

University of 8 May 1945 - Guelma Department of Civil Engineering and Hydraulics

Notions on roads, railways and engineering structures

Master 1 : Geotechnics

Dr. Bouteldja F.

Organization of teaching

Unit: Discovery

Coefficient / Credit: 1 / 1

Number of teaching hours:

1h30 Course

Evaluation method:

Exam: 100%

Course content

Chapter I: Road concepts

Chapter II: Railways concepts

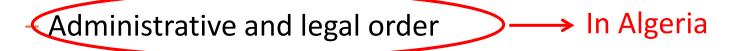
Chapter III: Bridges concepts

Chapter I: Road concepts

- 1. General
- 2. Traffic
- 3. The geometric parameters of layout of the raod
- 4. Development of intersections
- 5. Road pavements

- Importance of roads
- Road classification
- Road nomenclature
- Data to be considered in a project
- Concept of speed
- Stopping distance

Importance of roads


The road is the most important transport infrastructure:

- > Facilitating commercial exchanges.
- Contributing to economic development by transporting raw materials and merchandise to industrial zones.
- > Openning up rural areas and enable the delivery of the population's needs and facilitate their transport. This allows the development of these areas and decrease the rural exodus.
- > Bringing cities and regions closer together, making it easier to transport people and merchandise.

Road classification

Classification criteria

- Practical and situational utility

- Constructive order
- Nature of traffic
- Functional order

Road Classification

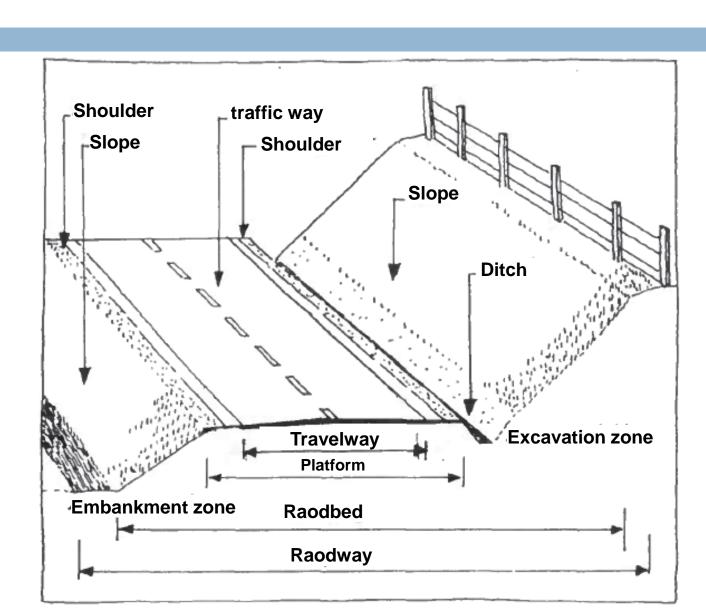
Administrative and legal classification

(Highways, national roads, wilaya roads, communal roads) 1/ Main network (RP):

RP Level 1 (RP1) : Traffic > 1500 Vehicles/day, connections between wilaya capitals - economic and strategic interest.

Category 1 (Cat.1): Traffic > 4500 V/day

Category 2 (Cat.2): 3000 < Traffic < 4500 V/day


Category 3 (Cat.3): 1500 < Traffic < 3000 V/day

➢ RP Level 2 (RP2) : Traffic < 1500 V/day, national roads and wilaya roads connecting Algeria with other neighboring countries (Cat.4)</p>

2/ Secondary network (RS):

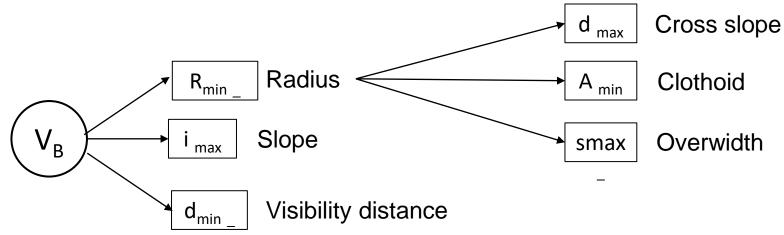
composed of the remaining roads not classified as RP1 and RP2 (Cat.5)

Road nomenclature

Data to consider in projects

10

The definition of the *geometric characteristics* of the road requires the prior choice of a certain number of basic data, the most essential of which are the following:


- ➤ traffic
- project speed
- Stopping, overtaking and visibility distances

Concept of speed

Basic speed V $_{\rm B}$

Theoretical speed used to determine the extreme values of the geometric characteristics of road layout, it depends on:

- Road type
- Importance and type of traffic
- Topography
- Economic conditions

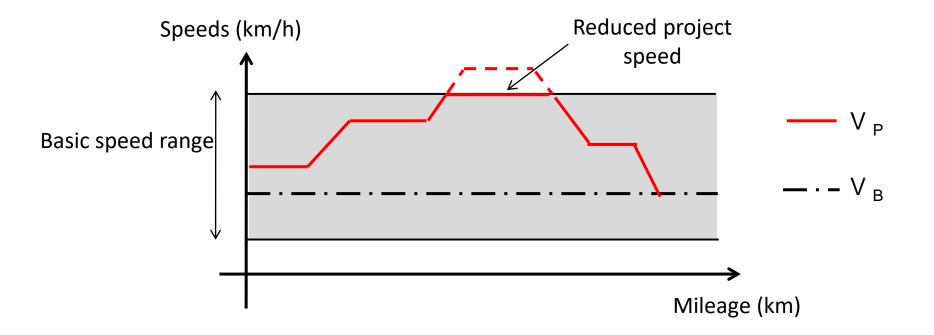
Concept of speed

12

Basic speed V $_{\rm B}$ (Technical Standards for Road Development B40 – Algeria)

Envi. / Category		Cat.1	Cat.2	Cat.3	Cat.4	Cat.5
E1 (Flat)	V _{vL}	120	120	120	100	80
	V _{pL}	40	40	35	30	-
E2 (Hilly)	V _{vL}	100	100	100	80	60
	V _{pL}	35	35	30	25	-
E3 (Mountainous)	V _{vL}	80	80	80	60	40
	V _{pL}	30	30	25	20	-

Concept of speed


Basic speed V_B (Example of some countries)

Country	Road type	V _B (km/h)
Swiss	High-volume roads Main roads Collector roads	80 - 120 60 - 120 50 - 80
France	Highways Highways + very uneven terrain Ordinary roads + little uneven terrain Ordinary roads + uneven terrain	130 100 100 80
Italy	Milan – Bologna Bologna – Florence Florence – Rome	150 100 120

Concept of speed

Project speed V_P

Highest speed that can be allowed at each point of the road.

