 

• Messages to be displayed must be enclosed in double quotation marks. 

Example:  

WRITE("The mark: ", mark, "/20"); 

This instruction displays the message "The mark:" followed by the content of 

the variable mark, followed by the string "/20". 

7) Building a Simple Algorithm 

To construct an algorithm, you must combine all the concepts presented 

above. Thus, an algorithm is composed of: 



Algorithms and Data Structures 1  Chapter 2. Simple Sequential Algorithm simple 

1st Year Mathematics – University of Guelma 13 Dr. Abderrahmane Kefali 

• Header: Indicates the name of the algorithm. 

• Declaration Part: Where we describe the objects we will use in the 

algorithm (variables, constants, types, etc.). 

• Algorithm Body: Encompasses all the instructions of the algorithm 

placed between BEGIN and END. These instructions are typically 

presented in the following order: 

- Data Input: we should first retrieve the necessary data through 

reading. 

- Data Processing: we perform the necessary operations to solve the 

problem using assignment instructions. 

- Result Output: Finally, we display the results obtained using the 

writing instruction. 

Recall that the structure of an algorithm takes the following form: 

ALGORITHM <name of the algorithm>;   Header 

Const <list of constants>; 

Type <list of types >;   declaration part 

Var <list of variables>;   

BEGIN 

<Sequence of actions>   algorithm body 

END. 

Example: 

The algorithm for calculating the sum of two integer numbers is as follow: 

ALGORITHM  sum; 

VAR x,y,s:Integer; 

Begin 

WRITE("Enter 2 numbers: "); 

READ(x,y); 

s  x + y; 

WRITE("The sum of the 2 numbers is ",s); 

END. 

8) Representation of an Algorithm Using a Flowchart 

A flowchart is a graphical representation of a problem's solution, which has the 

advantage of being easily understandable but comes with the disadvantage of 

consuming significant space. 



Algorithms and Data Structures 1  Chapter 2. Simple Sequential Algorithm simple 

1st Year Mathematics – University of Guelma 14 Dr. Abderrahmane Kefali 

Operations within a flowchart are represented by symbols connected to each 

other by arrowed lines that indicate the flow path. The main symbols used are 

as follows: 

Symbol Role 

 Used to mark the beginning and end of a 

flowchart. 

 Used to mark read and write operations. 

 It is used for assignment operations 

(actions). 

 Used to represent tests or conditional 

branching. 

 

 Symbol of connection between various 

symbols. It also indicates the sequencing of 

operations. 

The transition from an algorithm to a flowchart is achieved by representing each 

of its instructions using the corresponding graphical form and connecting them 

with arrows.  

Example: 

The algorithm for calculating the sum of two numbers mentioned earlier can be 

represented by the following flowchart: 

 

Begin 

WRITE("Enter the 2 numbers: ") 

 

s  x + y; 

 

READ(x,y); 

 

WRITE ("The sum of the 2 numbers is : ", s); 

 

End 

Begin/End 

Oui Non 



Algorithms and Data Structures 1  Chapter 2. Simple Sequential Algorithm simple 

1st Year Mathematics – University of Guelma 15 Dr. Abderrahmane Kefali 

9) Translation into C Language 

9.1) The C Language: Presentation 

The C language is a general-purpose programming language invented in 1972 

by Dennis Ritchie and Ken Thompson with the aim of developing the famous 

UNIX operating system. Today, C has become one of the most widely used 

programming languages, especially for system programming. As a result, the 

kernels of major operating systems like Windows and Linux are developed 

primarily in the C language. 

9.2) Basic Elements of the C Language 

9.2.1) Structure of a C Language Program 

The simplest structure of a C program is as follows: 

<Library Declarations> 

main() 

{ 

    <Constant and Variable Declarations> 

    <Instructions> 

} 

The first part includes the declaration of the libraries of functions to be used in 

the program. Among these libraries, we mention: 

• stdio.h : This is the library of standard input and output functions. 

Including the stdio.h library is done using the preprocessor directive:              

#include <stdio.h> 

• math.h :  This is the library of basic mathematical functions. Including the 

math.h library is done using the preprocessor directive:                 

#include <math.h> 

It is important to pay attention to the following elements: 

• main is a predefined name of the main function that must exist in a C 

language program. It should be in lowercase. 

• The parentheses after the main function are mandatory. 

• The curly braces ({ and }) mark the beginning and end of a block of 

instructions or a function. They replace BEGIN and END in algorithmic 

notation. 

9.2.2) The Declaration Section 

a) Identifiers 



Algorithms and Data Structures 1  Chapter 2. Simple Sequential Algorithm simple 

1st Year Mathematics – University of Guelma 16 Dr. Abderrahmane Kefali 

Identifiers in the C language have the same characteristics as in algorithmics. 

Additionally, the C language is case-sensitive, meaning it distinguishes 

between uppercase and lowercase letters.  

Example: 

The identifiers: NOM, Nom, and nom are three different identifiers in C.  

b) Predefined Types in the C Language 

The various data types recognized in the C language are summarized in the 

following table: 

Data type Signification Size 

(Bytes) 

Range of acceptable values 

char Character 1 -128 to 127 

unsigned char Unsigned Character 1 0 to 255 

short  Short Integer 2 -32768 to 32767 

unsigned short  Unsigned Short 

Integer 

2 0 to 65535 

int Integer 4 -2147483648 to 2147483 647 

unsigned int Unsigned Integer 4 0 to 4294967295 

long  Long Integer 4 -2147483648 to 2147483647 

unsigned long  Unsigned long Integer 4 0 to 4294967295 

float Flottant (real) 4 3.4×10-38 to 3.4×1038 

double Double Flottant 8 1.7×10-308 to 1.7×10308 

long double Long Double Flottant  10 3.4×10-4932 to 3.4×104932 

Remarks: 

• The C language does not have Boolean and String types. 

