
1st Year Mathematics – University of Guelma 1 Dr. Abderrahmane Kefali

Chapter 3 : Conditional
structures
Dr. Abderrahmane Kefali

Senior Lecturer Class A,
Department of Computer Science,
University of May 8, 1945 - Guelma

kefali.abderrahmane@univ-guelma.dz

This document is prepared for printing two pages per sheet

1) Introduction
Often, problems require the examination of multiple situations that cannot be
addressed through simple sequences of actions. In such cases, it becomes
necessary to choose between 2 or more courses of action depending on
whether a certain condition is met or not. Since there are multiple situations
and, before execution, it is not known which specific scenario will be executed,
in the algorithm, we must anticipate all possible cases. Conditional structures
(tests) allow for this.

There are several forms of conditional structures, which will be presented in
the rest of the chapter.

2) Notion of Condition
In algorithms, a condition is merely a logical expression that can become a
true or false statement depending on the values that make up the expression.
The condition can be simple or compound.

2.1) Simple conditions
A simple condition consists in the comparison of two expressions of the same
type. It comprises three elements: an expression, a comparison operator, and
another expression.

Examples :
val=5 a<b x+3 ≥ 5*y-4 'c'≠ 'a'

Are simple conditions.

Algorithms and Data Structures 1 Chapter 3. Conditional structures

1st Year Mathematics – University of Guelma 2 Dr. Abderrahmane Kefali

2.2) Compound conditions
These are conditions formed by combining multiple simple conditions using
logical AND and OR operators.

Examples:
nb≥0 and nb≤20 x=0 or y=0 c≠'O' and (c='N' or c='n')

Are compound conditions.

3) Simple conditional structures (if statement)
Simple conditional structures allow executing a sequence of instructions only
if a condition is satisfied.
3.1) Algorithmic syntax

The syntax of a simple conditional structure is as follows:
IF <Condition> THEN <block of instructions>;

Example:

Write an algorithm that asks for a number and determines if it is negative.

Solution :
ALGORITHM test;
VAR a : Integer;
BEGIN
Write("Enter a number : ");
Read(a);
IF a<0 THEN Write("Negative number");
END.

In this example, we test if the value of the variable a is less than 0; if yes, we
display the message "Negative number," otherwise, we do nothing.

Remarks:

 There are no semicolons after the condition or after THEN.
 If the block of instructions contains multiple instructions, they are

separated by semicolons and enclosed between BEGIN and END. If the
block contains only one instruction, the words BEGIN and END are not
required.

3.2) Flowchart
The simple conditional structure can be represented in a flowchart as follows:

Algorithms and Data Structures 1 Chapter 3. Conditional structures

1st Year Mathematics – University of Guelma 3 Dr. Abderrahmane Kefali

Condition

Block of
instructions

True

False

Example:

The flowchart corresponding to the algorithm that checks if an entered
number is negative is as follows:

a < 0 True

False Write("Negative

Begin

Write("Enter a Number")

Read(a)

End

3.3) C language syntax
The syntax of a simple conditional structure in the C language is as follows:

if(condition) <block of instructions>;

Remarks:

 The condition must be enclosed in parentheses.
 There is no semicolon after the condition.
 If the block of instructions consists of multiple instructions, it should be

enclosed in curly braces ({ and }), and if it contains only one instruction,
the curly braces are not mandatory.

Algorithms and Data Structures 1 Chapter 3. Conditional structures

1st Year Mathematics – University of Guelma 4 Dr. Abderrahmane Kefali

Example:

The C program that determines if an entered number is negative is as follows:
main(){
int a;
printf("Enter a number : ");
scanf("%d",&a);
if(a<0)printf("Negative number");

}

4) Compound Conditional Structure (if-else statement)
The compound conditional structure (also called alternating conditional
structure) allows to execute a sequence of instructions if a condition is
satisfied and to execute another sequence if the condition is not satisfied.

It combines multiple simple conditional statements to handle different cases.

4.1) Algorithmic syntax
The general form of a compound conditional structure is as follows:

IF <Condition> THEN <block of instructions1>

ELSE <block of instructions2>;

Remarks:

 In algorithmics, there is never a semicolon before ELSE.
 If a block of instructions consists of two or more instructions, it must be

delimited by the keywords BEGIN and END.

Example:

Write an algorithm to input a number and determine whether it is even or odd.

Solution :
ALGORITHM test;
VAR nb : Integer;
BEGIN
Write("Enter a number : ");
Read(nb);
IF nb mod 2 = 0 THEN Write("The number is even")
ELSE Write("The number is odd");
End.

