
23/10/2023

1

Chapter 2

Simple sequential algorithm

Chapter 2: Simple Sequential
Algorithm

Parts of an algorithm

Data: Variables and Constants

Types of data

Basic Operations

Simple algorithm construction

Representation of an algorithm by a flowchart

Translation into C language

20:49Mrs Séridi Bordjiba Yamina

2

1. Parts of an algorithm

An algorithm is a finite description of a
computation that associates a result to data.

 It is composed of 3 parts:
Header: the name of the algorithm
Declarations: the specification of all objects used

in the algorithm.
Actions or body: the description of the

calculation steps in a pseudo-language or
algorithm language.

20:49Mrs Séridi Bordjiba Yamina

3

1. Parts of an algorithm

20:49Mrs Séridi Bordjiba Yamina

4

23/10/2023

2

 The body of an algorithm is one or more instructions.

We can compose these instructions to define new
instructions. There are several types of composition,
called control structures.

 All instructions in an algorithm must be separated by a
semicolon ";"

 The basic instruction is “assignment”.

20:49Mrs Séridi Bordjiba Yamina

5 1. Parts of an algorithm

2. Data: Variables and Constants

 We often need to store values temporarily.
 data from the hard disk, given by the user by typing on the

keyboard (inputs).

 intermediate or final results obtained by the program
(outputs).

 they can be of different kinds: numbers, text, etc.

 we use what is called

20:49Mrs Séridi Bordjiba Yamina

6

A variable

2. Data: Variable and Constant
In other words

 To store initial data or intermediate calculation results, we use
"variables".

 From the computer's point of view, a variable is a memory
location to which we access the content through an identifier.

 From an algorithmic point of view, a variable has a fixed name
and a value that can change during the execution of the
algorithm.

 Therefore, the nature and role of variables in computer
science and mathematics are different, although we use the
same word.

20:49Mrs Séridi Bordjiba Yamina

7

2. Data: Variable and Constant
One more explanation:

 A variable can be likened to a box, which the computer
will identify by a label (its name). To access the contents
(the value) of the box, you simply need to specify it by its
label.

 The first thing you need to do before you can use a
variable is to create the box and label it.

20:49Mrs Séridi Bordjiba Yamina

8

23/10/2023

3

2. Data: Variable and Constant
Now, the constants:

 Constants are information that have a fixed value during the
execution of an algorithm. In other words, the algorithm uses
them, but it cannot change their initial values.

 The constant is designated by a name and has a value
before execution.

 Before being used, every constant must be defined by giving
it a name (identifier) and a value.

20:49Mrs Séridi Bordjiba Yamina

9

Remark

The value of a
constant cannot be

modified by any
action.

20:49Mrs Séridi Bordjiba Yamina

10

Identifiers

 Identifiers are used to name all objects manipulated
in the program\algorithm.

Keywords are reserved and cannot be used as
identifiers

An identifier cannot be used unless it has been
defined

An identifier is a series of alphanumeric characters,
which must begin with an alphabetic character

20:49Mrs Séridi Bordjiba Yamina

11

3. Data types

A type is defined by:

 a domain: the set of values that can be taken by

objects of type

 A set of operations that can be applied to objects of

the type.

20:49Mrs Séridi Bordjiba Yamina

12

23/10/2023

4

3. Data types
Type Categories

There are three main categories of type

 Simple types: integers, reals, etc.

 Structured types: array, file, record, etc.

 The pointer type: list, stack, queue.

20:49Mrs Séridi Bordjiba Yamina

13

3. Data types:
The Simple Types

They are the basic types from which all other types are built, and
can be classified as follows:

1. Scalar types

a) Predefined scalar types

b) Declared scalar types

2. The interval type

20:49Mrs Séridi Bordjiba Yamina

14

Scalar types
Predefined scalar types

 integer :
Domain : The set of integers that can be used on a

given computer
on machines using 16-bit words, the integers can be

represented as: -32 768 to 32 767,

the arithmetic operators are: +, -, *, div et mod.

20:49Mrs Séridi Bordjiba Yamina

15

Scalar types
Predefined scalar types

Real :
Domain : the set of real numbers that can be

represented on computers.

The arithmetic operators are :

+, -, *, /.

20:49Mrs Séridi Bordjiba Yamina

16

23/10/2023

5

Scalar types
Predefined scalar types

Logic (Boolean):
 A logical variable is a variable indicating an

alternative, so it can take one of two values: true or
false.

Possible operators are: and, or, negation.

20:49Mrs Séridi Bordjiba Yamina

17

Scalar types:
Predefined scalar types

 Character :
 It describes the set of alphanumeric character codes available

on a given computer,

 The two most commonly used international codes are: EBCDIC
and ASCII.