• The C language does not differentiate between a character itself (e.g., 'A') 

and its ASCII code. Therefore, you can represent the char type as an 

integer encoded on 1 byte. 

c) Variable Declaration 

Variable declaration can be done in two possible ways: 

type_Variable name_Variable; 

type_Variable name_Variable = initial_value; 

type_Variable is the data type contained in the variable (one of the types 

in the table above), name_Variable is the variable name, and 

initial_value is the initial value of the variable. 

 



Algorithms and Data Structures 1  Chapter 2. Simple Sequential Algorithm simple 

1st Year Mathematics – University of Guelma 17 Dr. Abderrahmane Kefali 

Examples: 

int x, y; 

float z; 

char a; 

d) Constant Declaration 

The declaration of constants in the C language is in the following form: 

#define name_Constant value_Constant 

Remarks: 

• Each constant must be declared in a separate line, and that line does not 

end with a semicolon. 

• Character constants must be enclosed in single quotes. 

• String constants must be enclosed in double quotes. 

Examples: 

#define nb 2            // Integer constant named nb with a value of 2 

#define pi 3.14        // Constant named pi with a value of 3.14 

#define b 'v'          // Character constant named b with a value of 'v' 

#define a "Hello"   // Constant named a with a value of "Bonjour" 

9.2.3) Processing Section 

a) Operators  

a.1) Arithmetic Operators  

The classical arithmetic operators include the unary operator "-" (sign 

change) and the binary operators: 

+ : addition  - : subtraction     * : multiplication 

/ : division (integer and real)        % : remainder of the division 

Note:  

In C, "/" is used for both integer and floating-point division. If both operands 

are integers, the "/" operator will perform integer division (quotient). However, 

it will yield a floating-point value as soon as one of the operands is a floating-

point number. For example, a=9/6; will return 1, while a=9.0/6; will return 

1.5 because one of the operands is a real number (9.0). 

a.2) Logical Operators  

! : Negation    && : Logical AND   || :Logical OR 



Algorithms and Data Structures 1  Chapter 2. Simple Sequential Algorithm simple 

1st Year Mathematics – University of Guelma 18 Dr. Abderrahmane Kefali 

Since the boolean type does not exist in C, the value returned by logical 

operators is an integer, which is 1 if the condition is true and 0 otherwise. 

a.3) Relational Operators 

> : strictly greater >= : greater than or equal    == : equal 

< : strictly less  <= : less than or equal   != : not equal 

The value returned is of type int: 1 if the condition is true and 0 otherwise. 

b) Assignment  

Assignment in the C language is symbolized by the "=" sign. Its syntax is: 

name_Variable = Value ; 

Examples:  

A = 3 ;   // Assign the direct value 3 to variable A  

B = A-1 ;  // Store the result of the expression A-1 in variable B 

c) Reading (input)  

Input in C is done using the scanf function from the stdio.h library. It 

allows you to enter data from the keyboard and store it at the addresses 

specified by the function's parameters. The syntax of this function is:  

scanf("control string", &variable1, &variable2,…) 

The function's parameters consist of a control string and the address 

(indicated by the "&" sign) of the variables where the input data should be 

stored.  

The control string specifies the format in which the input data is to be 

converted. Thus, for each variable, a format specifier is specified. Format 

specifiers are indicated by a character preceded by the "%" sign. The format 

code and the variable type must match. The input formats for the scanf 

function are summarized in the following table: 

Format Data type Data representation 

%d  Int Signed decimal 

%hd  short int Signed decimal 

%ld  long int Signed decimal 

%u  unsigned int Unsigned decimal 

%hu  unsigned short int Unsigned decimal 

%lu  unsigned long int Unsigned decimal 

%f  Float Floating-point, fixed decimal 



Algorithms and Data Structures 1  Chapter 2. Simple Sequential Algorithm simple 

1st Year Mathematics – University of Guelma 19 Dr. Abderrahmane Kefali 

Example :   

int a; float b,c; 

Scanf("%d",&a) ; 

Scanf("%f%f",&b,&c) ; 

d) Writing (output) 

Writing is done using the printf function from the stdio.h library. 

The printf function allows to display data specified by the function's 

parameters on the screen. The syntax of this function is: 

printf("control string",expression1,expression2,…); 

The control string contains the text to be displayed and the format 

specifiers corresponding to each expression in the parameter list. The format 

specifiers are the same as those presented in the table above. 

Example: 

float a=3.14; 

printf(”The value of P is %f”, a);  

In this example, the string "The value of P is " is displayed on the screen, 

followed by the value 3.14 stored in the variable a. 

9.2.4) Example of a C Program 

The following program calculates the sum of two integers, as described in the 

previous algorithm. 

#include <stdio.h> 

main(){ 

int x,y,s; 

printf("Enter 2 numbers: "); 

scanf("%d%d",&x,&y); 

s = x + y; 
printf("The sum of the 2 numbers is %d",s); 

} 

 

%lf  Double Floating-point, fixed decimal 

%Lf  long double Floating-point, fixed decimal 

%c  Char Character 

%s  String of characters 


