
1st Year Mathematics – University of Guelma 1 Dr. Abderrahmane Kefali

Chapter 6 : Custom types
Dr. Abderrahmane Kefali

Senior Lecturer Class A,

Department of Computer Science,

University of May 8, 1945 - Guelma

kefali.abderrahmane@univ-guelma.dz

This document is prepared for printing two pages per sheet

1) Introduction

The predefined types we've seen so far (integer, real, array...) do not allow us to

describe all kinds of information encountered in real life. They do not, for example,

allow us to group different types of information related to the same object into a

single structure.

However, algorithmics and the majority of programming languages provide

algorithm and program designers the ability to define new data types, known as

custom types or user-defined types. These allow us to represent data structures

composed of multiple elements of standard types.

The definition and manipulation of custom types are the focus of this chapter. More

specifically, in this chapter, we are primarily interested in the record type.

2) Records (structures)

In the previous chapter, we saw that arrays allow us to gather several elements of

the same type under a single name. However, in practice, we may also want to

group information within the same structure that does not necessarily have the

same type. To address this issue, algorithmics and programming languages have

introduced new data structures called Records that are better adapted for

representing this type of information.

2.1) Definition

A record also known as a structure, is a data structure that allows gathering within a

single entity a set of data of the same type or different types associated with a

single object.

The record is composed of a set of elements called fields, where each field

corresponds to a piece of data. Similar to the cells of an array, the fields of a record

can be accessed individually for reading, writing, or manipulation.

mailto:kefali.abderrahmane@univ-guelma.dz

Algorithms and Data Structures 1 Chapter 6. Custom types

1st Year Mathematics – University of Guelma 2 Dr. Abderrahmane Kefali

2.2) Records in algorithmics

2.2.1) Declaration

Before declaring a record variable, you must first define its type in the declaration

part of the algorithm using the keyword TYPE.

The general form of declaring a record type is as follows:

TYPE <name_Type > = RECORD

Begin

<name_Field1>: <type_Field1>;

<name_Field2>: <type_Field2>;

....................

<name_Fieldn>: <type_Fieldn>;

End;

Where:

• <name_Type>: is the name of the defined record type.

• <name_Fieldi>: is the name of the ith field of the record.

• <type_Fieldi>: is the type associated with the ith field. It can be any simple

type (integer, character, etc.) or structured type (array, etc.).

Once the type is defined, we can declare variables of this type as we normally

would. The syntax for this declaration is as follows:

VAR <name_variable>: <name_type>;

Where <name_variable> is the name of the variable.

Examples:

1) The Date type is used to describe a real-world date, and it consists of three

fields: day, month, and year, all of which are of type Integer.

TYPE Date = RECORD

 Begin

 Day: integer;

 Month: integer;

 Year: integer;

 End;

VAR D: Date;

2) The Etudiant type represents a university student. It is defined by his

identification number (ID), last name, first name, age, and his marks in 9

courses.

Algorithms and Data Structures 1 Chapter 6. Custom types

1st Year Mathematics – University of Guelma 3 Dr. Abderrahmane Kefali

TYPE Student = RECORD

 Begin

 ID,Age: integer;

 LastName,FirstName: String[20];

 Marks: Array[1..9] of real;

 End;

VAR Stud: Student;

2.2.2) Manipulating a Record

The only possible instruction for directly manipulating a variable of record type (in

its entirety) without accessing its fields is assignment.

However, the fields of a record can be manipulated individually just like any other

variable of a similar type.

a) Accessing a Field of a Record

We can access a field of the record by specifying the record's name followed by the

field's name, with both separated by the dot operator (). The syntax for access is

as follows:

<name_Record><name_Field>

Examples:

• To access the Day field of the record D, we write: D.Day

• To access the Age field of the record Stud, we write: Stud.Age

b) Reading and Writing

To read a record, it is necessary to read each of its fields one by one. The same

applies to displaying the record. The syntax for reading a field is as follows:

Read(<name_Record>.<name_Field>);

The syntax for writing a field is as follows:

Write(<name_Record>.<name_Field>);

Example:

Var D: Date:

