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Fourier Series

1.1 Introduction

In the approximate calculation, we often use developments in power series of sufficiently
regular functions

f (x) ∼ f (x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)

2 + .... +
f (n)(x0)

n!
(x− x0)

n + ....

because the powers of (x− x0) are simple to manipulate and lend themselves well to nu-
merical calculations and operational (derivations, integration,...). However, expanding a
function into a power series has a few drawbacks:

• It does not always have the convergence properties often desired;

• It can only be used for infinitely differentiable functions;

• It is only valid near x0.

To overcome these problems, we use expansions in series of simple functions, other than
powers of x. The choice of these functions is motivated by the fact that many engineering
problems involve periodic functions f , and it then appears logical to try to develop them in
series of ” sin ” and ” cos ” instead of series of powers of x.

f (x) ∼ a0

2
+(a1 cos x+ b1 sin x)+ (a2 cos(2x)+ b2 sin(2x))+ ...+(an cos(nx)+ bn sin(nx))+ ...
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1.2 Trigonometric series

Definition 1.2.1. We call a trigonometric series associated with two sequences (an)n∈N and
(bn)n∈N∗ of complex numbers, the series of functions

a0

2
+ ∑

n∈N∗
(an cos(nx) + bn sin(nx)). (1.2.1)

The numbers an and bn are called the trigonometric coefficients of this series.

Remark 1.2.1. • For all N ∈N, we can write

a0

2
+

N

∑
n=1

(an cos(nx) + bn sin(nx)) =
a0

2
+

N

∑
n=1

(
an

einx + e−inx

2
+ bn

einx − e−inx

2i

)

=
a0

2︸︷︷︸
c0

ei0x +
N

∑
n=1

 an − ibn

2︸ ︷︷ ︸
cn

einx +
an + ibn

2︸ ︷︷ ︸
c−n

ei(−n)x


=

N

∑
n=−N

cneinx,

by letting N to the infinity we get

a0

2
+ ∑

n∈N∗
(an cos(nx) + bn sin(nx)) = ∑

n∈Z

cneinx,

where cn are the exponential coefficients.

• a0 = 2c0 and, ∀n ∈N∗, an = cn + c−n, bn = i(cn − c−n).

Proposition 1.2.1. 1. The sum S of a convergent trigonometric series is a 2π−periodic
function

2. If the sequences (an)n∈N and (bn)n∈N∗ are real and decreasing towards 0, then the

trigonometric series
a0

2
+ ∑

n∈N∗
(an cos(nx) + bn sin(nx)) converges for all x 6= 2kπ.

3. The following three properties are equivalent

(a) The trigonometric series
a0

2
+ ∑

n∈N∗
(an cos(nx) + bn sin(nx)) converges nor-

mally on R.
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(b) The series∑ an and∑ bn are absolutely convergent

(c) The series∑ cn and∑ c−n are absolutely convergent

Proof.

1. We suppose that the series S(x) =
a0

2
+ ∑

n∈N∗
(an cos(nx) + bn sin(nx)) is convergent,

and we put ∀n ∈ N Sn(x) =
a0

2
+

n

∑
k=1

(ak cos(kx) + bk sin(kx)). Since the functions

x 7→ a0

2
; x 7→ ak cos(kx) and x 7→ bk sin(kx) are 2π−periodic, the function Sn is

2π−periodic, therefore

∀n ∈N, ∀x ∈ R Sn(x + 2π) = Sn(x),

and this implies that

lim
n→∞

Sn(x + 2π) = S(x + 2π) = S(x) = lim
n→∞

Sn(x),

and this means that S is 2π−periodic.

2. We apply Abel’s rule to the series ∑
n∈N∗

an cos(nx) and ∑
n∈N∗

bn sin(nx)

3. ∀n ∈ N∗, |cn| =
∣∣∣∣ an − ibn

2

∣∣∣∣ ≤ |an|+ |bn|
2

and |c−n| =
∣∣∣∣ an + ibn

2

∣∣∣∣ ≤ |an|+ |bn|
2

then (b) ⇒ (c). Likewise ∀n ∈ N∗, |an| = |cn + c−n| ≤ |cn| + |c−n| and |bn| =
|i(cn − c−n)| ≤ |cn|+ |c−n|, and this proves that (c) ⇒ (b). Consequently we have
(b)⇔ (c).

