
1st Year Mathematics – University of Guelma 1 Dr. Abderrahmane Kefali

Chapter 3. Linked Lists - Continued

Special Linked Lists : Stacks and Queues

Dr. Abderrahmane Kefali

Senior Lecturer Class A,

Department of Computer Science,

University of May 8, 1945 - Guelma

kefali.abderrahmane@univ-guelma.dz

This document is prepared for printing two pages per sheet

1) Introduction

In the previous chapter, we saw that linked lists are dynamic data structures used

to store collections of elements. However, there are special linked lists, called

stacks and queues, which are commonly used to solve specific problems in

computer science. These two data structures are examples of abstract data types

that allow storing elements following specific rules and provide operations to add

and remove elements.

In this chapter, we will explore in detail stacks and queues as abstract data

structures1 implemented by linked lists. We will begin by describing their functioning

and the possible operations for adding or removing elements. Then, we will see

how these structures can be implemented using linked lists by providing the

implementation of their basic operations (primitives).

2) Stacks

2.1) Presentation

A stack is a data structure in which elements (of the same data type) are added and

removed according to the Last In First Out (LIFO) rule. This means that the last

element added to the stack is the first one to be removed.

The addition and removal of an element in a stack are therefore only allowed at one

end, referred to as the stack's top (ST).

In other words, elements are deposited onto the top and removed from the top.

1An abstract data structure represents a data type and the operations that can be performed
on that data, without considering how the data is stored or implemented.

mailto:kefali.abderrahmane@univ-guelma.dz

Algorithmics and Data Structures 2 Chapter 3. Special Linked Lists

1st Year Mathematics – University of Guelma 2 Dr. Abderrahmane Kefali

To grasp the basic mechanisms, we can envision a stack of plates, sheets, or

books (see the following figure). It is at the top of the stack where we would take or

place a plate, sheet, or book.

Stack of Plates Stack of Sheets Stack of Books

2.2) Operation

A stack can be graphically represented as a container containing a series of

elements stacked on top of each other, as follows:

However, the functioning of the stack involves two basic operations:

1. Push Operation: this operation consists of adding an element to the stack. The

element is placed on top of the stack, becoming the new top, that is to say, the

only accessible element.

2. Pop Operation: removing the top element from the stack. The element is

deleted from the stack, and the last element added before it (below the top)

becomes the new top of the stack. The popped element is returned by the pop

function for processing by the program.

To illustrate the functioning of a stack, consider the following example: Suppose we

have a stack, and we want to insert three elements (integer values) 5, 3, and 9, and

then remove two elements. Each insertion or removal occurs at the top of the stack.

We can represent these operations as follows:

Top

Top

Top

Algorithmics and Data Structures 2 Chapter 3. Special Linked Lists

1st Year Mathematics – University of Guelma 3 Dr. Abderrahmane Kefali

Initial
Stack

 Push 5 Push 3 Push 9

 9 Top

 3 Top 3

 5 Top 5 5

Pop Pop

 9 3

3 Top

5 5 Top

Remark:

A notable property of stacks is that an object can only be popped after popping all

the objects that are placed "above" it, causing objects to leave the stack in the

reverse order of their arrival.

2.3) Uses of Stacks

A stack is primarily used to store data that cannot be processed immediately

because the program has a more urgent or prerequisite task to accomplish

beforehand.

Some of the most common uses of stacks include:

• Managing subprogram calls,

• Undoing operations,

• In a web browser,

• Syntax analysis.

2.4) Stack Operations

The only operations allowed with a stack are:

• Initialize a Stack.

• Push (Insert): always at the top of the stack.

• Pop (Remove): always from the top of the stack.

• Peek (Consult): the last element on the stack (the top) without removing it.

• Check if the Stack is Empty.

Algorithmics and Data Structures 2 Chapter 3. Special Linked Lists

1st Year Mathematics – University of Guelma 4 Dr. Abderrahmane Kefali

2.5) Implementation of a Stack

Generally, there are two ways to represent a stack. The first is static and can be

done using an array. The second is dynamic and relies on the use of linked lists.

