
1st Year Mathematics – University of Guelma 1 Dr. Abderrahmane Kefali

Chapter 3. Linked Lists

Dr. Abderrahmane Kefali

Senior Lecturer Class A,

Department of Computer Science,

University of May 8, 1945 - Guelma

kefali.abderrahmane@univ-guelma.dz

This document is prepared for printing two pages per sheet

1) Introduction

All variables manipulated so far, including those of complex types declared prior to

program execution, are considered static variables. This implies that the memory

space allocated for them is precisely determined during program compilation and

remains constant throughout execution.

However, algorithmics offers us the possibility to define various other types of

advanced data structures, called dynamic data structures, mainly using the

concept of records. Variables of these types can be created during program

execution, and their size can evolve during program execution. These types

essentially include linked lists, stacks, queues, etc.

In this chapter, we focus on the study of linked lists, considered as the basic model

of other dynamic structures. Indeed, linked lists are closely related to two other very

important concepts: pointers and dynamic memory allocation. It is therefore

essential to address these two concepts first before presenting linked lists.

2) Pointers

The central memory of a computer consists of numerous fixed-size (in bytes) slots

called memory words. Each word is identified by a unique number known as the

address of the memory word or slot. In algorithmics and the C language, address

manipulation is facilitated through variables known as pointers.

2.1) Notion of Address

Ainsi, la zone mémoire occupée par une variable est accessible à travers son

identificateur ou son adresse. On peut connaître l’adresse d’une variable en faisant

procéder le nom de la variable par:

During the compilation of a program, each declared variable occupies contiguous

memory slots. The address of the variable is the address of its first memory slot.

This type of variable is called static variables, and the necessary memory space is

reserved at the beginning of the program execution.

mailto:kefali.abderrahmane@univ-guelma.dz

Algorithmics and Data Structures 2 Chapter 2. Linked Lists

1st Year Mathematics – University of Guelma 2 Dr. Abderrahmane Kefali

Thus, the memory area occupied by a variable is accessible through its identifier or

its address. We can obtain the address of a variable by preceding the variable

name with:

• In algorithmics : the operator: "@".

• In C language: the operateur "&".

Example:

Var x:integer;

.....

x  3;

write(@x);

int x;

....

x=3;

printf("%d",&x);

This code snippet displays 16, which is the address of the

integer variable x, as illustrated in the schemas on the right.

2.2) Definition

A pointer is a variable designed to store a memory address (the address of another

variable). The pointer is associated with a type of object, such as a pointer to an

integer, a pointer to a float, a pointer to a character, or any other type (including a

pointer). By accessing this address, we can indirectly access the variable and

therefore modify it. Therefore, when a variable p of pointer type contains the

address of another variable x, we say that p points to x. The variable p is the

pointer, and x is the pointed variable.

2.3) Declaration

2.3.1) In algorithmics

In algorithmics, a pointer type is declared by preceding the pointed type with the

character "^". The declaration syntax is as follows:

Type <pointer_type> = ^<pointed_type>;

Then, declare the pointer variable as usual:

Var <pointer_name>: <pointer_type>;

It is also possible to declare a pointer variable directly without defining a new type

as follows:

Var <pointer_name>: ^<pointed_type>;

Examples:

Consider the following declarations:

1) Var p:^Integer;

Declare a variable named p that is a pointer to an integer. The variable p

is intended to store the address of an integer.

 …

16 3 x

17

18

19

 …

Algorithmics and Data Structures 2 Chapter 2. Linked Lists

1st Year Mathematics – University of Guelma 3 Dr. Abderrahmane Kefali

2) Type Student=Record

 Begin

 ID:Integer;

 lastName,firstName:String[20];

 End;

 ptrStudent=^Student;

 Var stud:ptrStudent;

This declaration first defines a record type named Student. Then, it defines

another type named ptrStudent, which is a pointer type to Student, and

finally declares a pointer stud of this type.

Remarks:

1. The definition of a pointer allocates memory for storing a pointer but does not

assign any value (address) to it.

2. It is possible to declare a pointer to a type that is not yet defined because the

size of a memory location for a pointer is the same regardless of the pointed

type (a pointer is typically coded on 4 bytes).