We have also ∀n ∈ N∗, ∀x ∈ R, |an cos nx + bn sin nx| ≤ |an| + |bn| and this
shows that (b) ⇒ (a). Finally we have ∀n ∈ N∗, |an| = |an cos nπ + bn sin nπ| ≤
sup
x∈R

|an cos nx + bn sin nx| and |bn| = |an cos n
π

2n
+ bn sin n

π

2n
| ≤ sup

x∈R

|an cos nx +

bn sin nx| and it follows that (a)⇒ (b), and consequently (a)⇔ (b)⇔ (c).

�

Lemma 1.2.1. For all a ∈ R and for all m, n in N, we have:

∫ a+2π

a
cos(mx) sin(nx)dx = 0,

University of Guelma Department of Mathematics BENRABAH. A
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∫ a+2π

a
cos(mx) cos(nx)dx =

∫ a+2π

a
sin(mx) sin(nx)dx =

 0 if n 6= m,

π if n = m.

1.2.1 Determining Fourier coefficients an and bn

Theorem 1.2.1. We assume that the trigonometric series converges and has a continuous

function f (x) as its sum on the interval [a, a + 2π], that is,

f (x) =
a0

2
+ ∑

n∈N∗
(an cos(nx) + bn sin(nx)). (1.2.2)

In this case, the trigonometric coefficients of this series are given by

a0 =
1
π

∫ a+2π

a
f (x)dx, and ∀n ∈N∗, an =

1
π

∫ a+2π

a
f (x) cos(nx)dx,

∀n ∈N∗, bn =
1
π

∫ a+2π

a
f (x) sin(nx)dx.

Proof. Our aim is to find formulas for the coefficients an and bn in terms of f . Recall that
for a power series f (x) = ∑

n
cn(x− a)n we found a formula for the coefficients in terms of

derivatives: cn =
f (n)(a)

n!
. Here we use integrals.

If we integrate both sides of Equation (1.2.2) and assume that it’s permissible to integrate the
series term-by-term, we get

∫ a+2π

a
f (x)dx =

∫ a+2π

a

a0

2
dx︸ ︷︷ ︸

=πa0

+ ∑
n∈N∗

an

∫ a+2π

a
cos(nx)dx︸ ︷︷ ︸
=0

+bn

∫ a+2π

a
sin(nx)dx︸ ︷︷ ︸
=0

 ,

and solving for a0 gives a0 =
1
π

∫ a+2π

a
f (x)dx.

To determine an for n ≥ 1 we multiply both sides of Equation (1.2.2) by cos(mx) (where m is

University of Guelma Department of Mathematics BENRABAH. A
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an integer and m ≥ 1) and integrate term-by-term from a to a + 2π

∫ a+2π

a
f (x) cos(nx)dx = a0/2

∫ a+2π

a
cos(nx)dx︸ ︷︷ ︸
=0

+ ∑
m∈N∗

am

∫ a+2π

a
cos(mx) cos(nx)dx︸ ︷︷ ︸
=anπ

+ ∑
m∈N∗

bm

∫ a+2π

a
sin(mx) cos(nx)dx︸ ︷︷ ︸
=0

,

Solving for an, we get the desired relation. Similarly, if we multiply both sides of Equation
(1.2.2) by sin(mx) and integrate from a to a + 2π, we get bn =

1
π

∫ a+2π

a
f (x) sin(nx)dx. �

1.3 Fourier series

When the French mathematician Joseph Fourier (1768-1830) was trying to solve a problem
in heat conduction, he needed to express a function as an infinite series of sine and cosine
functions.