Stopping distance

15

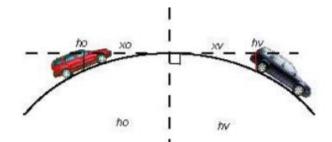
This is the theoretical distance necessary for a vehicle to stop, it is equal to:

$$d_{2} = d_{1} + 0.25 d_{0}$$
 if $R \le 5 V$
 $d_{2} = d_{1}$ if $R > 5 V$

- d₀: reaction perception distance in (m)
- d₁: braking distance in (m)
- d 2: stopping distance in (m)
- R: radius in plan in (m)
- V: speed in (Km/h)

Stopping distance

16


Reaction perception distance (d $_0$) in (m)

$$d_{\scriptscriptstyle 0} = \frac{V^2}{254 \cdot \left(f_{\scriptscriptstyle L} \pm i\right)}$$

- V: speed in (Km/h)
- f_L : friction coefficient (average $f_{L=0.40}$)
- i (%): the slope (+) ramp, (-) slope

Braking distance (d₁) in (m)

$$d_{I} = \frac{2 \cdot V}{3,6} + \frac{V^2}{254 \cdot \left(f_{L} \pm i\right)}$$

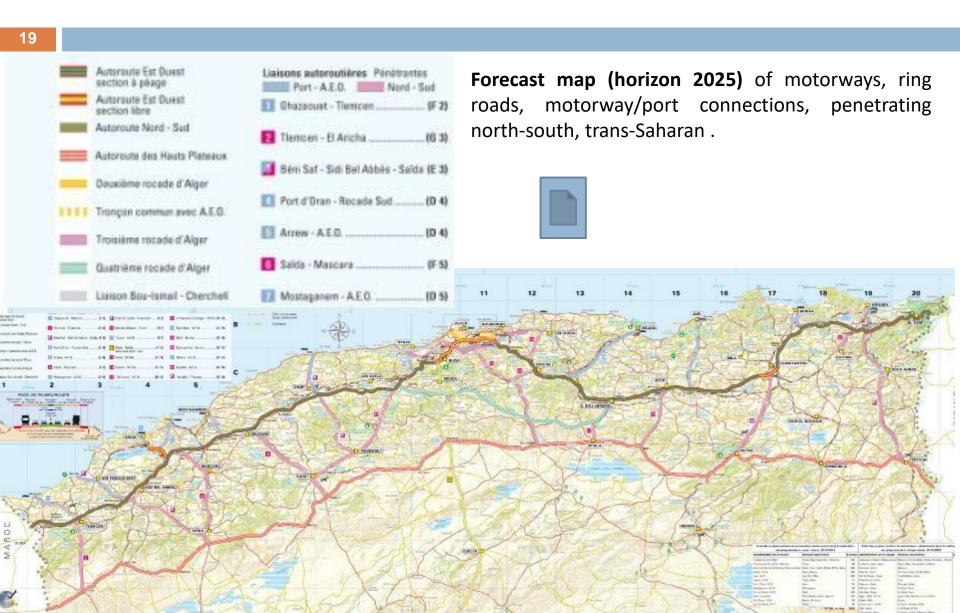
Some statistics

Different types of traffic

Traffic composition: Counts

Traffic indicators

Calculation of the number of channels



Some statistics

Statistics from 2011:

- National automobile fleet > 6 million vehicles (300 thousand new vehicles/year)
- **112,696 km** of roads providing nearly 90% of the volume of trade, this shows the importance of the road transport mode compared to other modes (rail, air, maritime)
- Highways 1216 Km, National Roads (RN) 29,280 Km, Wilaya Roads (CW) 23,771 Km, Communal Roads (CC) 59,645 Km, Works of Art (OA) 4910 Unit

Some statistics

Different types of traffic

Transit traffic:

Origin and destination outside the study area.

(important for deciding on the need for a diversion)

Exchange traffic:

Origin within the zone studied and destination outside the exchange zone and vice versa.

(important for defining exchange points)

Local traffic:

Internal which moves within the studied area.

Traffic composition

The counts:

- > Automatic counts
- permanent or temporary
- Created for the most important roads (motorways, RN, RW)
- Disadvantage: impossibility of differentiating between VL and PL

Manual counts

- Complementary tool for automatic counts (%PL)
- Provides information on directional movements in an intersection

Traffic indicators

> Annual Average Daily Traffic (ADT)

Total traffic for the year / number of days (vehicles/day)

Fraffic at a given horizon (ADT h)

Gives an indication of annual traffic growth.

- *TJMA* ₀: Traffic in year 0
- TJMA h: Traffic for the year horizon "h"

$$TJMA_{h} = (1 + \tau)^{n} TJMA_{0}$$

 τ : the annual growth rate of traffic n: number of years

Traffic indicators

> Effective traffic (T _{eff})

Traffic translated into passenger vehicle units (*PVU*) based on road type and environment.

Convert "PL" into "uvp" \rightarrow equivalence coefficient "p"

$$T_{eff} = [(1 - z) + pz] TJMA_h$$

T_{eff}: effective traffic at horizon h, expressed in (uvp /day)

z : % heavyweight; *p* : equivalence coefficient (table below)

Roads	E1: easy (plain)	E2: medium (hilly)	E3 : difficult (mountainous)
2 lanes	3	6	12
3 ways	2.5	5	10
4 channels and more	2	4	8

Capacity request

Number of vehicles likely to use the road over the next year. We take *the normal hourly peak flow (uvp /h)* :

$$Q = 0.12 T_{rms}$$

Evaluation of the offer:

The supply is *the admissible flow* that a road can support:

$$Q_{adm} - K_1 K_2$$
 Theoretical capacity

- K₁: coefficient depending on the road environment
- K ₂: coefficient depending on the category and the environment of the road

Evaluation of the offer:

Environment	E1	E2	E3
Values K1_	0.75	0.85	0.95

K ₂ values					
Environment	Cat.1	Cat.2	Cat.3	Cat.4	Cat.5
E1	1	1	1	1	1
E2	0.99	0.99	0.99	0.98	0.98
E3	0.91	0.95	0.97	0.98	0.98

Evaluation of the offer:

Theoretical capacity takes the average values below:

- 2 lane road of 3.5 m: 1500 2000 uvp /h
- 3.5 m 3-lane road: 2400 3200 uvp /h
- Divided road: 1500 1800 uvp /h/direction

Calculation of the number of channels:

>Two-way roadway

We compare Q to Q $_{adm}$ for different types of roads and we deduce the number of lanes allowing us to have:

$$Q \leq Q_{adm}$$

>Unidirectional roadway

$$n = 2Q/3Q_{adm}$$

n: is the number of lanes per roadway (whole number)

Example

A count carried out for a category 1 road (2 lanes) to give a TJMA = 10,500 v/d with 20% heavy goods vehicle (LP). This road is located in an E2 environment. You are asked to:

1/ Calculate the effective traffic "T $_{eff}$ " in the 12th year of commissioning knowing that the annual growth rate $\tau = 4\%$

2/ Calculate the number of lanes to give to the road at this time horizon.