Example:

 Type ptrStudent=^Student;

 Student=Record

 Begin

 ID:Integer;

 lastName,firstName:String[20];

 End;

 Var stud:ptrStudent;

2.3.2) In C language

The declaration of a pointer type in C is done by adding an asterisk * after the

pointed type. The syntax for the declaration is as follows:

typedef <pointed_type>* <pointer_type>;

Then, declare the pointer variable as usual:

<pointer_type> <pointer_name>;

The direct declaration of a pointer follows roughly the same syntax: add the asterisk

* and specify the pointed type. The syntax for this declaration is as follows:

<pointed_type>* <pointer_name>;

Examples:

1) To declare a pointer to an integer named p directly, we write:

 int* p;

Algorithmics and Data Structures 2 Chapter 2. Linked Lists

1st Year Mathematics – University of Guelma 4 Dr. Abderrahmane Kefali

2) The following lines declare a pointer to a Student. The latter is a record type.

typedef struct {

 int ID;

 char lastName[20], firstName[20];

 }Student;

typedef Student* ptrStudent;

ptrStudent stud;

Remark:

As in algorithmics, it is possible to declare a pointer to a type that has not yet been

defined. When the type of the pointed value is a structure, this type must be

preceded by the keyword struct in the pointer declaration.

Example:

typedef struct Student* ptrStudent;

typedef struct {

 int ID;

 char lastName[20], firstName[20];

 }Student;

ptrStudent stud;

2.4) Initialization and Assignment

As with any variable, a pointer must be initialized before being manipulated. It must

be initialized with the address of a variable having a type that matches that of the

pointer. Assigning an address to a pointer is done as follows:

• In algorithmics, using the operator: "@".

• In the C language, using the operator: "&".

Example:

Consider the following code snippet:

Var x:integer;

Var p:^integer;

.....

x  4;

p  @x;

int x;

int* p;

....

x=4;

p=&x;

According to the diagram, the pointer p takes the value 700, which is the address of

the integer variable x. We say that p points to x.

We schematize the pointing operation as follows:

Remarks :

• The type of the pointed variable must match the type of the pointer.

 …

700 4 x

....

....

.... @700 p

.... …

4

p

x

Algorithmics and Data Structures 2 Chapter 2. Linked Lists

1st Year Mathematics – University of Guelma 5 Dr. Abderrahmane Kefali

• One of the main sources of errors when working with pointers is the failure to

initialize the pointer (assigning no address).

• Initializing a pointer with an arbitrary address is forbidden (for example, the

instruction p  5123;).

2.4.1) The Nil value

The value Nil (NULL in the C language) is a special value that signifies « no

object ». This value can be assigned to any pointer, regardless of its type, to

indicate that it does not point to any address.

Example :

The following lines declare a pointer p and initialize it with the value Nil.

Consequently, p does not point to any address:

Var p:^integer;

.....

p  Nil;

int* p;

....

p=NULL;

2.5) Concept of content

An address is the number of a memory cell, and within this cell resides a value.

This value is called the content of the pointer and should not be confused with its

value. The content of a pointer is the value of the memory cell whose address the

pointer stores.

However, once a pointer is assigned the address of a variable, it can be used to

access the memory cells corresponding to that variable (the value of the variable).

This operation is known as dereferencing or indirection.

Accessing the content of a pointer is done as follows:

• In algorithmics, by using the "^" operator after the pointer's name.

• In the C language, by using the "*" operator before the pointer's name.

Example:

Soit le morceau de code suivant (en algorithmique et en langage C):

Consider the following code snippet (in algorithmics and in C language):

Var x,y:integer; int x,y; Declare two integer variables x and y

Var p:^integer; int* p; Declare a pointer to an integer p

.....

x  4; x=4; x takes the value 4

p  @x; p=&x; p points to x

y  p^+1; y=*p+1; y gets 5, which is the content of p plus 1

p^  5; *p=5; The variable pointed to by p (x) gets 5.

p^  ^p*2; *p=*p*2; The content of p (the value of x) is doubled

Algorithmics and Data Structures 2 Chapter 2. Linked Lists

1st Year Mathematics – University of Guelma 6 Dr. Abderrahmane Kefali

Remark :

In the C language, the name of an array is a constant pointer corresponding to the

address of the first element of the array.

