
1st Year Mathematics – University of Guelma 1 Dr. Abderrahmane Kefali

Chapter 4 : Loops
Dr. Abderrahmane Kefali

Senior Lecturer Class A,
Department of Computer Science,
University of May 8, 1945 - Guelma

kefali.abderrahmane@univ-guelma.dz

This document is prepared for printing two pages per sheet

1) Introduction
We have already seen that the sequential flow of instructions is not sufficient
to solve the problems encountered in everyday life. Fortunately, it is possible
to break the sequential flow using what are called control structures.

In the previous chapter, we described the first problem that cannot be solved
by simple sequential instructions: the problem where we have multiple cases,
and each case requires separate handling. This type of problem was resolved
using conditional structures.

Another problem frequently encountered in everyday life is the need to repeat
a task multiple times. Indeed, this repetitive processing can be accomplished
using labeled branches, but a program that uses labels is difficult to maintain.
The ideal solution for implementing repetitive processes is the use of special
control structures called loops. These structures allow the repetition of an
instruction or a sequence of instructions a certain number of times, which
may be known in advance or not.

In this chapter we will introduce the notion of repetition of a sequence of
instructions and present the different existing loops in algorithms.

2) What is a loop?
2.1) Definition
Loops, also known as repetitive or iterative structures, are structures that
allow the same sequence of instructions to be repeated several times with
different values for a finite number of times.

During each repetition, the instructions within the loop are executed, forming
what is called a loop cycle or iteration.

Algorithms and Data Structures 1 Chapter 4. Loops

1ère année Mathématique – Université de Guelma 2 Dr. Abderrahmane Kefali

Iteration stops after reaching a termination condition, which is expressed
either by a logical expression or by a predefined number of iterations.

However, there are three variants of repetition, and for each variant,
algorithmics (and most programming languages) offers a specific type of loop:

 Repeating a block of instructions a given number of times (FOR loop).

 Repeating a block of instructions as long as a condition is met (WHILE
loop).

 Repeating a block of instructions until a condition is met (REPEAT loop).

2.2) Components of a loop
A loop consists of four essential elements:

 A block of instructions, which will be executed a certain number of times.

 A condition, similar to conditional instructions. This condition relates to at
least one variable, referred to as the loop variable. There can be multiple
loop variables for a single loop.

 An initialization, which concerns the loop variable. This initialization can
be directly performed by the loop statement or left to the programmer.

 A modification, which also concerns the loop variable. Similar to
initialization, it can be integrated into the loop statement or left to the
programmer.

3) WHILE loop
The WHILE loop allows to repeatedly execute an instruction or sequence of
instructions as long as a condition is met. When the condition becomes false,
the loop terminates. The condition is expressed in the form of a variable or
logical expression.

This loop is particularly useful when the number of iterations is not known in
advance.

3.1) Algorithmic syntax
The syntax of the WHILE loop is as follows:

WHILE <Condition> DO

<block of instructions>;

The progression of the WHILE loop involves successively and repeatedly
the following steps. First, the entry condition to the loop is evaluated. If it is

Algorithms and Data Structures 1 Chapter 4. Loops

1ère année Mathématique – Université de Guelma 3 Dr. Abderrahmane Kefali

satisfied, the body of the loop (the block of instructions) is executed, and we
return to evaluate the condition again. This process continues until the
condition is no longer satisfied. In this latter case, the instructions within the
block are not executed, and the algorithm proceeds to the next instruction just
after the block.

Example:

Write an algorithm that allows to enter a person's age via the keyboard and to
repeat the entry as long as the value entered by the user is incorrect.

Solution :
ALGORITHM input_age;
VAR age : Integer;
BEGIN
Write("Enter the age: ");
Read(age);
WHILE age ≤ 0 DO

Begin
Write("Invalid age, re-enter the age:");
Read(age);
End;

Write("Valide age ");
END.

Remarks :
 The condition can be simple or compound.

 Note the absence of a semicolon after the condition and after DO.