Earlier,Daniel Bernoulli and Leonard Euler had used such series while investigating
problems concerning vibrating strings and astronomy. The series in Equation (1.2.2) is called
a trigonometric series or Fourier series and it turns out that expressing a function as a Fourier
series is sometimes more advantageous than expanding it as a power series. In particular,
astronomical phenomena are usually periodic, as are heartbeats, tides, and vibrating strings,
so it makes sense to express them in terms of periodic functions.

Definition 1.3.1. A function f is said to have a period T or to be periodic with period T if
for all x ∈ R, f (x + T) = f (x), where T is a positive constant. The least value of T > 0 is
called the least period or simply the period of f .

Example 1.3.1. • The functions sin x hasperiods2π, 4π, 6π, ..., since sin(x+ 2π), sin(x+

4π), sin(x + 6π); ... all equal sin x. However, 2π is the least period or the period of
sin x.

• The period of sin(nx) or cos(nx), where n is a positive integer, is 2π/n. The period of
tan x is π.

• A constant has any positive number as period.

University of Guelma Department of Mathematics BENRABAH. A



1.3 Fourier series 7

Definition1.3.2. f : R→ R is even if f (−x) = f (x) for all x and f is odd if f (−x) = − f (x)

for all x.

Example 1.3.2. x3, x5 − 3x3 + 2x, sin x, tan(3x) are odd functions.
Note that (even)(even) = even, (odd)(odd) = even and (even)(odd) = odd.

In the previous paragraph, we have introduced the notion of trigonometric series and we
have seen, that in the case of pointwise convergencewe can calculate its coefficients (trigono-
metric and exponential)

Definition 1.3.3. Let f be defined in the interval (−L, L) and outside of this interval by
f (x + 2L) = f (x), i.e., f is 2L−periodic. It is through this avenue that a new function on
an infinite set of real numbers is created from the image on (−L, L). The Fourier series or
Fourier expansion corresponding to f is given by

a0

2
+ ∑

n∈N∗

(
an cos

(nπx
L

)
+ bn sin

(nπx
L

))
. (1.3.1)

where the Fourier coefficients(called also: trigonometric coefficients) an and bn are
an =

1
L

∫ L

−L
f (x) cos

(nπx
L

)
dx

bn =
1
L

∫ L

−L
f (x) sin

(nπx
L

)
dx

n = 0, 1, 2, .... (1.3.2)

Similarly, if the Fourier series or Fourier expansion corresponding to f is given by

c0 + ∑
n∈Z∗

cnei nπx
L . (1.3.3)

University of Guelma Department of Mathematics BENRABAH. A



1.3 Fourier series 8

where the Fourier coefficients(called also: exponential coefficients) cn are

cn =
1

2L

∫ L

−L
f (x)e−i nπx

L dx n = ....− 3,−2,−1, 0, 1, 2, 3, .... (1.3.4)

Example 1.3.3. Obtain the Fourier series of the following function defined in (0, 2π), by

f (x) =

 x if 0 < x < π,

π if π ≤ x < 2π.
(and has period 2π).

Solution.

• Step one.

a0 =
1
π

∫ 2π

0
f (x)dx

=
1
π

∫ π

0
xdx +

1
π

∫ 2π

π
πdx

=
1
π

[
x2/2

]π

0
+

1
π
[πx]2π

π

=
3π

2
.

• Step two.

an =
1
π

∫ 2π

0
f (x) cos(nx)dx

=
1
π

∫ π

0
x cos(nx)dx +

1
π

∫ 2π

π
π cos(nx)dx

=
1
π

[
1
n
(π sin(nπ)− 0 sin(0.n))−

(
−cos(nx)

n2

)π

0

]
+

1
n
(sin(2nπ)− sin(nπ))

=
1

n2π
(cos(nπ)− 1) =


−2
n2π

, n odd

0 n even

University of Guelma Department of Mathematics BENRABAH. A
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• Step three.

bn =
1
π

∫ 2π

0
f (x) sin(nx)dx

=
1
π

∫ π

0
x sin(nx)dx +

1
π

∫ 2π

π
π sin(nx)dx

=
1
π

[(
−π cos(nπ)

n
+ 0
)
+

(
sin(nx)

n2

)π

0

]
− 1

n
(cos(2nπ)− cos(nπ))

= − 1
n
(−1)n + 0− 1

n
(1− (−1)n) = − 1

n
.

we now have

f (x) =
3π

4
+

∞

∑
n=1

(
− 2

π(2n + 1)2 cos((2n + 1)x)− 1
n

sin(nx)
)

1.3.1 The Dirichlet Test:

A Theorem on the Convergence of a Fourier Series

Theorem 1.3.1. 1. Let f be a function that is defined and finite on (−L, L), except

possibly at a finite number of points inside this interval.