Example :

If T is an array, *T and T[0] refer to the content of the first element.

2.6) Pointer operations

The only valid operations on pointers are:

2.6.1) Assignment of one pointer to another

Assigning one pointer to another is allowed only if both pointers point to the same

type of object (i.e., have the same pointed type).

Example :

Var x:integer;

Var p,q:^integer;

......

x  5;

p  @x;

q  p;

After the execution of the above code, p and q point to the same memory area

(the area reserved for variable x)

2.6.2) Incrementation and decrementation of a pointer

Incrementing (or decrementing) of a pointer p by an integer n signifies that p

now points to the nth object of the pointed type that follows (or precedes) in

memory. Incrementing p by n is equivalent to increasing the address in p by n

times the size of the objects. Similarly, decrementing p by n is equivalent to

decreasing the address in p by n times the size of the objects.

Example :

If the pointer p is of type pointer to integer, the statement p  p+2; means

increasing the address contained in p by 2 × 4 bytes, which is equal to 8 bytes.

2.6.3) Comparison

It is possible to compare pointers that point to the same type of objects using the

usual comparison operators (<, ≤, >, ≥, =, ≠). These operators allow the

comparison of addresses contained in two pointers.

Algorithmics and Data Structures 2 Chapter 2. Linked Lists

1st Year Mathematics – University of Guelma 7 Dr. Abderrahmane Kefali

2.6.4) Subtraction of Pointers

Subtracting two pointers is possible, provided that they point to the same type of

objects. This difference will provide the number of units of the pointed type placed

between the addresses defined by these two pointers.

In other words, the difference between two pointers provides the integer value that

needs to be added to the second pointer (in terms of pointer incrementation) to

obtain the first pointer.

3) Dynamic Memory Management

In this part of the chapter, we will explore how, during program execution, it is

possible to reserve a memory area to store data and then release this area once

the processing no longer requires access to it. In this case, we refer to the use of

dynamic memory allocation.

3.1) Dynamic Allocation

Dynamic allocation allows the reservation of memory space during the execution of

a program. The size of this space is not necessarily known in advance, and the

starting address of this space is returned in a pointer.

As a result, access to this dynamically allocated space is done using the pointer,

not by using a name, as is the case with static variables.

3.1.1) In algorithmics

Dynamic memory allocation in algorithmics is done using the predefined procedure

Allocate with the following syntax:

 Allocate(<pointer_name>;

This procedure allows the allocation of memory space corresponding to the type

pointed to by the pointer provided to the procedure: <pointer_name>. The

address of this space is returned in the pointer <pointer_name>.

Example:

Consider the following piece of code:

Var p:^integer;q:^character

......

Allocate(p);

Allocate(q);

This code dynamically reserves two memory spaces (one with a size equal to the

size of an integer and the other equal to the size of a character) and puts the

starting addresses in the pointers p and q respectively.

Access to the reserved spaces is possible for reading, writing, or assignment :

Algorithmics and Data Structures 2 Chapter 2. Linked Lists

1st Year Mathematics – University of Guelma 8 Dr. Abderrahmane Kefali

Read(p^);

q^  'r';

Write(p^);

3.1.2) In C language

In C language, there are two predefined functions for dynamic memory allocation:

a) The malloc function

The malloc function is used to dynamically allocate a certain number of bytes. It

takes as input the number of bytes to allocate and returns the address of the first

reserved byte. This address is stored in a pointer. The syntax of this function is:

<pointer_name> = malloc(<number_of_bytes>);

It is then possible to directly assign a value to the dynamically reserved area

without the need to identify this area by an identifier.

Example :

int* p=malloc(4);

*p=5;

Remarks:

• The number of bytes to be reserved is practically related to the type of the value

that will be stored in the area. Therefore, the <number_of_bytes> argument

is often provided using the sizeof function, which returns the size in bytes

corresponding to a given type. For example, sizeof(int) returns 4, which is

the number of bytes needed to store an object of type int.