 In this loop, the condition is tested before entering the loop. Therefore, the
block of instructions that forms the body of the loop may never be
executed; this happens when the condition is false from the beginning.

 The parameters of the condition must be initialized by reading or
assignment before the loop, so that, on the first pass, the condition can be
evaluated.

 In the block of instructions, it is imperative to have an action that modifies
the condition parameters in such a way that the condition becomes false at
some point, otherwise, if the condition remains true, you end up in an
infinite loop.

Algorithms and Data Structures 1 Chapter 4. Loops

1ère année Mathématique – Université de Guelma 4 Dr. Abderrahmane Kefali

 If the block of instructions to be repeated contains multiple statements, it
must be enclosed by BEGIN and END.

 The WHILE loop is the most generic loop. It can be used whether the
number of repetitions is known in advance or not.

3.2) Flowchart
The formalism of the WHILE loop in a flowchart is as follows.

Condition

Block of instructions

True

False

3.3) C language syntax
The syntax of the WHILE loop in the C language is as follows:

while(condition)

<block of instructions>;

Remarks:

 The condition must be enclosed in parentheses.
 There is no semicolon after the condition.
 If the block of instructions consists of multiple statements, it must be

enclosed in curly braces ({ and }).

Example:

Here is the C program that repeats reading the age until a valid age is
entered:

Algorithms and Data Structures 1 Chapter 4. Loops

1ère année Mathématique – Université de Guelma 5 Dr. Abderrahmane Kefali

#include<stdio.h>
main(){

int age;

printf("Enter the age: ");
scanf("%d",&age);
while(age <= 0){

printf("Invalid age, re-enter the age:");
scanf("%d",&age);

}
printf("Valid age");

}

4) REPEAT loop
The REPEAT loop allows to repeat the execution of a block of instructions
until a condition is met. As with the WHILE loop, REPEAT is a generic loop
that doesn't require knowing the number of iterations in advance. However,
unlike WHILE, the REPEAT loop executes the block of instructions
unconditionally first and then repeats its execution as long as the condition is
false. The loop execution stops as soon as the condition becomes true.

4.1) Algorithmic syntax
The syntax of the REPEAT loop in algorithmic is as follows:

REPEAT

<block of instructions>;

UNTIL <Condition>;

The progression of the REPEAT loop can be described as follows. First, the
block of instructions that makes up the body of the loop is executed for the
first time. Then, the condition is evaluated. If it's true, the block of instructions
is executed again, and the condition is re-evaluated. This process repeats
until the condition is satisfied. In this case, the loop is exited, and the normal
execution of the algorithm continues.

Exemple:

Re-implement the algorithm that repeats the input of a person's age until a
valid age is provided, but this time using the REPEAT loop.

Algorithms and Data Structures 1 Chapter 4. Loops

1ère année Mathématique – Université de Guelma 6 Dr. Abderrahmane Kefali

Solution :
ALGORITHM input_age;
VAR age : Integer;
BEGIN
REPEAT
Write("Enter the person’s age:");
Read(age);

UNTIL age > 0;
Write("Valid age");
END.

Remarks :
 The condition can be simple or compound.

 Note the absence of a semicolon after REPEAT and UNTIL.

 In this loop, the condition is only evaluated at the end of the loop.
Therefore, the block of instructions that forms the body of the loop is
executed at least once, even if the condition is satisfied from the beginning.
Thus, the first execution is not subject to any condition.

 The condition in the REPEAT loop is the exit or termination condition of
the loop, not the repetition condition, as is the case with the WHILE loop.

 The variables on which the condition is based must be initialized by
reading or assignment before the condition is evaluated (and not before
the loop).

 The body of the loop must contain an instruction that modifies the
condition parameters to reach the exit condition at some point; otherwise,
you would end up in an infinite loop.

 The block of instructions does not need to be enclosed in BEGIN and
END, even if it consists of multiple instructions.