²⁹ 3. Geometric parameters

Introduction

Plan layout

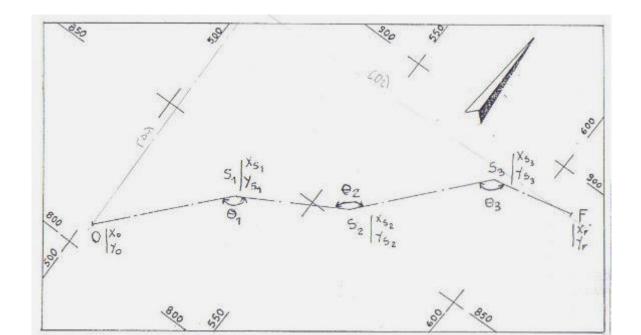
Long profile

Cross profile

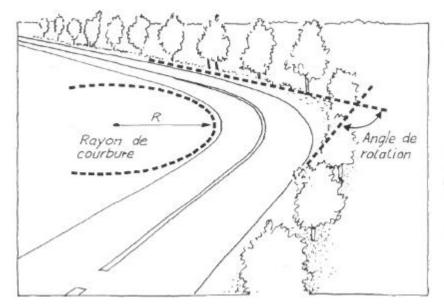
Introduction

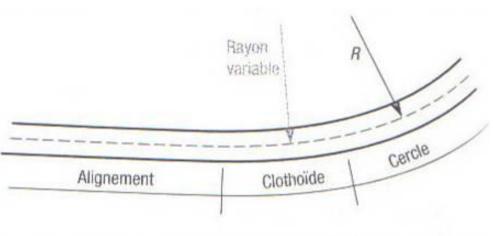
30

The road is defined geometrically by three groups of elements:


- Plot of its axis in plan (plan plot)
- Plot of this axis in elevation (long profile)
- Cross profile

The geometric characteristics of this layout must satisfy criteria:


- Economic and strategic
- Topographic and geological
- Expected future traffic


The layout of a road is a top view , it is a succession of:

- Straight (Alignments)
- Circle arcs
- Connection curves (Clothoid)

Geometric parameters

a/ The Alignments

- The inconvenients :
- Prolonged glare of headlights at night
- Constant driving difficulties (fatigue ightarrow accidents)
- Difficult assessment of distances between vehicles

The length of the alignments depends on:

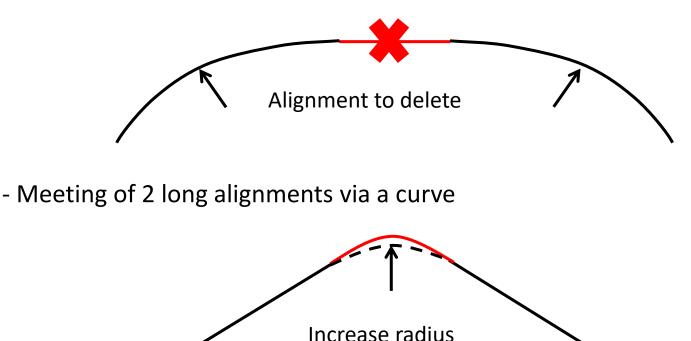
- the basic speed V $_{\rm B}$
- previous and next radius

a/ The Alignments

The concept of length minimum and maximum :

$$L_{min} = 5 \cdot \frac{V_{B}}{3,6}$$

$$L_{max} = 60 \cdot \frac{V_{B}}{3,6}$$


V_B: basic speed in (Km/h)

 L_{min} and L_{max} : minimum and maximum length in (m)

a/ The Alignments

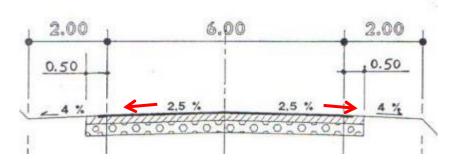
For security reasons, the following special cases should be avoided:

- Meeting of 2 long curves by a short alignment

b/ The arcs of a circle

The choice of radius "R" must take into account the 3 criteria:

- Stability of vehicles in curves
- Registration of long vehicles in severe bends
- Visibility in curves


b.1) Stability: for a vehicle to remain stable in a turn it is necessary that:

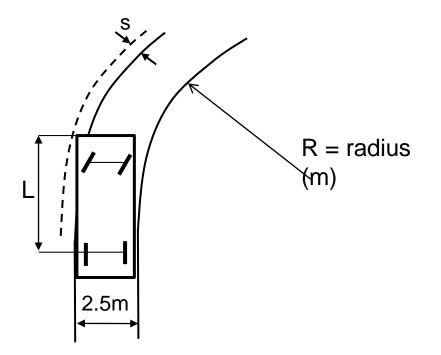
$$R \ge \frac{V_B^2}{127\left(f_L + d\right)}$$

R: radius of the arc of the circle in (m) V $_{\rm B}$: basic speed in (Km/h) d (%): slope

Plan layout

b/ The arcs of a circleCant Values

Category	Environment	Slope (%)		
		Max	Min	
1 - 2	1 - 2 - 3	5	2.5	
3 - 4	1 - 2	6	3	
3 - 4	3	5	3	
5	1 - 2 - 3	6	3	

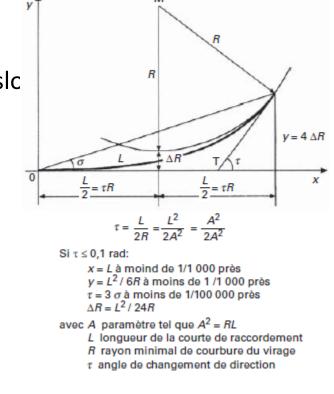

Plan layout

b/ The arcs of a circleb.2) Overwidth (long vehicles)

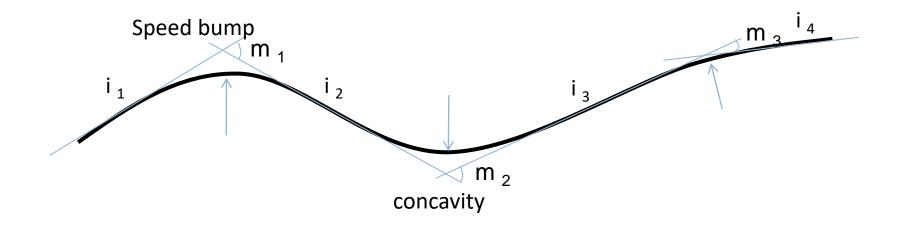
$$s = \frac{50}{R}$$

s: excess width per lane in (m)

Only when R < 200 m


Plan layout

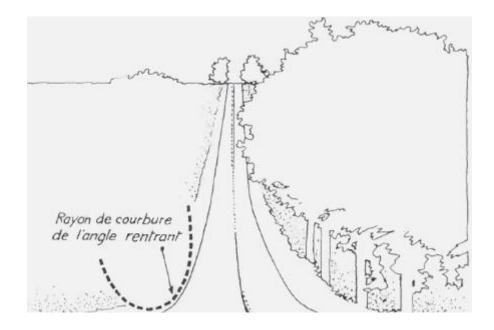
c/ The connection curves (Clothoids)
Why do we use CRs?