• The malloc function also allows the allocation of space for multiple

contiguous objects in memory, enabling the dynamic creation of an array. The

total number of bytes needed for an array is equal to the number of elements in

the array multiplied by the size needed to store one element of the array.

Example:

int* t;

t = malloc(10*sizeof(int));

This reserves 40 bytes in memory, which can store 10 objects of type int, and

puts the address of the first byte into the pointer t.

b) The calloc function

The calloc function, like the malloc function, allocates a memory zone and

returns the address of the first byte. However, it additionally initializes all reserved

bytes to zero. Its syntax is:

<pointer_name> = calloc(<nb_objects>,<object_size>);

Algorithmics and Data Structures 2 Chapter 2. Linked Lists

1st Year Mathematics – University of Guelma 9 Dr. Abderrahmane Kefali

The calloc function appears to be more suitable for dynamically creating arrays.

Example :

int* t = calloc(10,sizeof(int));

⇔

int* t = malloc(10*sizeof(int));

for(i=0;i<10;i++)

 t[i]=0;

3.2) Memory Deallocation

3.2.1) In algorithmics

La libération de l'espace mémoire pointé par le pointeur <nom_pointeur> et qui

a été alloué dynamiquement se fait en utilisant la procédure prédéfinie Libérer:

Freeing the memory space pointed to by the pointer <pointer_name>, which has

been dynamically allocated, is done using the predefined procedure Free:

Free(<pointer_name>);

Example:

Var p:^integer;

........

Allocate(p);

p^  12;

Free(p);

3.2.2) In C language

La libération se fait à l’aide de la procédure prédéfinie free comme suit :

The memory release is performed in the C language using the predefined

procedure free as follows:

free(<pointer_name>);

When free is called, the memory is returned to the system, which can reuse it for

other purposes.

Example :

int* p;

p=malloc(sizeof(int));

*p=12;

free(p);

4) Linked Lists

When we need to store a large amount of information (of the same type), we

typically use an array. However, it's not always possible to know the size of the

array in advance. In such cases, we need to use a dynamic data structure that can

grow or evolve in size. In this structure, it's not necessary to know the number of

elements in advance; whenever we need to store information, we allocate the

Algorithmics and Data Structures 2 Chapter 2. Linked Lists

1st Year Mathematics – University of Guelma 10 Dr. Abderrahmane Kefali

necessary memory space. These pieces of information, scattered in memory, are

linked together using pointers. Such a data structure is called a linked list.

4.1) Definition and presentation

A linked list is a collection of elements (called nodes, cells, …) of the same type,

dynamically allocated and linked together using pointers. Each element of the

linked list is represented by a record containing the following fields:

• One or more fields containing data of different types (integer, real, array,

etc.), as in any structure.

• The last field contains a pointer to the next element.

It is important to note that the list is defined by the address of its first element. This

address must be contained in a variable that we will often call the head. Therefore,

the head is a pointer that points to the first element.

The following figure presents an example of a linked list formed by 5 elements,

each containing an integer field and a pointer field to the next element:

 5 8 -2 18 33

 Head

Remarks:

• A simple linked list can only be traversed in one direction (from the head to the

tail).

• In practice, elements are created through dynamic allocation.

4.2) Declaration

A linked list is composed of a set of similar elements. Defining the structure of a

linked list is equivalent to defining the structure of its elements (one of them).

4.2.1) Declaration in algorithmics

The syntax for declaring a linked list in algorithmic notation is as follows:

Type <pointer_type_name> = ^<element_type_name>;

 <element_type_name> = Record

 Begin

 <field1>:<Type1>;

 <field2>:<Type2>;

 <fieldn>:<Typen>;

 <pointer_field>:<pointer_type_name>;

 End;

Var <head_name>:<pointer_type_name>;

Algorithmics and Data Structures 2 Chapter 2. Linked Lists

1st Year Mathematics – University of Guelma 11 Dr. Abderrahmane Kefali

The previous syntax first defines a new type called <pointer_type_name>,

which is a pointer type to the as-yet-undeclared <element_type_name>. Then, it

declares the type <element_type_name>, which is a record containing n data

fields and a pointer <pointer_field> to an element of the same type (in other

words, the pointer is of the pre-declared type <pointer_type_name>).