4.2) Flowchart
The REPEAT loop can be represented in a flowchart as follows:

Algorithms and Data Structures 1 Chapter 4. Loops

1ère année Mathématique – Université de Guelma 7 Dr. Abderrahmane Kefali

Condition

Block of instructions

TrueFalse

4.3) C language syntax
The C language loop corresponding to REPEAT is the do-while loop. It is
introduced by the do statement, followed by the block of instructions, and
finally, the condition enclosed in parentheses, placed after a while, just like
the while loop.

The syntax is the follows:
do{

<block of instructions>;

}while(condition);

Indeed, the meaning of the REPEAT loop in algorithmics is a bit different
from that of the do-while loop in the C language. The difference lies in the
loop's condition. In algorithmics, it's "repeat until the condition is satisfied,"
while in C, it's "repeat as long as a condition is satisfied". Therefore, the
condition in REPEAT is an exit condition, whereas in do-while, it's an
entry condition for the loop. It's similar to a while loop, except the condition
is at the end of the loop.

Remarks:

 The condition must be enclosed in parentheses.
 Note the presence of a semicolon after the condition.
 If the block of instructions contains only one instruction, the curly braces

({ and }) are not obligatory.
 The condition in do-while is the inverse of the condition in REPEAT.

Example:

The C program that repeats reading the age using the do-while loop until
a valid age is entered is as follows:

Algorithms and Data Structures 1 Chapter 4. Loops

1ère année Mathématique – Université de Guelma 8 Dr. Abderrahmane Kefali

#include<stdio.h>
main(){

int age;
do{

printf("Enter the person’s age: ");
scanf("%d",&age);

}while(age <= 0);

printf("Valid age");
}

5) FOR loop
The FOR loop allows you to repeat the execution of a block of instructions a
certain number of times known in advance. This loop automates the phases
of initializing and modifying the loop variable.

5.1) Algorithmic syntax
In this loop, a control variable of integer type, called the counter, is used to
control the number of iterations of the loop.

The counter takes its values in an interval whose bounds are known. Thus, in
the header of the FOR statement, you must specify the initial value, the final
value, and optionally the step (when it's different from 1).

The syntax of the FOR loop in algorithmic is as follows:

FOR <counter> <initial value> TO <final value>
STEP=<step value> DO

<Block of instructions>;

Such as:

 <counter> is the control variable (of integer type) that counts the
number of loop iterations.

 <initial value> is the initial value to which the counter is initialized.
It can be a constant or an integer-type variable.

 <final value> is the final value at which the counter ends. It can also
be a constant or an integer-type variable.

 <Step Value> is the increment or decrement value for the counter. The
step can be omitted if its value is 1.

Algorithms and Data Structures 1 Chapter 4. Loops

1ère année Mathématique – Université de Guelma 9 Dr. Abderrahmane Kefali

The block of instructions is executed each time the counter's value is
between the initial value and the final value. The progression of the FOR loop
can be described as follows:

First, the counter is initialized to the initial value at the moment of
entering the loop. If the counter's value does not exceed the final
value, the block of instructions is executed, and the counter is
automatically increased (incremented) by the increment value (step value).
When the increment is not specified, the default increment is 1. This process
repeats until reaching the final value. In this case, the loop terminates,
and execution continues normally after the loop.

Example:

Using the FOR loop, write an algorithm to display natural numbers from
1 to 5.

Solution :
ALGORITHM display_numbers;
VAR i : Integer;
BEGIN

FOR i 1 TO 5 STEP=1 DO
Write(i);

END.

Remarks :
 The FOR loop can only be used when the number of iterations is known in

advance.
 A FOR loop can be executed 0 times (when the final value is less than the

initial value), 1 time (when the initial value and the final value are the
same), or multiple times (the normal case).

 The initial value, the final value, and the increment step can be numeric
expressions.

 In the FOR loop, the initialization of the loop variable (the counter), its
modification (the increment of the counter), and the evaluation of the
stopping condition are performed automatically.

 The increment step is optional. If omitted, its default value is 1.
 The increment step can also be negative, and in that case, the counter is

decremented by the increment step at each iteration.