- Transversal stability of vehicles
- Comfort of vehicle passengers
- Gradual transition of the shape of the roadway (slc

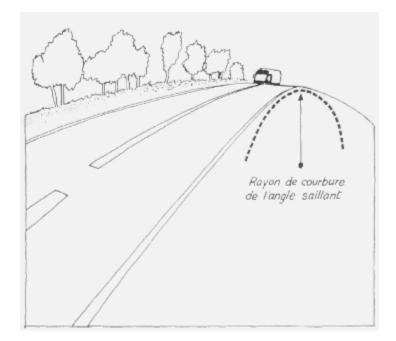
General equation:

 $A^2 = LR$

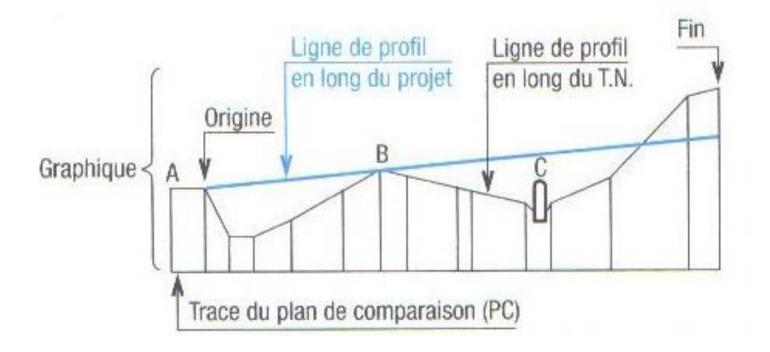
The longitudinal profile is a vertical section passing through the axis of the road, represented on a plan at a certain scale.



These geometric elements are:


- Straight lines (slopes)
- Arcs of circles tangent to straight lines (convex and concave)

Slope (ramp and slope)


Ascending lines "Ramp", i (+)

Descending lines "slope", i (-)

Example of a long profile

Example of a detailed longitudinal profile

		-						
Drigine du projet PC = 100 NGF								
Distances partielles (1)	25.	00	20,00	20,00	25,00	25,00	35,00	
Distances cumulées (2)	00'0	25,00	45,00	65,00	90,00	115,00		150,00
Numéros des profils (3)	38	-39	- UP	-41	- 42 -	-43	2	44
Altitudes du TN (4)	120,00	117,50	116,25	115,00	113,75	112,50	2	110.00
Altitudes du projet (5)	117,50	116,50	115,70	114,90	113,90	112,90		111.50 110.00
Déclivités (6)				150	Pente 0,0	4		102
Alignements et courbes (7)	R =	= 150	D	= 79,50	-	70,5	0	_

Design rules

- >Gradients:
- minimum slope: i $_{min}$ = 1%
- maximum length: [1.5 2 Km]
- maximum slope (i $_{max}$) depends on V $_{B}$ (table below)

V _B (Km/h)	40	60	80	100	120	140
i _{max} (%)	8	7	6	5	4	4

Design rules

>Convex vertical connections

The convex vertical radius " R_v " must satisfy two conditions:

- Comfort condition
- Visibility condition

Design rules

Concave vertical connections

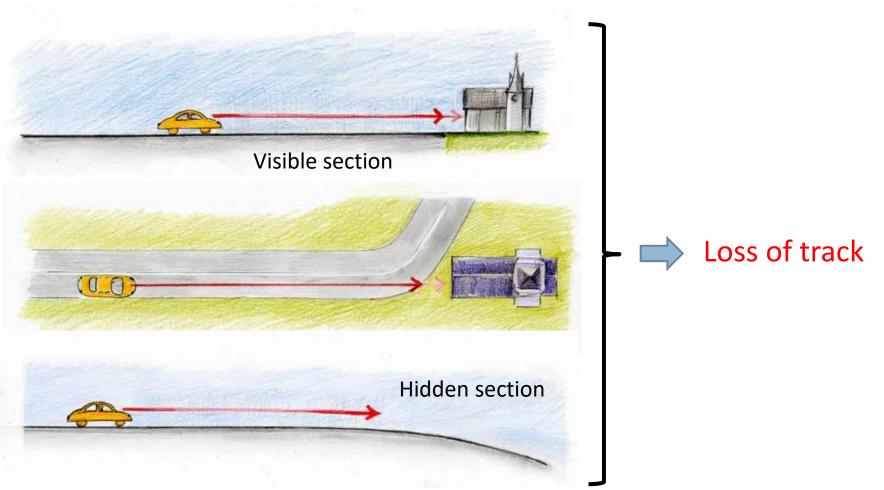
The concave vertical radius " R'_v " must satisfy the visibility conditions day and night (glare from headlights)

$$R_{V}^{'} = \frac{d_{1}^{2}}{0,035 \cdot d_{1} + 1,5}$$

d₁: braking distance (on a slope)

Plot in space Coordinations plotted in plan - longitudinal profile

Concept of loss of trace


47

A bad combination between the plan layout and the longitudinal profile leads to a loss of layout.

Plot in space Coordinations plotted in plan - longitudinal profile

Concept of loss of trace

Plot in space Coordinations plotted in plan - longitudinal profile

Rules to follow to avoid loss of track

49

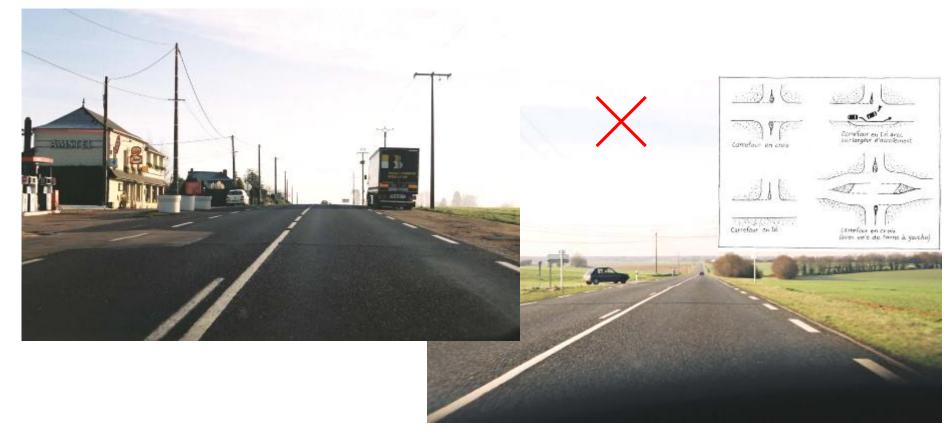
1. Avoid the start of the turn (R $_{\rm h}$ < 300m) being located at the top point of the longitudinal profile