 Among the characters, we have :

digits :‘ 0 ’.. ‘ 9 ’,

 letters :‘ A’.. ‘ Z ’, ‘ a ’.. ’z ’,

Special Characters: ‘ + ’,- ’, … ’? ’, ‘ * ’, ‘ ’, ‘_’,…

20:49Mrs Séridi Bordjiba Yamina

18

Scalar types:
Predefined scalar types

Possible operators are:
Comparisons : =, <>, <=, <, >=, >

successor and predecessor.

ord(c) returns the ASCII code of c,

chr(n) returns the character with an ASCII code of n

… etc

20:49Mrs Séridi Bordjiba Yamina

19

Scalar types:
Predefined scalar types

Regardless of the code used, we

always have:
‘A’<‘B’<…<‘Z’

‘a’<‘b’<…<‘ z’

‘0’<‘1’<…<‘9’

20:49Mrs Séridi Bordjiba Yamina

20

23/10/2023

6

Scalar types:
Declared scalar types

 They are user-defined.

 In the definition of such a type, we enumerate the set of
values that a variable of this type can take.

 Example : couleur = (bleu, vert, rouge, jaune) ;

 The possible operations are those of the base type.

20:49Mrs Séridi Bordjiba Yamina

21

Remark

The relational operators <, >, <=, >=,

≠, and = can be applied to any pair

of operands of the same scalar type.

20:49Mrs Séridi Bordjiba Yamina

22

The interval type

 It allows the user to define an interval from an

associated scalar type (other than the real type).

 This definition specifies a lower bound and an upper

bound for the interval.

 Example :

 Type inter1 = 1..10

Inter2 = ‘a’..’j’

20:49Mrs Séridi Bordjiba Yamina

23

Declaration actions
Constant declaration

Example

Const nb_etudiant = 336 ;

univ = ‘université de guelma’ ;

Pi = 3,14;

20:49Mrs Séridi Bordjiba Yamina

24

CONST ‹Constant Name› = ‹value› ;

23/10/2023

7

Declaration actions
Types declaration

Example

Type jour=(sam, dim, lun, mar, mer,jeu, ven) ;

index = 1..10;

20:49Mrs Séridi Bordjiba Yamina

25

TYPE ‹Type Name› = ‹definition› ;

Declaration actions
Variables Declaration

Example
Var j : jour ;

i : index;
a : char;
x : real;

20:49Mrs Séridi Bordjiba Yamina

26

VAR ‹ Variable Name› : ‹Type Name› ;

4. Basic Operations
Operator, operand and expression...

 An operator is an operation symbol used to act on
variables or perform "calculations".

 An operand is a value or expression that is acted upon
by an operator.

 An expression is a combination of operators and
operands that is evaluated during the execution of an
algorithm. It has a value and a type.

20:49Mrs Séridi Bordjiba Yamina

27

4. Basic Operations
Operator, Operand, and Expression...

For example, in a+b :
a is the left operand

+ is the operator

b is the right operand

a+b is called an expression

If, for example, a is 2 and b is 3, the expression a+b is 5

If, for example, a and b are integers, the expression
a+b is an integer

20:49Mrs Séridi Bordjiba Yamina

28

23/10/2023

8

4. Basic Operations
Alternative Definition of an Expression...

An expression is recursively defined by:
A constant

The name of a variable

Applying a basic operation:

(<expression> <symbol><expression>)

20:49Mrs Séridi Bordjiba Yamina

29

4. Basic Operations
Operator...

 An operator can be unary or binary :
 Unary if it admits only one operand, e.g. the non-operand,

 Binary if it admits two operands, e.g. the + operator

 An operator is associated with a data type and can only
be used with variables, constants, or expressions of that
type.

 For example, the + operator can only be used with
arithmetic types (natural, integer and real) or
(exclusively) the character string type

20:49Mrs Séridi Bordjiba Yamina

30

4. Basic Operations
Operator...

 An integer and a character cannot be added together

 However, in certain exceptional cases, it is acceptable to use an
operator with two operands of different types, for example with
arithmetic types (2+3.5)

 The meaning of an operator can change depending on the type of
operands

 For example, the + operator with integers will mean addition, but
with character strings it will mean concatenation.

 2+3 equals 5

 "hello" + "everyone" is "hello everyone"

20:49Mrs Séridi Bordjiba Yamina

31

4. Basic Operations
Examples of expressions

Let a, x, y, and som be integer variable names:

 x
 (6 + (5 * 3))

 (true and false)

 ((3 < 8) and ((1 + a) = 7))

 (true + a)

 (a or false)

20:49Mrs Séridi Bordjiba Yamina

32

Correct
Expressions

incorrect
expressions

23/10/2023

9

5. Building a simple algorithm

 A simple algorithm, written in pseudocode or in an
algorithmic language, can

 read input data,

process the data by applying the instructions (actions) of
the algorithm,

and display the results in output.

20:49Mrs Séridi Bordjiba Yamina

33

5. Building a simple algorithm

 Input data is stored in variables and constants,
 each variable has its type.

 And each constant has its value,

 The results of the calculations are in turn stored in
variables using the assignment action (symbol ←).

20:49Mrs Séridi Bordjiba Yamina

34

5. Building a simple algorithm

 To write an algorithm, you have to start by answering the
following questions
What is the problem data (inputs)?

What are the required outcomes (outputs)?

What is/are the treatment(s) to be carried out?

What are the potential errors and special cases that can occur,
and what are the proposed solutions?