Algorithms and Data Structures 1 Chapter 4. Loops

1ère année Mathématique – Université de Guelma 10 Dr. Abderrahmane Kefali

 In the body of the loop, the counter can be used for calculations, but it
must not be modified either by reading or by assignment.

 The number of iterations in the FOR loop is equal to: final value -
initial value + 1 (when the increment step is equal to 1).

 The initial and final values, and the increment step are evaluated once and
for all before the iteration; the body of the loop cannot modify their value.

 If the block of instructions consists of 2 or more instructions, it must be
delimited by the keywords: BEGIN and END.

5.2) Flowchart
The FOR loop can be graphically represented in a flowchart as follows:

counter ≤
final value

Block of instructions

True

False

counter initial value
initiale

counter counter + step

5.3) C language syntax
The loop corresponding to FOR in the C language is also called the for
loop. However, the syntax of the latter in C language is a bit different from
that of FOR in algorithmics.

The syntax in C of the for loop is as follows:

La syntaxe de la boucle for est la suivante:

for (<initialization>;<condition>;<modification>)

<block of instructions>;

Thus, the header of the for loop is composed of three expressions
separated by semicolons within parentheses:

Algorithms and Data Structures 1 Chapter 4. Loops

1ère année Mathématique – Université de Guelma 11 Dr. Abderrahmane Kefali

 The first expression (<initialization>) is an initialization expression.
It is executed only once at the beginning of the loop and is typically in the
form: counter = initial value.

 The second (<condition>) is a comparison expression. It is evaluated at
the beginning of each iteration, including the first one.

 The last (<modification>) is a progression expression. This expression
is used to increment (or decrement) the loop counter and is executed at
the end of each iteration.

The execution of the for loop proceeds as follows. At the beginning of the
for loop, the initialization statement is executed. Then, the
condition is tested. If the condition is true, the instructions within the for
loop's body are executed, followed by the modification statement. The
condition is re-evaluated with the new counter value before the next
iteration, and so on, as long as the condition remains true. Once the
condition becomes false, the loop terminates.

Remarks:

 It is possible to initialize/modify multiple loop variables simultaneously by
using commas in the expressions.

 When the block of instructions consists of more than one statement, it
must be enclosed in curly braces ({ and }).

Example:

The C program that displays natural numbers from 1 to 5 is as follows:
#include<stdio.h>
main(){

int i;
for(i=1;i<=5;i++)

printf("%d\n",i);
}

6) Choice of the appropriate repetitive structure
The choice of the appropriate repetitive structure depends on the problem to
be solved.

If the number of repetitions is known in advance, it is advisable to use the
FOR loop. On the other hand, if the number of iterations is not known in
advance, either the WHILE loop or the REPEAT loop should be used.

Algorithms and Data Structures 1 Chapter 4. Loops

1ère année Mathématique – Université de Guelma 12 Dr. Abderrahmane Kefali

However, the choice between these two loops is possible and depends on the
minimum number of repetitions desired. If you want to execute the
instructions in the block at least once, it is recommended to use the REPEAT
loop. When the number of iterations can be zero, the WHILE loop must be
used.

7) Nested loops
As we have seen before, loops execute one or more instructions (instruction
block) a certain number of times. These instruction blocks can, in turn,
contain loops. In this case, we refer to them as nested loops.

Hence, a WHILE loop can contain another WHILE loop, another REPEAT
loop, or another FOR loop, and vice versa.

Example:

Consider the following algorithm:
Algorithm nested_loops;
Var i,j:integer;
Begin

i 1;
WHILE i ≤ 3 DO

Begin

j 1;
WHILE j ≤ 2 DO

Begin
Write(i+j);

j j + 1;
End;

i i + 1;
End;

End.

The step-by-step execution of the
algorithm is summarized in the
table below:

Iteration i j Displayed
value

1 1 1 2
2 2 3
3 2 1 3
4 2 4
5 3 1 4
6 2 5