Plot in space Coordinations plotted in plan - longitudinal profile

50

Adopt this type of solution:

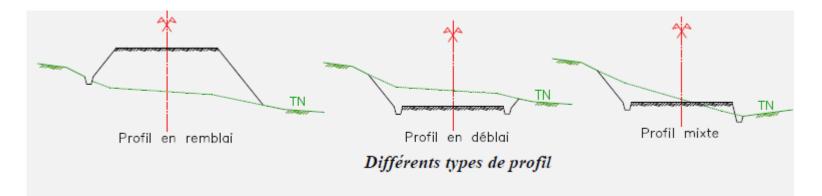


Plot in space Coordinations plotted in plan - longitudinal profile

Rules to follow to avoid loss of track

2. Avoid positioning crossroads or access points at a high longitudinal profile or in a zone of reduced visibility

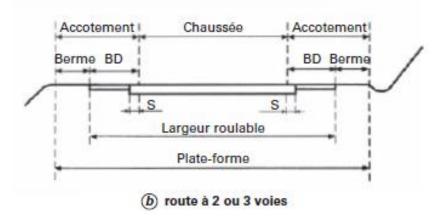
Plot in space Coordinations plotted in plan - longitudinal profile


Rules to follow to avoid loss of track:

3. Match the curves of the plan layout with those of the longitudinal profile, trying to respect: $R_v > 6 R_h (R_h : radius in plan)$

Cross Profiles

The cross sections are a vertical section of the road perpendicular to the alignment axis.

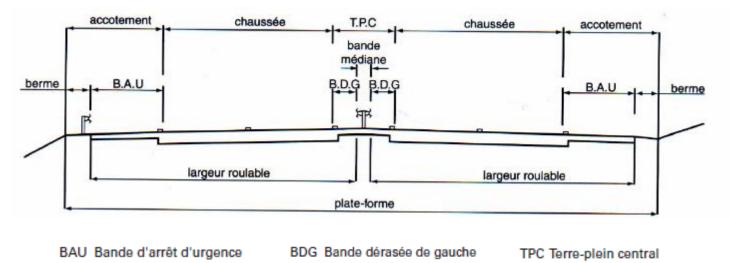


The cross sections make it possible to calculate:

- The position of the theoretical earthwork entry points
- The layout of the route and its extent
- Cubatures (volumes of cut and fill)

Cross Profile

Detailed cross section


- S Surlargeur (structurelle) de chaussée
- BD Bande dérasé

12.1				X	#			ľ	1	¥
Plan de comparaison 160)		4	*							
Distances TN	10,00		3,90	1,10	0,00	3,40		-00,9-		10,00
Distances Projet	6.55	4,50	2,70		0,00		4,50	5,50	7,54	10,00
Altitudes TN	165.99	2010	166,05	168,60	168,70	169,00		168,90		168,50
Altitudes Projet	165,40	167.15	167,15		167,15		167,15		166,65	

Cross Profile

Number of channels (Depending on traffic)

- Highways (2×2 lanes and more)
- Main roads 2 to 3 lanes $\underline{or} 2 \times 2$ lanes

Lane width: Is 3.5m international standard, it can be reduced to 3m in case of site constraints or when traffic is low.

56 4. Layout of intersections

General

Choice of intersection type

Ordinary flat intersections

Flat roundabout intersections

Uneven intersections

General 1/1

57

Crossroads are the scene of many *accidents*. The aim of the development of intersections is to *reduce* this *insecurity*.

The design of the type of development to be retained is based on an approach which includes the following two stages:

- determination of a range of possible *arrangements* taking into account the development objectives of the axis,
 depending in particular on the *type of road*;
- choice of the *type of intersection* within this range, depending on site characteristics (traffic, topography, security, environment, etc.) by means of a *multi-criteria analysis* taking into account safety, passage time, financial cost, etc.

Choice of intersection type 1/1

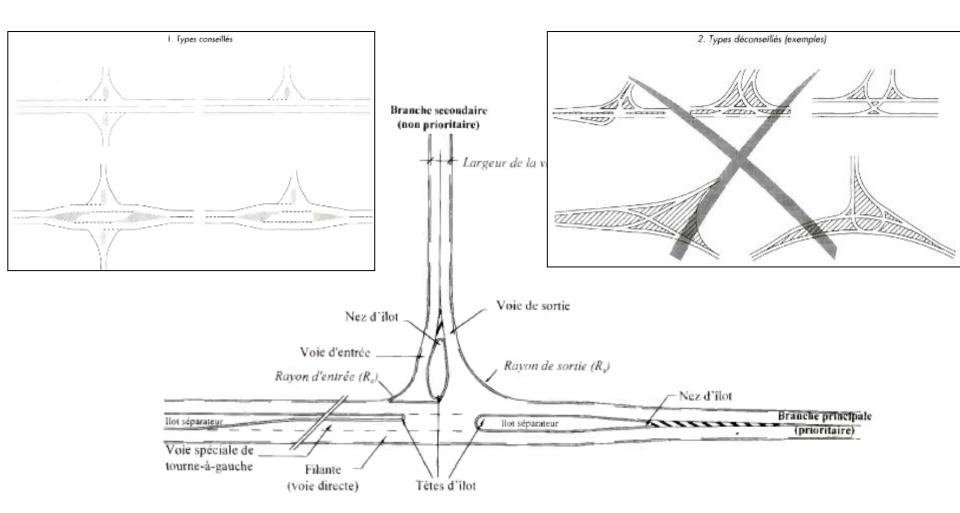
There are two main families of intersections:

- Flat intersections or at -grade intersections which group together in the same plan all the exchanges between the roads concerned (ordinary, roundabouts).
- Grade-separated intersections or interchanges whose exchanges are separated from each other and managed outside the main axes.

The main criteria for choosing between these different crossroads are:

safety: grade-separated intersections offer the best safety. The roundabout always presents a better level of safety than an ordinary level intersection.

the cost: ordinary flat intersections are the least expensive than roundabouts.
 Grade-separated intersections are more expensive than level intersections.


Lost time: This criterion is important on routes where long or medium distance traffic circulates (traffic-related delay, geometric delay).

Overall coherence of developments along the axis: excessive frequency of roundabouts on the same route can become annoying for important roads.