20:49Mrs Séridi Bordjiba Yamina

35

5. Building a simple algorithm
Different Steps in Writing an Algorithm
 Read the problem statement and make sure you understand it :

 Extract the data manipulated in the problem

 Think about solving the problem in an abstract way, without considering the
constraints imposed by the computer

 Divide the problem into subproblems, if necessary

 Write the solution (algorithm) on paper, using pseudocode

 Check your solution on an example

 Translate into a programming language

 Test the program on different test sets

 The general case

 Check all special cases, and correct any errors

20:49Mrs Séridi Bordjiba Yamina

36

23/10/2023

10

5. Building a simple algorithm

 A simple algorithm can be decomposed into three basic
actions, also known as simple actions, which are:
 Assignment

 Reading

Writing

20:49Mrs Séridi Bordjiba Yamina

37

Simple actions
The Assignment Action

 It is an action that assigns a value to a variable, and only
one variable

 It is represented by an arrow ’ ←’.

 In general, an assignment is written as follows:

20:49Mrs Séridi Bordjiba Yamina

38

‹variable_name› ← ‹value› or
‹expression› or
‹ variable_name › or
‹const_name›

The Assignment Action:
Effects of an assignment

The actions carried out during its execution are:

1. Evaluate the expression.

2. If this evaluation returns Error, the assignment is not executed,
the general execution ends (it is necessary to avoid this type of
situation!). Otherwise, let E be the value of this expression.

3. If the variable has not been declared, the assignment is not
executed and the general execution is terminated (this type of
situation should be avoided!).

4. If the variable has been declared of a type other than the type
of E, the general execution terminates (avoid this type of
situation!).

5. Otherwise, the variable's value becomes E.

20:49
Mrs Séridi Bordjiba Yamina

39

The Assignment Action:
Example a, b are two variables declared of type Integer.

20:49Mrs Séridi Bordjiba Yamina

40

before Assignment after
Val(a) Val(b) Val(a) Val(b)

× 10 a ← 4
2 10 a ← (a + 1)
5 10 a ← (b+2)
× 10 a ← (a+1)
× 10 a ← (b+2)
2 10 a ← ((a+2)*b)
2 10 a ← ((a et 2)*b)
2 10 a ← (a< b)

23/10/2023

11

Simple actions
Reading

 This is another instruction used to modify the value of a
variable,

 it allows the user to enter a value on the keyboard to be
used by the algorithm.

 It is written as follows:

20:49Mrs Séridi Bordjiba Yamina

41

Read (‹variable_name› or ‹A series of variables›);

Simple actions
Reading: Effects of a reading action

1. If the variable has not been declared, the reading
action is not executed, and the general execution
ends (this type of situation should be avoided!).

2. If the value introduced is of an incompatible type with
the type of the variable, the general execution of the
program ends. It is important to avoid this type of
situation.

3. Otherwise, the value entered on the keyboard is
assigned to the variable.

20:49Mrs Séridi Bordjiba Yamina

42

Simple actions
Writing

 This instruction allows the algorithm to communicate
values to the user by displaying them on the screen.

 It is written as follows:

20:49Mrs Séridi Bordjiba Yamina

43

write (‹value› or
‹expression› or

‹variable_name› ou
‹constant_name›);

Exercise

Write an algorithm to calculate the surface of a
square with side C.

20:49Mrs Séridi Bordjiba Yamina

44

23/10/2023

12

Solution

Analysis

 Inputs:
 The square's side

Outputs
 The area of the square

The Plan

 Enter the side of the
square S

Calculate of the area
A according to the
formula A=S*S

 Display results

20:49Mrs Séridi Bordjiba Yamina

45

The Algorithm

Algorithm square_Area;

Var S, A : real;
Begin

Write (‘please enter the side of the square’);

Read (S);

A←S*S;
Write (‘The area of this square is: ’,A);

end.

20:49Mrs Séridi Bordjiba Yamina

46

Representing an algorithm by a
flowchart
 A flowchart is a schematic representation of an

algorithm. It uses a set of symbols to represent the
different steps in the algorithm and the flow of control
between them.

 Flowcharts are a useful way of visualising and
documenting algorithms, and they can be used to
communicate algorithms to others.

20:49

Mrs Séridi Bordjiba Yamina

47

Representing an algorithm by a
flowchart
 There is no real standard for flowcharts representing

algorithms. However, there are a number of points on
which there is consensus:

21:36

Mrs Séridi Bordjiba Yamina

48

23/10/2023

13

6. Representing an algorithm by a
flowchart

20:49Mrs Séridi Bordjiba Yamina

49

begin

Enter S

A=S*S

Display A

end

7. Translation into C language
general structure of a C program

#include <stdio.h> /* to be able to read and write*/

int main() /* Main Program */

{

float S, A; /* declaration of two variables S and A */

printf(" please enter the side of the square \n");

scanf("%f", &S); /* read the value of S from the keyboard */

A = S*S; /* Calculating the area of the square*/

printf("The area of this square is :%f \n", A);

}

20:49Mrs Séridi Bordjiba Yamina

50