2. Let f be periodic of period 2L outside (−L, L).

3. Assume that f , f ′ are piecewise continuous in (−L, L) (this means that f and its

derivative are each continuous except possibly at a finite number of points).

Then the Fourier series of f converges to:

(a) f (x), if f is continuous at x.

(b)
f (x + 0) + f (x− 0)

2
if f is not continuous at x (i.e., It converges to theaveragevalue

of f at x).

Here f (x + 0) and f (x− 0) are the right and left hand limits of f (x) at x and represent
lim

ε→0+
f (x + ε) and lim

ε→0+
f (x− ε), respectively.

The conditions (1), (2), and (3) imposed on f are sufficient but not necessary, and are
generally satisfied in practice. There are at present no known necessary and sufficient

conditions for convergence of Fourier series. It is of interest that continuity of f does not
alone ensure convergence of a Fourier series.

University of Guelma Department of Mathematics BENRABAH. A
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1.3.2 Half range Fourier sine or cosine series

A half range Fourier sine or cosine series is a series in which only sine terms or only cosine
terms are present, respectively. When a half range series corresponding to a given function
is desired, the function is generally defined in the interval (0, L) [which is half of the interval
(−L, L), thus accounting for the name half range] and then the function is specified as odd
or even, so that it is clearly defined in the other half of the interval, namely, (−L, 0). In such
case, we have

f even : bn = 0, an =
2
L

∫ L

0
f (x) cos

(nπx
L

)
dx for half range cosine series

f odd : an = 0, bn =
2
L

∫ L

0
f (x) sin

(nπx
L

)
dx for half range sine series

(1.3.5)
If f (x) is any functiondefinedon an interval of the form [0, L]wedefine its even extension

to [−L, L] by setting f (x) = f (−x) for x in [−L, 0] (or by reflecting its graph about the
y−axis). Similarly, we define its odd extension to [−L, L] by setting f (x) = − f (−x) for x in
[−L, 0], or by reflecting its graph about the origin. The reason for these definitions is that
is that we can create an even function (over (−L, L)) out of a function that is given only on
half-the-range, i.e., (0, L). Similarly, we can create an odd function (over (−L, L)) out of a
function that is given only on half-the-range, i.e., (0, L). We do this because we may want
to expand a function in terms of a pure cosine series only (in which case we use the even
extension since we don’t want any sine terms) or in terms a pure sine series (in which case
we use the odd extension since we don’t want any cosine terms).

Example 1.3.4. Find the even and odd extension of the function f defined by f (x) =

x(π − x) for 0 ≤ x ≤ π.

Solution:

• We recall the definition of an even function: For f to be even on [−π, π] we must have
f (x) = f (−x). To get the form of f on the part [−π, 0] we replace x by ”− x” in the
definition of f (x) : This gives f (−x) = −x(π + x) for x in [−π, 0].

• This case is similar to the first part. We know that f is odd only when f (x) = − f (−x).

So to get the form of f on the left interval [−π, 0], we calculate the value of− f (−x)

using the given expression on [0, π]. Just as before we replace x by ”− x” in the defini-
tion of f (x) : This gives− f (−x) = x(π + x) for x in [−π, 0] (note the removal of the

University of Guelma Department of Mathematics BENRABAH. A
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minus sign).