Algorithms and Data Structures 1 Chapter 3. Conditional structures

1st Year Mathematics – University of Guelma 5 Dr. Abderrahmane Kefali

4.2) Flowchart
The compound conditional structure can be represented in a flowchart as
follows:

Condition

Block of
instructions 1

TrueFalse

Block of
instructions 2

Example:

The flowchart corresponding to the algorithm that tests the parity of an integer
entered by the user is as follows:

nb mod 2 = 0 TrueFalse

Write("Odd number")

Begin

Write("Enter a number")

Read(nb

End

Write("Even number")

4.3) C language syntax
The syntax of a compound conditional structure in the C language is:

if(condition) <block of instructions1>;

else <block of instructions2>;

Algorithms and Data Structures 1 Chapter 3. Conditional structures

1st Year Mathematics – University of Guelma 6 Dr. Abderrahmane Kefali

Remarks:

 The condition must be enclosed in parentheses.
 In the C language, else can be preceded by a semicolon.
 If a block of instructions consists of multiple instructions, it must be

enclosed in braces ({ and }).

Example:

The C program that allows to input a number and determine whether the
number is even or odd is as follows:

main(){
int nb;
printf("Enter a number : ");
scanf("%d",&a);
if(a%2==0)printf("The number is even");
else printf("The number is odd");

}

5) Nested Conditional Structures
The instruction blocks of IF and ELSE are sequences of instructions.
These blocks can contain reading, writing, assignment instructions, as well as
conditional structures. This is referred to as having nested structures.

5.1) Algorithmic syntax
The general form of nested conditional structures is as follows:
IF <Condition1> THEN <block of instructions1>
ELSE IF <Condition2> THEN <block of instructions2>

ELSE IF <Condition3> THEN <block of instructions3>
...
...

ELSE <block of instructions_n>;

Condition1 is evaluated first. If it is true, block of instruction 1 is executed. If
it's not true, we evaluate condition2. If condition2 is true, we execute block of
instruction 2; otherwise, we move on to evaluating condition3, and so on.

Example:

Write an algorithm that reads a real number and displays whether this
number is positive, negative, or zero.

Algorithms and Data Structures 1 Chapter 3. Conditional structures

1st Year Mathematics – University of Guelma 7 Dr. Abderrahmane Kefali

Solution:
ALGORITHM test;
VAR x : Real;
BEGIN
Write("Enter a number : ");
Read(x);
IF x > 0 THEN Write("The number is Positive ")
ELSE IF x < 0 THEN Write("The number is Negative")

ELSE Write("The number is Zero");
END.

5.2) Flowchart
The flowchart corresponding to the nested conditional structures:

Condition1

Block of instructions 1

TrueFalse

Block of instructions 2

Condition2 True

.........

Condition_n

Block of instructions n

False

False

False True

Block of instructions n+1

5.3) C language syntax
The nesting of multiple tests is done in the C language as follows:

if(condition1) <block of instructions1>;

else if(condition2) < block of instructions 2>;

else if(condition3) < block of instructions 3>;

.....

else < block of instructions 4>;

Algorithms and Data Structures 1 Chapter 3. Conditional structures

1st Year Mathematics – University of Guelma 8 Dr. Abderrahmane Kefali

Example:
The C program that determines whether an entered number is positive,
negative, or zero:

main(){
float x;
printf("Enter a number : ");
scanf("%f",&x);
if(a>0)printf("The number is Positive");
else if(a<0)printf("The number id negative");
else printf("The number is Zero");

}

6) Multiple-choice structure (CASE statement)
The nesting of a large number of tests tends to make the algorithm heavier
and more challenging to read and manage. Fortunately, there is a structure
that makes the task somewhat easier, called the multiple-choice statement or
the selective structure.

The multiple-choice structure allows to select or distinguish several cases
based on the values of an expression. This expression is called a selector,
and it must be a scalar-type variable or expression.

6.1) Algorithmic syntax
The syntax of the multiple-choice statement is as follows:

CASE <expression> OF
<Value1> : <block of instructions 1>
<Value2> : <block of instructions 2>
……
<Value_n> : <block of instructions n>
OTHERWISE: <block of instructions (n+1);

END;

The value of the expression is successively compared to each of the
selection values. As soon as a match is found, the comparisons are stopped,
and the associated block is executed. If no value matches, then the block
associated with OTHERWISE, if it exists, is executed.

Remarks:

 The selector and the values to choose must be of the same type.