Reading all the fields of the record D is done as follows:

Read(D.Day, D.Month, D.Year);

Similarly, displaying the record D is done as follows:

Write(D.Day, D.Month, D.Year);

Algorithms and Data Structures 1 Chapter 6. Custom types

1st Year Mathematics – University of Guelma 4 Dr. Abderrahmane Kefali

Note:

It should be noted that unlike arrays, it is not possible to use a loop to read or write

all the fields of a record.

c) Assignment

As mentioned earlier, assignment is possible between two record variables of the

same type. Thus, the following form of instruction is accepted:

<name_Record1>  <name_record2>;

This instruction implies that all the fields of the record <name_record2> are

copied to the corresponding fields of the record <name_record1>.

We can also assign values to individual fields. To assign a value to a specific field

of the record, we use the syntax:

<name_Record>.<name_Field>  <value>;

The value and the field must be of the same type.

Exemple:

Var D1,D2: Date:

The following instructions are correct:

D1.Day  6;

D1.Month  12;

D1.Year  2022;

D2  D1;

d) The WITH...DO statement

To simplify access to the fields of a record, we can use a special statement: the

WITH statement. Inside the WITH statement, we can directly manipulate the fields

of the record without needing to add the record's name and a dot. As a result,

instructions in the following form:

Read(<name_Record>.<name_Field1>);

<name_Record>.<name_Field2>  <value>;

Write(<name_Record>.<name_Field3>);

Can be replaced, using the WITH structure, by:

WITH <name_Record> DO

 Begin

 Read(<name_Field1>);

 <name_Field2>  <value>;

 Write(<name_Field3>);

 End;

Algorithms and Data Structures 1 Chapter 6. Custom types

1st Year Mathematics – University of Guelma 5 Dr. Abderrahmane Kefali

Example:

Let the record D of type Date be as follows:

Var D: Date:

An example of accessing the fields of the record D, both without and with the

WITH structure, is as follows:

Without the WITH structure With the WITH structure

Read(D.Day);

D.Month  7;

D.Year  1992;

Write(D.Day,D.Month,D.Year);



WITH D DO

Begin

Read(Day);

Month  7;

Year  1992;

Write(Day,Month,Year);

End;

2.2.3) Nesting of Records

A field within a record can itself be another record. This is referred to as the nesting

of records.

Example:

TYPE Date = RECORD

 Begin

 Day, Month, Year: integer;

 End;

Student = RECORD

 Begin

 ID: integer;

 LastName, FirstName: String[20];

 Date_Birth: Date;

 Marks: Array[1..9] of real;

 End;

VAR Stud: Student;

To access the birth month of the student Stud, we write:

Stud.Date_Birth.Month

2.2.4) Arrays of Records

a) Declaration

To declare an array of records, you must first declare the type of the records it

contains. Then, you declare the array type, and finally, you declare a variable of the

defined array type.

Algorithms and Data Structures 1 Chapter 6. Custom types

1st Year Mathematics – University of Guelma 6 Dr. Abderrahmane Kefali

Example:

The declaration of an array of 30 students, each defined by his ID number, last

name, first name, age, and marks, is performed as follows:

CONST n = 30;

TYPE Student = RECORD

 Begin

 ID,Age: integer;

 LastName,FirstName: String[20];

 Marks: Array[1..9] of real;

 End;

 Tab = ARRAY[n] Of Student;

VAR T: Tab;

b) Accessing Fields of a Record in an Array

Accessing a field of a record within an array is done by specifying the name of the

array, followed by the record number in square brackets, and then a dot, followed

by the field name. The syntax for access is as follows:

<name_Array>[<index>].<name_Field>

Example:

T[4].FirstName refers to the FirstName field of the 5th record in the array T.

c) Manipulating an Array of Records

The fields of records in an array are manipulated separately in the same way

described previously. However, traversing the records that make up the array's

elements can be done using a loop.