Examples:

1) An example of declaring a linked list of integers is as follows:

Type List = ^Node;

 Node = Record

 Begin

 val: Integer;

 next: List;

 End;

Var L: List;

In this example, the pointer type is named List, and the type describing an

element of the list is named Node. Each element contains a data field named

val of type integer and a field next of type pointer.

2) An example of declaration of a linked list of students:

Type StudList = ^Student;

 Student = Record

 Begin

 ID: Integer;

 LastName, FirstName: String[20];

 Marks: Array[9] of Real;

 next: StudList;

 End;

Var L: StudList;

4.2.2) Declaration In C language

The syntax for declaring a linked list in the C language is as follows:

typedef struct <element_type_name>* <pointer_type_name>;

typedef struct <element_type_name> {

 <Type1> <field1>;

 <Type2> <field2>;

 <Typen> <fieldn>;

 <pointer_type_name> <pointer_field>;

} <element_type_name>;

<pointer_type_name> <head_name>;

Algorithmics and Data Structures 2 Chapter 2. Linked Lists

1st Year Mathematics – University of Guelma 12 Dr. Abderrahmane Kefali

Example:

1) The previous linked list of integers is declared in the C language as follows:

typedef struct Node* List;

typedef struct Node {

 int val;

 List next;

} Node;

List L;

2) The declaration of a linked list of students in C is done as follows:

typedef struct Student* StudList;

typedef struct Student {

 int ID;

 char LastName[20], FirstName[20];

 float Marks[9];

 StudList next;

} Student;

StudList L;

4.3) Accessing fields of a linked list element

Accessing a field of an element pointed to by a pointer is as follows:

• In algorithmics: <pointer_name>^.<field_name>;

• In C language: (*<pointer_name>).<field_name>;

Example:

Consider the linked list illustrated by the following figure:

 5 8 -2 18 33

 L P

Accessing the val field of the element pointed to by p is done as follows:

In algorithmics: p^.val

In C language: (*p).val

Remark:

In the C language, the notation (*<pointer_name>).<field_name> can be

simplified using the structure member pointer operator, denoted as "->". Its syntax is:

<pointer_name> -> <field_name>

Example:

 (*p).val is equivalent to p->val

Algorithmics and Data Structures 2 Chapter 2. Linked Lists

1st Year Mathematics – University of Guelma 13 Dr. Abderrahmane Kefali

5) Operations on Linked Lists

In this section, we will describe some basic operations among those mentioned.

Each of these operations can be implemented by a single function or procedure.

For our examples, we will work with lists of integers, using the data structure (the

type List) described in the previous example. The same principles studied are

applicable to other data types.

Remarks:

• During creation, be careful to initialize the head of the list to Nil; otherwise, the

chain will not have a final stop, and it will not be possible to locate its end.

• A linked list is known by the address of its first element. If this address is not

stored, the list disappears.

5.1) Testing if a list is Empty

We implement this operation with a function emptyList that takes a linked list as

inputand returns true if it is empty and false otherwise.

5.1.1) In Algorithmics

Function emptyList(L: List): Boolean;

Begin

If L = Nil Then emptyList  True

Else emptyList  False

End;

5.1.2) In C language

int emptyList(List L){

 if(L==NULL)return 1;

 else return 0;

}

5.2) Traversing a Linked List

Traversing a linked list has several objectives. It can be done to display its

elements, calculate its length (the number of elements), find the maximum or

minimum elements, etc.

An example of traversing a linked list is implemented by the following

displayList procedure, which displays the value contained in each element of a

linked list whose head is passed as a parameter.