Algorithms and Data Structures 1 Chapter 3. Conditional structures

1st Year Mathematics – University of Guelma 9 Dr. Abderrahmane Kefali

 If a block of instructions consists of more than one instruction, they must
be surrounded by the BEGIN and END keywords

 The default case (OTHERWISE) is optional. It is used to perform a task
when none of the cases is true.

Example:

Write an algorithm that allows entering an integer between 1 and 5 and
displays it in words.

ALGORITHM example;
TYPE Digit = 1..5;
VAR n : Digit;
END
Write("Enter a number between 1 and 5 : ");
Read(n);
CASE n OF
1: Write("One");
2: Write("Two");
3: Write("Three");
4: Write("Four");
5: Write("Five");
OTHERWISE: Write("Input error");
End;

END.

6.2) C language syntax
The multiple-choice conditional structure is expressed in the C language as
follows:
switch(<expression>){

case <value>: <block of instructions 1>
break;

case <value2>: <block of instructions 2>
break;

...............
case <value_n>: <block of instructions n>

break;
default: <block of instructions n+1>

}

Algorithms and Data Structures 1 Chapter 3. Conditional structures

1st Year Mathematics – University of Guelma 10 Dr. Abderrahmane Kefali

Remarks:

 The default case is optional.
 The break keyword is mandatory after each block of instructions to

indicate the end of a case.
 The instruction blocks should not be enclosed in braces.

Example:

The C program that allows to input an integer between 1 and 5 and display it
in words is as follows:
main(){

int n;
printf("Enter a number between 1 and 5: ");
scanf("%d",&n);
switch(n){

case 1: printf("One");
break;

case 1: printf("Two");
break;

case 1: printf("Three");
break;

case 1: printf("Four");
break;

case 1: printf("Five");
break;

default: printf("Input error");
}

}

7) Branching statement
The branching instruction allows for the interruption of the normal flow of an
algorithm by jumping from one point in the algorithm to another and
continuing execution from that point. This is why they are also referred to as
jump instructions.

To perform a branch, you must first identify the instruction in the algorithm to
which you want to branch using a label. Then, it is possible to jump to that
instruction to execute it (along with the subsequent instructions) by knowing
its label.

Algorithms and Data Structures 1 Chapter 3. Conditional structures

1st Year Mathematics – University of Guelma 11 Dr. Abderrahmane Kefali

A label is an identifier assigned to an instruction in the algorithm in order to
identify it. This makes it possible to go directly to the instruction by knowing
its label.

7.1) Algorithmic syntax
To assign a label to an instruction, simply write the label (which is an identifier)
followed by a colon ":" before the instruction.

Then, branching or jumping to that label is done using the "GOTO" statement,
specifying the label.

The syntax is as follows:
<Label_name>: instruction i ;

..........
GOTO <Label_name>;

..........

Example:

The following algorithm allows entering a student's exam mark and, if
applicable, the makeup exam mark, to determine whether the student is
admitted or deferred using branching.

ALGORITHM example;
VAR exam, makeup : real;
BEGIN
WRITE("Enter the exam mark: ");
READ(exam);
IF exam ≥ 10 THEN GOTO label;
WRITE("Enter the makeup exam mark: ");
READ(makeup);
IF makeup ≥ 10 THEN GOTO label;
WRITE("You are deferred");
GOTO last;
label: WRITE("You are admitted");
last: WRITE("End of the algorithm");
END.

Remarkes:

 It is possible to jump to:

Algorithms and Data Structures 1 Chapter 3. Conditional structures

1st Year Mathematics – University of Guelma 12 Dr. Abderrahmane Kefali

- An instruction that precedes the branching instruction, creating a
loop effect.

- An instruction that follows the branching instruction to advance more
quickly in the algorithm.

 It is discouraged to use branching instructions to reduce the complexity of
algorithms in terms of time.

7.2) C language syntaxe
The definition of a label in the C language is done in the same way as in
algorithmics, by writing the label followed by a colon ":" before the instruction
to be marked.

For branching, it is done using the goto statement.

The syntax is as follows:
<Label_name>: instruction i ;

..........

goto <Label_name>;

..........

Example:

The program that allows to enter a student's exam mark, and if applicable,
the makeup exam mark, and determine whether he is admitted or deferred is
as follows:
main(){

float exam,makeup;
printf("Enter the exam mark : ");
scanf("%f",&exam);
if(exam >= 10)goto label;
printf("Enter the makeup exam mark : ");
scanf("%f",&makeup);
if(makeup >= 10)goto label;
printf("You are deferred");
goto last;
label: printf("You are admitted ");
last: printf("End of the algorithm");

}