1.3.3 Pareval’s identity

If an and bn are the Fourier coefficients corresponding to f and if f satisfies the Dirichlet
conditions(see, theorem 1.3.1). Then

a2
0

2
+ ∑

n≥1
(a2

n + b2
n) =

1
L

∫ L

−L
| f (x)|2dx. (1.3.6)

In general there always holds Bessel’s Inequality, that is,

a2
0

2
+ ∑

n≥1
(a2

n + b2
n) ≤

1
L

∫ L

−L
| f (x)|2dx. (1.3.7)

This result is valid for any function that is piecewise continuous on (−L, L) (whether or not
its Fourier series actually equals f (x)!)

Example 1.3.5. Find the Fourier series of the function defined in pieces (sometimes called
a piecewise constant function) by

f (x) =

 8, 0 < x < 2

−8, 2 < x < 4

where f is periodic with period 4. What does the series converge to at x = 2? and at x = 3?

Using Parseval’s Equality, show that ∑
n odd

1
n2

π2

8
.

Solution. Since the function has period 4, the graph of f on the interval [−4, 0] must be
the same as (or a translate of) the one on [0, 4]. In other words, we must have,

f (x) =

 8, −4 < x < −2

−8, −2 < x < 0.

Therefore f is an odd function (why?) on [−4, 4] and so its Fourier series is a pure sine series.
Since the period is P = 4 here, we get that P = 2L implies that L = 2. The Fourier series
looks like,

f (x) ∼︸︷︷︸
not necessarily equal

∑
n≥1

bn sin
(nπx

2

)
,

University of Guelma Department of Mathematics BENRABAH. A
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where

bn =
1
2

∫ 2

−2
f (x) sin

(nπx
2

)
dx

=
1
2

∫ 0

−2
(−8) sin

(nπx
2

)
dx︸ ︷︷ ︸

8
nπ (1−cos(nπ))

+
1
2

∫ 2

0
(+8) sin

(nπx
2

)
dx︸ ︷︷ ︸

8
nπ (1−cos(nπ))

=
16
nπ

(1− cos(nπ)).

Therefore,
f (x) ∼ ∑

n≥1

16
nπ

(1− cos(nπ)) sin
(nπx

2

)
.

Next, we need to use the Dirichlet Test: Now, this function f is NOT continuous at x = 2

(since its left limit is 8 while its right limit is−8). It follows that when x = 2 the Fourier series
converges to f (x + 0) + f (x− 0)

2
=
−8 + 8

2
= 0. This result is easy to verify directly since

at x = 2 the sine term in the Fourier series is sin(nπ) = 0 since n is always an integer!
However, at x = 3 the function IS continuous and its value there is f (3) = −8. Thus, we
find

∑
n≥1

16
nπ

(1− cos(nπ)) sin
(

3nπ

2

)
= −8.

We know the bn’s and f (x). So we can conclude that:

∑
n≥1

b2
n = ∑

n≥1

162

n2π2 (1− cos(nπ))2 =
1
L

∫ L

−L
( f (x))2dx

=
1
2

∫ 2

−2
64dx = 128,

i.e.,

∑
n≥1

(1− cos(nπ))2

n2π2 =
128
256

=
1
2

.

Since (1− cos(nπ)) = 0 whenever n is even and (1− cos(nπ)) = 2 whenever n is odd, we
obtain the desired equality.

Example 1.3.6. Find the Fourier "cosine" series of the function defined by f (x) = x(π− x),

for x in (0, π).

Solution: Since we want a cosine series for f (x) the extension of f to (−π, 0)must be even
(no sine terms allowed in the Fourier series expansion). Now refer to (Example (1.3.4)). We

University of Guelma Department of Mathematics BENRABAH. A



1.3 Fourier series 13

know that the even extension of f (x) looks like

f (x) =

 x(π − x), 0 < x < π,

−x(π + x), −π < x < 0,

This extended function is even and periodic with period π, so L = π/2. The Fourier cosine
coefficients are now given by

a0 =
2
L

∫ L

0
f (x)dx =

4
π

∫ π/2

0
x(π − x)dx = π2/3.

and

an =
2
L

∫ L

0
f (x) cos

(nπx
L

)
dx =

4
π

∫ π/2

0
x(π − x) cos (2nx) dx = − 1

n2 .