Algorithmics and Data Structures 2 Chapter 2. Linked Lists

1st Year Mathematics – University of Guelma 14 Dr. Abderrahmane Kefali

5.2.1) In algorithmics

Procedure displayList(L: List);

Var p: List;

Begin

If L = Nil Then Write("The list is empty")

Else Begin

 p  L;

 While p ≠ Nil Do

 Begin

 Write(p^.val, " ");

 p  p^.next;

 End;

 End;

End;

5.2.2) In C language

void displayList(List L){

 List p;

 if(L == NULL)printf("The list is empty");

 else{

 p = L;

 while(p != NULL){

 printf("%d ",p->val);

 p = p->next;

 }

 }

}

5.3) Searching for an element in a linked list

The following function searches if a value v exists in a linked list having the head L.

5.3.1) In algorithmics

Function search(L: List, v: Integer): Boolean;

Var p: List; found: Boolean;

Begin

p  L;

found  False;

While p ≠ Nil and found = False Do

 If p^.val = v Then found  True

 Else p  p^.next;

search  found;

End;

Algorithmics and Data Structures 2 Chapter 2. Linked Lists

1st Year Mathematics – University of Guelma 15 Dr. Abderrahmane Kefali

5.3.2) In C language

int search(List L,int v){

 List p;int found;

 p = L;

 found = 0;

 while(p != NULL && found==0)

 if(p->val == v)found=1;

 else p = p->next;

 return found;

}

5.4) Inserting an element

To insert an element into a linked list, three cases are possible:

• Insertion at the beginning (front/ start/head) of the list

• Insertion at the end (tail) of the list

• Insertion in the middle of the list at a fixed position.

In this section, we limit ourselves to the first two cases.

5.4.1) Insertion at the beginning

An example implementation of the insert-at-head function is as follows. This

function takes a linked list (identified by its head) and a data value as parameters,

adds the data at the beginning of the list, and returns the new head address.

a) In algorithmics

Function insertHead(L: List; v: Integer): List;

Var p: List;

Begin

Allocate(p); // allocate space for the new node

p^.val ← v; // store the value to be added in the node

p^.next ← L; // linking

L ← p; // the head becomes the new node

insertHead ← L;

End;

b) In C language

List insertHead(List L, int v) {

 List p = malloc(sizeof(node));

 p->val = v;

 p->next = L;

 L = p;

 return L;

}

Algorithmics and Data Structures 2 Chapter 2. Linked Lists

1st Year Mathematics – University of Guelma 16 Dr. Abderrahmane Kefali

5.4.2) Insertion at the end

An example implementation of the insertion-at-tail function is as follows:

a) In algorithmics

Function insertTail(L: List, v: Integer): List;

Var p, q: List;

Begin

Allocate(p); //allocate space for the new node

p^.val  v; //put the value to be added in the node

p^.next  Nil; //the new element becomes the last one

If L = Nil Then //special case when the list is empty

 L  p //the new element becomes the head

Else Begin

 q  L; //the auxiliary pointer starts from the first element

 While q^.next ≠ Nil Do //search for the last element

 q  q^.next;

 q^.next  p; //linking

 End;

insertTail  L;

End;

b) In C language

List insertTail(List L, int v) {

 List p, q;

 p = malloc(sizeof(node));

 p->val = v;

 p->next = NULL;

 if (L == NULL) L = p;

 else {

 q = L;

 while (q->next != NULL)

 q = q->next;

 q->next = p;

 }

 return L;

}

5.5) Deleting an element

There are also three possible cases:

• Delete the first element of the list.

• Delete an element in the middle of the list.

• Delete the last element of the list.

Algorithmics and Data Structures 2 Chapter 2. Linked Lists

1st Year Mathematics – University of Guelma 17 Dr. Abderrahmane Kefali

Note that deletion should be done carefully; deleting an element without precaution

will prevent access to subsequent elements.