Ordinary flat intersections 1/6

59

> Main elements and parameters of an ordinary plane intersection

Ordinary flat intersections 2/6

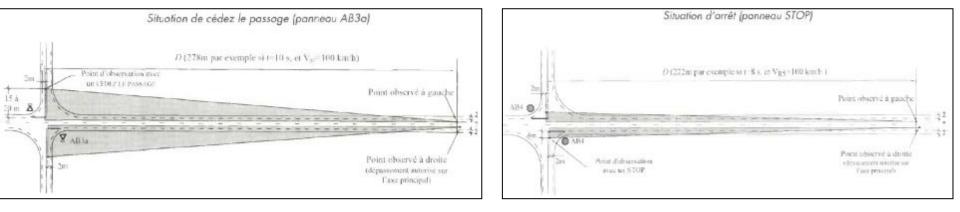
Conditions for establishing intersections

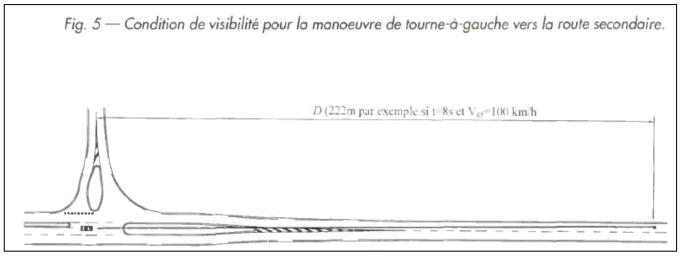
Visibility, readability, the distance between two intersections, and the limitation of the number of intersections installed.

Visibility distance = V₈₅ x crossing time

V₈₅: the speed below which 85% of users travel in smooth traffic conditions. It depends on the number and width of the lanes, plan radius, slopes)

This visibility distance makes it possible to construct the *visibility triangle*.


Profil en travers de la route principale		2 voies 2 voies + voie de T.A.G.		2 x 2 voies : insertion à droite dans les demi-correfours		
temps conse		8 s	95	8 s		
STOP	minimum absolu	6 s	7 s	6 s		
CEDEZ LE PASSAGE	temps conseillé	10 s	11 s	9 s		
	minimum absolu	8 s	9 s	7 s		
Tourne-à-gauche vers la voie secondaire	temps conseillé	8 s				
	minimum absolu	ó s				


Ordinary flat intersections 3/6

61

Conditions for establishing intersections

Construction of the *visibility triangle* .

Ordinary flat intersections 4/6

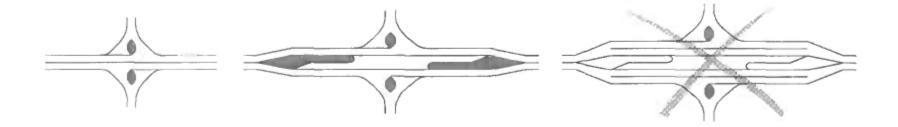
Conditions for establishing intersections

Visibility, **readability** , **the distance between two intersections** , and the limitation of the number of intersections installed.

- Fig. 6 Visualisation de la route secondaire intersectée par un alignement transversal.
- Fig. 7 Ecran végétal en blocage de la vision sur la branche secondaire d'un carrefour en té.

Tableau 2 — Distance minimale conseillée entre deux carrefours successifs aménagés, et possibilité de dépassement résiduelle¹³, selon les vitesses pratiquées.

V ₈₅ (en km/h)	60 - 70	80 - 90	100 - 110
Distance minimale conseillée (en m)	600	900	1200
Possibilité de dépassement offerte (en m)	300	450	600

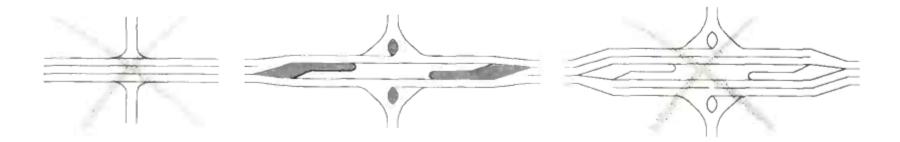

Ordinary flat intersections 5/6

Plan layout of the main branch

At intersections and for safety reasons, the number of direct lanes per direction of the main branch must be limited.

In the case of a **2-lane road**, only one lane must be maintained for each direction of traffic.

Fig. 8 — Principe d'aménagement des carrefaurs sur les rautes à 2 voies en section caurante.

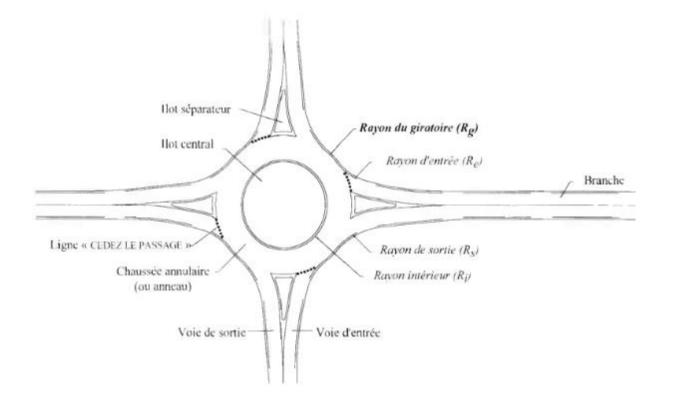

Ordinary flat intersections 6/6

64

Plan layout of the main branch

In the case of a *3-lane road*, maintaining it at ordinary crossroads is *strongly discouraged*. Under these conditions, one-lane *diversions* must be made upstream of all intersections for each direction of traffic.

Fig. 9 — Principe d'aménagement des carrefaurs sur les routes à 3 vaies en section caurante.

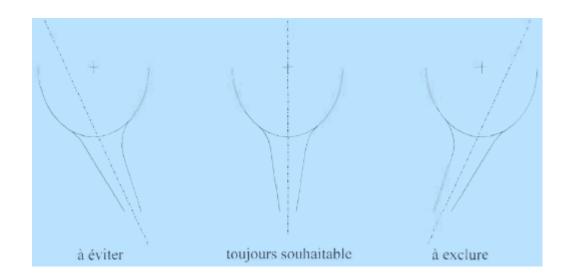


Flat roundabout intersections 1/6

65

The roundabout is the flat intersection which offers the best level of safety if it is well designed and correctly sized.

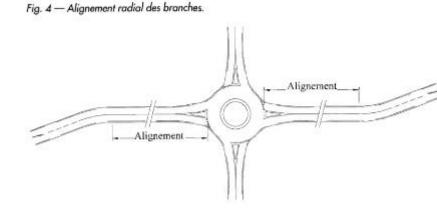
The main elements and parameters of a roundabout are shown in the figure below.



Flat roundabout intersections 2/6

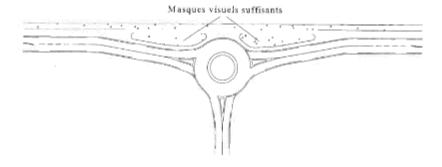
General geometric configuration

The roundabout can have 3 to 6 branches distributed regularly around the ring in order to improve readability.