So, the Fourier cosine series of this function f (x) is given by

f (x) = π2/6− ∑
n≥1

1
n2 cos (2nx) ,

with convergence properties according to theDirichlet Test. In particular, since f is contin-
uous at x = 0 and f (0) = 0, it follows that π2/6 = ∑

n≥1

1
n2 .

Example 1.3.7. Use Example 1.3.6 and Parseval’s Equality to show that ∑
n≥1

1
n4 =

π4

90
.

solution:Weknow a0, an = −1/n2, bn = 0. Note that a2
0 = π4/18. So, by Parseval’s Equality

we get
π4/18 + ∑

n≥1

1
n4 =

1
L

∫ L

−L
| f (x)|2dx = 2/π

∫ π/2

−π/2
| f (x)|2dx,

However,

2/π
∫ π/2

−π/2
| f (x)|2dx = 2/π

∫ 0

−π/2
[−x(π − x)]2 dx + 2/π

∫ π/2

0
[x(π − x)]2 dx=π4/15.

Combining these results we obtain

∑
n≥1

1
n4 =

π4

15
− π4

18
=

π4

90
.

University of Guelma Department of Mathematics BENRABAH. A
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1.3.4 Integrating and Differentiating Fourier Series

We can integrate a Fourier series term by term provided the conditions of the Dirichlet Test
hold. Indeed, if the function f is piecewise continuous on [−L, L] and the points a, x are in
[−L, L] and f (x) has the expansion given by (1.3.1), then

∫ x

a
f (t)dt = a0/2

∫ x

a
dt + ∑

n∈N∗

(
an

∫ x

a
cos

(
nπt

L

)
dt + bn

∫ x

a
sin
(

nπt
L

)
dt
)

,

or we can integrate the series term by term after which the new series will converge to the
integral of the original series given on the left.

Example 1.3.8. Expand f (x) = cos x, for 0 < x < π, in a pure Fourier "sine" series on
(0, π).

Show that the Fourier cosine series of the sine function on (0, π) is given by

sin x =
4
π ∑

n≥1

1
(4n2 − 1)

− ∑
n≥1

cos(2nx)
(4n2 − 1)

.

Solution:

1. Note that ” cos x” is an even function while only odd functions can have pure sine
series expansions.

2. So we must extend cos x to be an odd function on (−π, π) by taking its odd extension
to (−π, 0).

Write f (x) = cos x for x in [0, π]. Then − f (−x) = − cos(−x) = − cos x since
cos(−x) = cos x by trigonometry. It follows that the odd extension of cos x is given by
the modified function.

f (x) =

 cos x, 0 < x < π,

− cos x, −π < x < 0,

Note that this odd extension is not continuous at x = 0.

3. The resulting extended f (x) is now an odd periodic function of period π, (not 2π as

onemay think!) i.e., f (x + π) = f (x). Since P = 2L it follows that L = π/2.

Furthermore, f (x) is defined on (−L, L) = (−π/2, π/2) and formally, its Fourier series
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representation looks like

f (x) ∼ ∑
n≥1

bn sin
(nπx

L

)
= ∑

n≥1
bn sin (2nx) ,

(there can be no an’s since f (x) is odd on (−π/2, π/2)). The Fourier sine coefficients are
given by

bn =
2
π

∫ π/2

−π/2
f (x) sin (2nx) dx

=
2
π

∫ 0

−π/2
− cos(x) sin (2nx) dx +

2
π

∫ π/2

0
cos(x) sin (2nx) dx

=
4n

π(4n2 − 1)
+

4n
π(4n2 − 1)

=
8n

π(4n2 − 1)

The Fourier series of this extended cosine function is therefore of the form

cos x =
8
π ∑

n≥1

n
(4n2 − 1)

sin(2nx).

for any x in (−π/2, π/2) and outside this interval by periodicity (or periodically repeating
the graph). In particular we see that at x = π/4 we get the result

π
√

2
16

= ∑
n≥1

n
(4n2 − 1)

sin (nπ/2) .