Here, we opt for a linked representation. In this case, the stack is essentially a

singly linked list. The only difference is that the addition and removal of an element

should only occur at the top of the stack (Head of the linked list).

Example:

The stack P from the previous example is represented in linked form as follows:

 9 3 5

 P

2.5.1) Declaration

The implementation of a linked stack first requires the definition of the structure

representing an element of the stack. The declaration is similar to that of a linked

list. For example, for a stack of integer values, the declaration would be as follows:

a) In algorithmics

The type describing a stack is called Stack, and it is defined as follows:

Type Stack = ^node ;

 node = Record

 Begin

 val : integer ;

 next : Stack ;

 End ;

Once the type Stack is defined, a variable of this type can be declared as follows:

Var s : Stack ;

b) In C language

A stack of integers is declared in the C language as follows:

typedef struct node* Stack;

typedef struct node{

 int val;

 Stack next;

 }node;

A stack variable is then declared as follows:

Stack s ;

Algorithmics and Data Structures 2 Chapter 3. Special Linked Lists

1st Year Mathematics – University of Guelma 5 Dr. Abderrahmane Kefali

2.5.2) Stack Manipulation

As mentioned earlier, stacks support five fundamental operations or primitives.

These primitives are implemented through subprograms. Manipulating a stack

involves calling these subprograms, defined once and used as many times as

needed.

a) Initializing a Stack

Initializing a stack means creating an empty stack ready for use in an algorithm or

computer program. It is accomplished using the following procedure:

a.1) In algorithmics

Procedure initializeStack(Var s: Stack);

Begin

s  Nil;

End;

a.2) In C language

void initializeStack(Stack* s){

 *s = NULL;

}

b) Checking if a Stack is Empty

A stack is considered empty when the head pointer is set to Nil. To confirm this, a

test is performed on the value of the head pointer.

b.1) In algorithmics

Function isStackEmpty(S: Stack): Boolean;

Begin

If stack = Nil Then

 isStackEmpty  True

Else isStackEmpty  False;

End;

b.2) In C language

int isStackEmpty(Stack s){

 if(s == NULL) return 1;

 else return 0;

}

c) Pushing an Element

Pushing an element onto the stack involves placing it at the top of the stack.

However, as the stack is implemented as a linked list, pushing is equivalent to

inserting at the head of the list.

Algorithmics and Data Structures 2 Chapter 3. Special Linked Lists

1st Year Mathematics – University of Guelma 6 Dr. Abderrahmane Kefali

c.1) In algorithmics

Procedure push(e:integer; Var s:Stack);

Var p:Stack;

Begin

Allocate(p);

p^.val  e;

p^.next  s;

s  p;

End;

c.2) In C language

void push(int e,Stack* s){

 Stack p;

 p = malloc(sizeof(node));

 p->val = e;

 p->next = *s;

 *s = p;

}

d) Popping an Element

If the stack is not empty, popping involves removing the element at the top of the

stack and returning it. As the stack is implemented as a linked list, popping entails

deleting the element at the head of the list and storing it in a variable.

d.1) In algorithmics

Procedure pop(Var e: Integer; Var s: Stack);

Var p: Stack;

Begin

e  s^.val;

p  s;

s  s^.next;

Free(p);

End;

d.2) In C language

void pop(int* e,Stack* s){

 Stack p;

 *e = (*s)->val;

 p = *s;

 *s = (*s)->next;

 free(p);

}

Algorithmics and Data Structures 2 Chapter 3. Special Linked Lists

1st Year Mathematics – University of Guelma 7 Dr. Abderrahmane Kefali

e) Accessing the Top of a Stack

The following peekStack function allows access to the top of a non-empty stack

and returns its value.

e.1) In algorithmics

Function peekStack(s: Stack): Integer;

Begin

peekStack  s^.val;

End;

e.2) In C language

int peekStack(Stack s){

 return s->val;

}

Remark:

In contrast to popping, accessing the top of a stack simply involves returning the

value of the top element without removing it.

3) Queues

3.1) Presentation

Queues are data structures that implement the FIFO (First In First Out) strategy: the

first item to be added is the first to be removed.