5.5.1) Deletion at the beginning

An example implementation of the deletion-at-head function is as follows:

a) In algorithmics

Function deleteHead(L: List): List;

Variable p: List;

Begin

If L ≠ Nil then //if the list is not empty

 Begin

 p  L; //store the address of the head in pointer p

 L  L^.next; //move the head to the next element

 Free(p); //free the space occupied by the first element

 End;

deleteHead  L;

End;

b) In C language

Liste deleteHead(List L){

 List p;

 if(L != NULL){

 p = L;

 L = L->next;

 free(p);

 }

 return L;

}

5.5.2) Deletion at the end

a) In algorithmics

Function deleteTail(L: List): List;

Var p, q: List

Begin

If L ≠ Nil Then //If the list is not empty

 Begin

 If L^.next = Nil Then //If the list contains only one element

 Begin

 Free(L); //Free the space occupied by the head

 L ← Nil; //The head points to Nil

 End

Algorithmics and Data Structures 2 Chapter 2. Linked Lists

1st Year Mathematics – University of Guelma 18 Dr. Abderrahmane Kefali

 Else Begin //If the list contains at least 2 elements

 p ← L;

 While p^.next ≠ Nil Do //While we are not at the last element

 Begin

 q ← p; //Keep the previous element

 p ← p->next; //Move p to the next

 End;

//At the end of the loop, p points to the last element, and q to the second-to-last.

 q^.next ← Nil; //Indicate that the second-to-last becomes the last

 Free(p); //Free the memory occupied by the last element

 End;

 End;

deleteTail ← L;

End;

b) In C language

List deleteTail(List L){

 List p,q;

 if(L != NULL){

 if(L->next == NULL){

 free(L);

 L = NULL;

 }

 else{

 p = L;

 while(p->next != NULL){

 q = p;

 p = p->next;

 }

 q->next = NULL;

 free(p);

 }

 }

 return L;

}

5.5.3) Destruction of a linked list

The following function allows the destruction of a linked list by successively deleting

the first element as long as the list is not empty.

Algorithmics and Data Structures 2 Chapter 2. Linked Lists

1st Year Mathematics – University of Guelma 19 Dr. Abderrahmane Kefali

a) In algorithmics

Function destroyList(L: List): List;

Var p: List;

Begin

While L ≠ Nil Do //repeat until the list is empty

 Begin

 p  L; //store the address of the head in the pointer p

 L  L^.next; //move the head to the next element

 Free(p); //free the space occupied by the first element

 End;

destroyList  L;

End;

b) En langage C

Liste destroyList(List L){

 List p;

 while(L != NULL){

 p = L;

 L = L->next;

 free(p);

 }

 return L;

}

6) Doubly Linked Lists

6.1) Presentation

There are also other variants of linked lists, called doubly linked lists or

bidirectional lists, which can be traversed in both directions, from the first node to

the last node, and vice versa. This requires adding another pointer field to the node

structure, called prev which should contain the address of the previous node.

As a result, the elements of a doubly linked list are linked by two pointers: one

pointer to the next element and one pointer to the previous element. The pointer to

the previous element of the first element is set to Nil because it has no

predecessor.

An example of a doubly linked list with 4 elements is illustrated in the following

figure:

 5 8 -2 18

 Head

Algorithmics and Data Structures 2 Chapter 2. Linked Lists

1st Year Mathematics – University of Guelma 20 Dr. Abderrahmane Kefali

6.2) Declaration

An example of declaring the doubly linked list illustrated in the previous figure is as

follows:

In algorithmics In C language

Type List =^node;

 Node = Record

 Begin

 val:Integer;

 next,prev:List;

 End;

Var L:List;

typedef struct Node* List;

typedef struct Node{

 int val;

 List next,prev;

 }Node;

List L;

Remark :

To efficiently exploit this type of list, it is preferable to use two pointers, one for the

head of the list and another for the tail. This way, we can, for example, display the

list in reverse order by traversing the list from the end and using the prev fields.

6.3) Operations on Doubly Linked Lists

All operations possible on singly linked lists are also applicable to doubly linked

lists. Examples include insertion at the head, insertion at the tail, search, display,

deletion, etc.

The only difference is that we need to manage two linkages (the suiv and prev

pointers) and handle two heads (beginning and end) if our list is defined by two

pointers: head and tail.

To illustrate these operations, we will use the example of inserting a new element at

the head of a doubly linked list.

Function insertHead(L:List, v:integer):List;

Var p:List;

Begin

Allocate(p);

p^.val  v;

p.prev  Nil;

p^.next  L;

If L ≠ Nil then // If it is not the first insertion in the list.

 L^.prev  p;

L  p;

insertHead  L;

End;