Note: At x = π the Fourier series converges to f (x + 0) + f (x− 0)
2

=
1 + (−1)

2
= 0 (O.K.

by theDirichlet Test) so, in order to get convergence at this point, weneed to define f (π) = 0.

We know that
cos t =

8
π ∑

n≥1

n
(4n2 − 1)

sin(2nt).

is valid for t in (−π, π). Since this function satisfies all the conditions of Dirichlet’s Test we
can choose a = 0 and fix a value of x in (−π, π). We now integrate both sides of this last
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display over [0, x] and find

sin x =
∫ x

0
cos tdt =

8
π ∑

n≥1

n
(4n2 − 1)

∫ x

0
sin(2nt)dt =

4
π ∑

n≥1

1− cos 2nx
(4n2 − 1)

.

Example 1.3.9. Additional example.

1. Find the Fourier series of the function f defined by f (x) = x2 on the interval [−2, 2].

What does the series converge to when x = 0?

2. Use (1) to calculate the Fourier series of the function f (x) = x3 defined on [−2, 2].

1.3.5 Differentiating a Fourier series

Differentiating a Fourier series can be a risky business! This is because the differentiated
series may not converge at all (let alone to the function it is supposed to represent) as we will
see in the next example.

Example 1.3.10. Calculate the Fourier sine series of the function f (x) = x for x in (0, 2)

and show that its differentiated series does not converge at all except for x = 0.

Solution: Since we want a Fourier sine series we must extend this f to the interval (−2, 0)

using its odd extension. This means that f (x) = − f (−x) = −(−x) = x for x in (−2, 0).

But this means that f (x) = x for all x in (−2, 2). Of course, this means that f (x) = x is
already an odd function at the outset (butwemay not have noticed this). A simple calculation
(we omit the details) shows that, since P = 2, then, bn = −2

(−1)n

nπ
, it follows that

x =
2
π ∑

n≥1

(−1)n+1

n
sin (nπx) .

Differentiating this series "formally" (this means "without paying any attention to the de-
tails") we find the Ą"equality"

1 = 2 ∑
n≥1

(−1)n+1 sin (nπx) .

Unfortunately, the series on the right CANNOT converge since

lim
n→∞

∣∣∣(−1)n+1 sin (nπx)
∣∣∣
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does not exist! So, how does one handle the differentiation of Fourier series? There is a test
we can cite that can be used without too much effort.

Test for Differentiating a Fourier Series Let f be a continuous function for all x ∈
[−L, L] and assume that f(−L) = f (L). Extend f to a periodic function of period 2L outside
[−L, L] by periodicity. Assume that f is piecewise differentiable in (−L, L) having finite left
and right derivatives at Ą±L. Then the differentiated Fourier series converges to f ′(x) on

[−L, L].

Example 1.3.11. Find the Fourier sine series of the function πx(π − x)
8

valid on (0, π) and
find the value of its differentiated series.
Solution: Note that here, L = π. The odd extension of this function is given by

f (x) =


1
8

πx(π − x), 0 < x < π,

1
8

πx(π + x), −π < x < 0,

The Fourier coefficients are given by

bn =
2
π

∫ π

0
f (x) sin(nx)dx =

(1 + (−1)n+1)

2n3 ,

and so the Fourier series is

sin x + sin 3x/(33) + sin 5x/(53) + .... = ∑
n≥1

(1 + (−1)n+1)

2n3 sin nx.

Note that f satisfies the conditions of the Test, above. It is continuous everywhere and it fails
to have a derivative at points of the form±π, where n is an integer. The differentiated series
looks like

cos x + cos 3x/(32) + cos 5x/(52) + .... = ∑
n≥1

(1 + (−1)n+1)

2n2 sin nx.

and so we can conclude that

f ′(x) = π2/8− πx/4 = ∑
n≥1

(1 + (−1)n+1)

2n2 sin nx,

holds for x in the range [−π, π]. When x = 0 we recover the result of Example 1.3.5 using a
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different method.
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