Example:

Consider the following declaration:

CONST n = 30;

TYPE Student = RECORD

 Begin

 ID,Age: integer;

 LastName,FirstName: String[20];

 Marks: Array[1..9] of real;

 End;

 Tab = ARRAY[n] Of Student;

VAR T: Tab;i :Integer ;

The following instructions are accepted:

Algorithms and Data Structures 1 Chapter 6. Custom types

1st Year Mathematics – University of Guelma 7 Dr. Abderrahmane Kefali

1) Read(T[0].LastName);

2) T[2].Marks[0]  18;

3) Write(T[5].FirstName);

4) T[10]  T[9];

5) For i  0 To n-1 Do

 Read(T[i].age);

2.3) Records in C language

In the C language, the term "structure" is often used rather than "record".

The declaration of a new structure template follows the following syntax:

2.3.1) Declaration of a Structure

The declaration of a structure variable can be done in various ways. However, in

the C language, a structure is defined using the reserved keyword struct.

a) First declaration

It involves defining a structure template and listing the fields it contains, and then

declaring a variable of the defined template.

The declaration of a new structure template follows the following syntax:

struct <name_Template>{

<type_Fields1> <name_Fields1>;

<type_ Fields2> <name_Fields2>;

...

<type_ Fieldsn> <name_Fieldsn>;

};

Where: <name_Template> is the name of the defined template,

<type_Fieldsi> is the type of the ith field of the structure, and <name_Fieldsi>

is the name of the ith field of the structure.

Please note the mandatory semicolon at the end of a structure definition.

Next, to declare a variable of the structure type corresponding to the previous

template, you use the following syntax:

struct <name_Template> <name_Variable>;

Where: <name_Variable> is the name of the declared variable.

Algorithms and Data Structures 1 Chapter 6. Custom types

1st Year Mathematics – University of Guelma 8 Dr. Abderrahmane Kefali

Examples:

1) Definition of a structure template named Date, composed of 3 integer fields:

Day, Month, Year, and the declaration of associated variables.

struct Date{

 int Day,Month,Year;

};

struct Date d1,d2;

Structure template labeled Student describing a university student known by

their ID number, last name, first name, age, and marks. Then, declaring a

structure variable following this template.

struct Student{

 int ID,Age;

 char LastName[20],FirstName[20];

 float Marks[9];

};

struct Student Stud;

Note:

Notice the necessity of repeating the struct keyword in the declaration of a

structure variable following a template.

b) Declaration by Defining Type Synonyms

To avoid the repetition of the struct keyword with every declaration of a

structure type variable, you can proceed with the second method of declaration.

This method involves the use of the typedef keyword to define what is called in

the C language a shortcut or a type synonym. Thus, using this keyword when

defining the structure will allow to give a new name to this type.

Declaration by defining a type synonym follows the following syntax:

typedef struct {

<type_Field1> <name_Field1>;

<type_Field2> <name_Field2>;

...

<type_Fieldn> <name_Fieldn>;

} <name_Type>;

Where: <name_Type> is the name of the defined type synonym,

<type_Fieldi> is the type of the ith field of the structure, and <name_Fieldi>

is the name of the ith field of the structure.

Algorithms and Data Structures 1 Chapter 6. Custom types

1st Year Mathematics – University of Guelma 9 Dr. Abderrahmane Kefali

In this way, the declaration of a structure variable is done just like declaring a

variable of any other type. The syntax for this declaration is as follows:

<name_Type> <name_Variable>;

Example:

The definition using typedef of the Date structure type is as follows:

typedef struct {

 int Day,Month,Year;

} Date;

The declaration of variables D1 of D2 of type Date is simply done as follows:

Date d1,d2;

2.3.2) Manipulating a Structure

Similar to in algorithmics, the manipulation of a structure is done through its fields.

Furthermore, the only allowed operation on structures as a whole is assignment.

a) Accessing a Field of a Structure

Accessing a field follows the following syntax:

<name_Structure>.<name_Field>

Example:

Consider the following declaration:

struct Date d;

Ainsi:

d.Day refers to the Day field of the structure d.

b) Reading and Writing

Reading and writing a structure is done field by field.