The position of the central island is *optimal* when all the *axes of the branches* pass through the *center of the roundabout*.

Flat roundabout intersections 3/6

General geometric configuration


The roundabout must have a *radial alignment* over a length of approximately 150 to 250 m for a two-way road and 250 to 350 m in the case of a 2 x 2 way input.

For a 3-branched intersection the intersection must be transformed *into a "Y*" or "*offset tee*".

Fig. 6 - Canfiguration des branches d'un giratoire « en Y ».

Flat roundabout intersections 4/6

General geometric configuration

The general dimensions of the roundabout depend mainly on the number of lanes of the road, nature of traffic and the number of branches:

Two-way route:

The outer ring radius (\mathbf{R}_{g}) must be between 15 and 25 m. The upper limit can be increased to 20 m in the case of roads with heavy heavy goods vehicle traffic and to 25 m in the case of a roundabout with a number of branches greater than 4. it is not recommended to choose an \mathbf{R}_{g} <12m.

Dual carriageway:

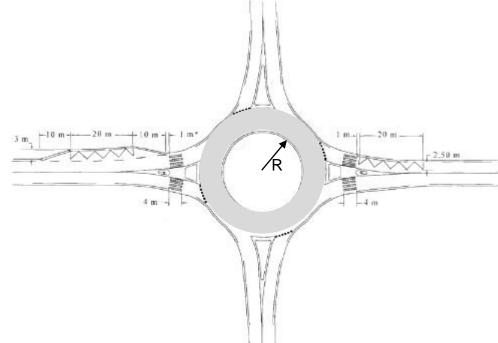
A radius (R $_{\rm g}$) of 25 m is generally recommended. In all cases, the width of the annular roadway cannot be less than 6 m.

Gradients:

Road with gradient *less than* $3\% \rightarrow no problem$ installing the roundabout.

Between 3% and 6% \rightarrow reduction in the stability of heavy goods vehicles (insecurity).

Greater than $6\% \rightarrow$ significant problems (roundabout to be excluded and replaced by another type of intersection).

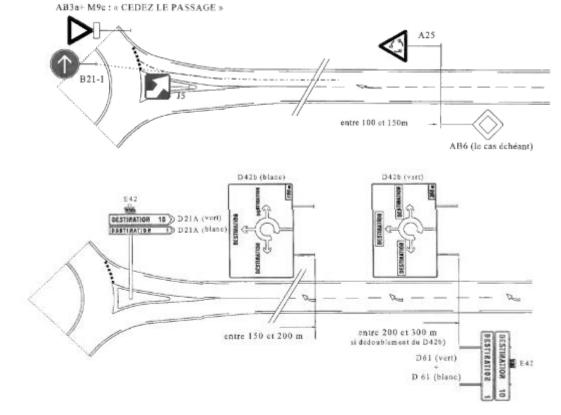

Flat roundabout intersections 5/6

General geometric configuration

The central island must be circular, it must have an internal radius between 6 and 10 m.

The width of *the roundabout ring must be between 6 and 9 m* wide . The annular roadway must have a uniform *slope of* **1.5 to 2%** directed towards *the outside* of the intersection to improve the perception of the annular roadway, and facilitate the management of surface water flow.

The roundabout may include adjustments for *pedestrians* and *public transport*.

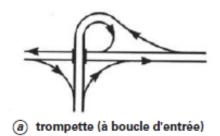


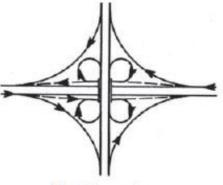
Roundabouts 6/6

70

Road signs in roundabouts

- ✓ Priority signaling
- ✓ Prescription signage
- ✓ markup
- ✓ Direction signage
- Horizontal signage (road marking)

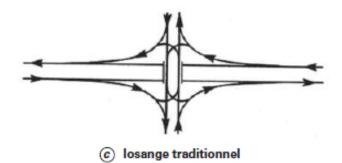

Uneven intersections 1/1

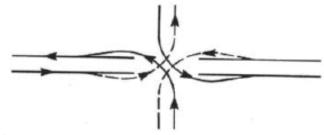

71

Grade-separated intersections, or *interchanges*, are more *expensive* than level intersections, but they offer much better safety conditions. They are generally used on highways. They can be classified into two main categories:

Crossroads without shearing:

trumpet or full clover





(b) trèfle complet

Crossroads with diamond-type shear:

For secondary roads with low traffic.

(d) losange indonésien (avec virages à gauche dos à dos)

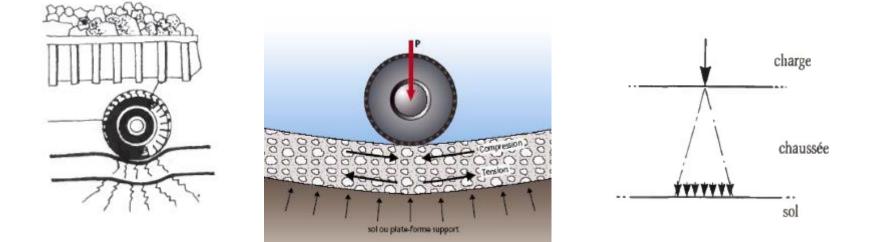
5. Roadways

General

- Shape layer
- Seat layers
- Surface layers

Introduction

Constituent elements of a roadway

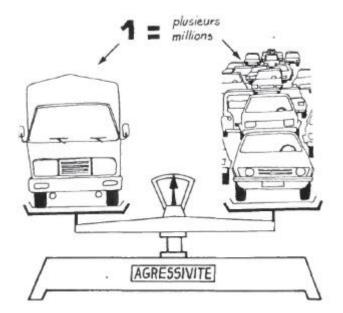

Different types of roadways

Introduction 1/3

74

The road must resist attacks from external agents and operating loads:

- Actions of the axles of heavy vehicles,
- Climatic effects: thermal gradients, rain, snow, ice, etc.



Introduction 2/3

75

To ensure that the roadway has good mechanical characteristics throughout its lifespan, it is necessary:

- Have a good knowledge of heavy goods vehicle traffic during the expected lifespan of the roadway,
- Have a good knowledge of the supporting soil,
- Make a good choice of constituent materials and good implementation.

Introduction 3/3

76

Some disorders caused by the action of the axles and climatic effects:

Figure 1 - Faïençage

Figure 3 - Fissuration longitudinale

Figure 2 - Fissuration transversale

Figure 4 - Orniérage

Constituent elements of a roadway 1/1


Definition

A roadway is the set of layers of materials superimposed and implemented in such a way as to allow the absorption of external loads.

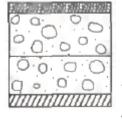
	Accotement		
	5.5	Roulement Lioison	Couche de surfoce
	101	Bose	1
	Sal	Fondation	Couches d'assise
5	1200720007200070000000		
1000			Couche de forme
1365			
~1m	Partie supérieure des terrassements		Sol support

Different types of roadways 1/2

a) Flexible ($e_T = 30$ to 60 cm)

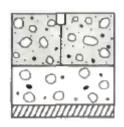
- 1. Bituminous concrete or ES
- 2. Gravel bitumen
- 3. Untreated Matx
- 4. Support platform

c) Reverse ($e_T = 60$ to 80 cm)


- 1. Asphalt concrete
- 2. Gravel bitumen
- 3. Unprocessed Matx
- 4. Matx treated with hydrau binders

b) Mixed ($e_T = 30$ to 60 cm)

- 1. Asphalt concrete
- 2. Gravel bitumen
- 3. Matx treated with hydrau
- 4. Support platform


d) Semi-rigid ($e_T = 20$ to 50 cm)

- 1. Asphalt concrete
- 2. Matx treated with hydrau
- 3. Matx untreated or treated

with hydraulic binders

4. Support platform
 6) Rigid (in cement concrete) (e _T = 20 to 40 cm)

- 1. Cement concrete slab
- 2. Lean concrete
- 3. Support platform

1. Continuous reinforced

concrete slab

2. Lean concrete

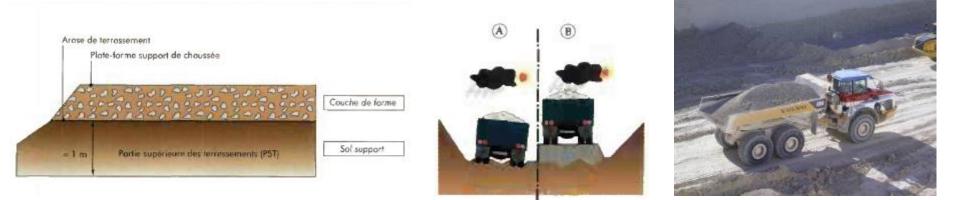
Different types of roadways 2/2

79

Photos of a continuous reinforced concrete pavement

80 Shape layer

Goals


Nature of the form layer

Form layer 1/2

<u>Goals</u>

Meet certain objectives depending on the nature of the supporting soil:

- Leveling a rocky ground before laying the foundation layer
- Ensure sufficient bearing capacity in the short term for weak supporting soil (saturated clay, etc.) to allow construction machinery to circulate freely

Form layer 2/2

Nature of materials

Untreated grainy material

- Grainy material treated with hydraulic binders (cement, lime, slag, fly ash),
- Soil treated in place with hydraulic binders

Dynaplate test (13 T axle): load-bearing capacity of the supporting ground

Untreated seats

Seats treated with hydrocarbon binders

Seats treated with hydraulic binders

Seat layers 1/3

<u>Definition</u> (base coat and foundation coat)

Recovery of vertical forces and distribution of the resulting normal stresses on the underlying layers. We distinguish *3 families* :

A) Untreated bases:

Reserved for low and medium traffic roads (Wilaya roads and municipal roads). The materials used:

- Natural: tuffs, everything from the wadi, sand.
- Crushed: gravel crushed from massive rocks.

Seating layers 2/3

B) Seats treated with hydrocarbon binders:

Made with materials obtained by mixing crushed gravel with either **pure bitumen** (**gravel-bitumen**, sand-bitumen) or an **emulsion** (gravel-emulsion).

Noticed :

- Gravel-bitumen: roads with heavy and very heavy traffic
- Gravel-emulsion: **medium** and **low** traffic roads

Seating layers 3/3

C) The bases treated with hydraulic binders:

Made with materials obtained by mixing crushed gravel with a hydraulic binder (cement, slag, fly ash). We generally find them: **gravelcement**, sand-cement, **gravel-slag**, **sand-slag**, gravel-fly ash.

This type of seat is reserved for roads with heavy and very heavy traffic

87 Surface layers

Functions and objectives

Wearing layer

Surface coatings

Bituminous concretes

Surface layers 1/6

Definition

It is in direct contact with the tires, it is composed of a **tread layer** and a **connecting layer** (ensuring the transition with the more rigid lower layers, thickness of 5 to 7 cm).

Functions and purposes of surface layers:

- Safety and comfort of users: uniformity, adhesion, drainability , photometry (visibility), acoustics (limited noise).
- Protection of the foundation layers (foundation + base) against water infiltration and frost and by absorbing tangential stresses.

Surface layers 2/6

<u>Wearing layer</u>

Made from materials treated with **hydrocarbon binders**. Two techniques are most used in Algeria:

- Surface Coatings (ES)

- Bituminous concretes (BB)

Surface layers 3/6

<u>Wearing layer</u>

A) Surface Coatings (ES) Balayage de la chauseée 2 Répandage de la couche d'émulsion Use for medium and light traffic roads Mixture of aggregates with *fluidized bitumen* or *emulsion* Epandage de la Noticed : ouche de granulais Cylindrade threads Cutback bitumen = pure bitumen + kerosene *Emulsion = pure bitumen + emulsifier + water* lemiso en circulation à viesse réduite

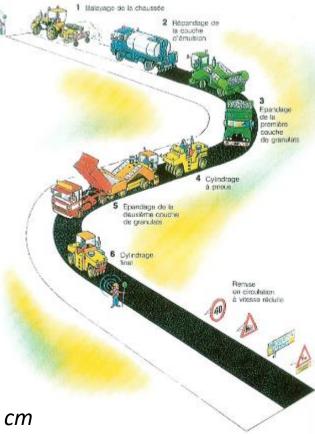
Surface layers 4/6

<u>Wearing layer</u>

B) Bituminous Concrete (BB)

Materials *hot coated* with a bituminous binder.

- Thin bituminous concretes (BBM):


Grain size 0/10 or 0/14 + pure bitumen, thickness = 4 cm.

- Very thin bituminous concretes (BBTM):

Discontinuous grain size 0/10 with 25% sand 0/2, 70% 6/10 gravel and 6% bitumen modified by addition of polymer, rubber powder or fibers synthetic, thickness 2 to 4 cm, generally 2.5 cm.

- Draining bituminous concretes (draining BB): thickness = 4 to 5 cm

Surface layers 5/6

Choice of wearing course

Comparison criteria	ESU surface coatings	BBUM	BBTM	BBM	BB draining	Cement concrete		
Initial adhesion	++	+	+	+	+	+		
Adherence after 5 years	0 to +	+	+	0	+	0 to +		
Drainability	+	0 to -	0	++	0	0 to +		
United	-	-	0	+	+	+		
Acoustic	- has	0 to +	+	0 to +	++	- to 0		
++ Very good + good 0 average - mediocre bad								

Surface layers 6/6

Implementation of the wearing course

Implementation temperature for bituminous concretes is between 130 to 150°C

END