The syntax for reading a field is as follows:

scanf("<format>",&<name_Structure>.<name_Field>);

The syntax for writing a field is as follows:

printf("<format>",<name_Structure>.<name_Field>);

Here, <format> represents the format for reading and writing the field ("%d", "%f",

"%s",...).

Example:

Reading the fields of the structure D of type Date is done as follows:

scanf("%d%d%d",&D.Day,&D.Month,&D.Year);

Algorithms and Data Structures 1 Chapter 6. Custom types

1st Year Mathematics – University of Guelma 10 Dr. Abderrahmane Kefali

Displaying a date stored in the variable D can be done as follows:

printf("%d/%d/%d",D.Day,D.Month,D.Year);

c) Assignment

Assignment between two structures allows to copy all the fields of the source

structure to their corresponding fields in the target structure. This assignment

follows the following syntax:

<name_Structure1> = <name_Structure2>;

Here, <name_Structure1> is the name of the target structure, and

<name_Structure2> is the name of the source structure.

To assign a value to a specific field of the structure, you use the syntax:

<name_Structure>.<name_Field> = <value>;

Example:

Consider two variables D1 and D2 of type Date. The following instructions are

accepted:

D1.Day = 6;

D1.Month = 12;

D1.Year = 2022;

D2 = D1;

Note:

In the C language, you can initialize a structure variable during its declaration,

similar to arrays, using braces and commas. This initialization can be done in a

sequential manner (the first value in the first field, the second value in the second

field, and so on), selectively (specifying the fields along with their values), or in a

mixed way (a combination of both).

Furthermore, it is possible to initialize only certain fields of the structure within the

braces and leave the others empty.

Example:

Let's return to the definition of the Date type as defined earlier:

typedef struct {

 int Day,Month,Year;

} Date;

The following variables are initialized during their declaration:

Date birth_Date={7,2,2001};

Sequential initialization (Day, then Month, then Year).

Date entery_Date={.Month=10,.Year=2015,.Day=17};

Algorithms and Data Structures 1 Chapter 6. Custom types

1st Year Mathematics – University of Guelma 11 Dr. Abderrahmane Kefali

Selective initialization.

Date exit_Date={20,.Year=2015};

Mixed initialization. The month is not initialized in this case.

2.3.3) Nesting of Structures

A structure field can itself be of a structure type, provided that this structure is

defined before being used.

Example:

typedef struct {

 int Day,Month,Year;

} Date;

typedef struct{

 int ID;

 char LastName[20],FirstName[20];

 Date Date_Birth;

 float Marks[9];

} Studiant;

Studiant Stud;

To access the birth month of the student Stud, you need to use the dot operator

"" twice:

 Stud.Date_Birth.Month

2.3.4) Arrays of structures

a) Declaration

Declaring an array of structures requires that the structure type has been declared

beforehand. It's advisable to create a type synonym for the array type (using

typedef) and declare variables of that type.

Example:

Declaring an array of 100 persons, each defined by his last name, first name, and

age, is done as follows:

#define n 100

typedef struct{

 char LastName[20],FirstName[20];

 int age;

} Person;

typedef Person Tab_Pers[n];

Tab_Pers T;

Algorithms and Data Structures 1 Chapter 6. Custom types

1st Year Mathematics – University of Guelma 12 Dr. Abderrahmane Kefali

b) Manipulation

Manipulation is the same as in algorithmics.

3) Other possibilities for defining types

In addition to records, there are other custom data types. We briefly mention some

of them.

3.1) Enumerations

An enumeration, or an enumerated type, is a type for which the designer explicitly

lists an ordered set of possible values that a variable of this type can take. These

values are explicitly defined and specified by identifiers (constants). The order of

values is the order in which the identifiers were enumerated.

3.2) Interval type

This type allows us to define a range of values for a scalar type by specifying its

lower and upper bounds. The types of the constants that serve as the bounds of the

interval determine the scalar type from which the interval is derived. However, the

interval can be a range of integer values or characters, but not real numbers or

strings.

3.3) Set type

The set type defines an unordered collection of elements of the same type, and the

number of elements is finite. You can perform classical mathematical operations

and relations on sets, such as union, intersection, complement, equality, inclusion,

and membership.