Unlike stacks, queues have two distinct ends for insertion and removal. Elements

are added to one end of the queue, often called the back, tail, or rear, and

removed from the other end, often called the front or head.

Thus, a queue in programming behaves exactly like a real-life queue. To

understand the basic mechanisms of a queue, you can think of a queue in everyday

life, such as those found in stores, cinemas, etc. In such a queue, people arrive one

after the other and are served in the order they arrived (see the following figure).

3.2) Operation

Graphically, a queue can be represented as a horizontal container where elements

are arranged sequentially one after the other. The addition of elements takes place

Algorithmics and Data Structures 2 Chapter 3. Special Linked Lists

1st Year Mathematics – University of Guelma 8 Dr. Abderrahmane Kefali

at one end (the back or tail of the queue), while removal occurs at the opposite end

(the front or head of the queue), following the order in which elements arrived:

 Queue

Output

(Removal)
 Input (addition of

a new element)

 head tail

However, the functioning of the queue involves two basic operations:

1. Enqueue: Involves adding a new element to the end of the queue.

2. Dequeue: Involves removing the element at the front of the queue.

To illustrate the functioning of a queue, let's take the following example: Suppose

we have a queue, and we want to insert three elements (integer values) 5, 3, and 9,

and then remove two elements. Each insertion is done at the end, and each

removal is done from the front. These operations can be schematized as follows:

Initial queue
(empty)

 Enqueue 5 Enqueue 3 Enqueue 9

 5 5 3 5 3 9

 head Tail head Tail head Tail

 Dequeue Dequeue

 3 9 9

5 3

 head Tail head Tail

3.3) Uses of queues

Queues are widely used in computer science to queue up information in the order it

was received. There are numerous applications of queues in computer science,

including:

• Document printing

• Scheduling tasks in operating systems

• Managing messages in a telephone network switch

• Handling database queries

Algorithmics and Data Structures 2 Chapter 3. Special Linked Lists

1st Year Mathematics – University of Guelma 9 Dr. Abderrahmane Kefali

3.4) Operations on Queues

The only operations allowed on a queue are:

• Initialize a Queue.

• Enqueue: Add an element to the rear of the queue.

• Dequeue: Remove an element from the front of the queue.

• Peek: Examine the first element in the queue (the front), without dequeuing it.

• Check if the queue is empty or not.

3.5) Implementation of Queues

We can implement a queue as needed using either an array or a linked list. Just

like with stacks, we have chosen linked list implementation. In this case, the

elements of the queue form a singly linked list where insertions are made at the end

and deletions are made at the head.

Example:

The queue F from the previous example is represented in linked form as follows:

 5 3 9

 F

Remark:

In fact, to work efficiently with a queue, it is appropriate to keep track of both the

head and the tail (unlike stacks where only the head is needed). This allows for

direct insertion after the element at the end of the list without the need to traverse

the entire list. In this case, the queue will be considered as a record composed of

two pointer fields:

1. The first (called Head) points to the first element of the list,

2. The second (called Tail) points to the last element of the list.

3.5.1) Declaration

To define the queue, we need to start by defining the type of each element in the

queue. The declaration is similar to that of a simple linked list. Here is the

declaration of a queue of integers:

a) In algorithmics

The type Queue is defined as follows:

Type Queue = ^node ;

 node = Record

 Begin

 val : integer ;

 next : Queue ;

 End ;

Algorithmics and Data Structures 2 Chapter 3. Special Linked Lists

1st Year Mathematics – University of Guelma 10 Dr. Abderrahmane Kefali

Once the type Queue is defined, a variable of this type can be declared as follows:

Var q : Queue ;

b) In C language

A queue of integers is declared in the C language as follows:

typedef struct node* Queue;

typedef struct node{

 int val;

 Queue next;

 }node;

A queue variable is then declared as follows:

Stack q ;

3.5.2) Queue Manipulation

The primitives or basic operations on queues described earlier are materialized by

the following subprograms:

a) Initializing a Queue

Initializing a queue means creating an empty queue ready to be used in a computer

program. This is done using the following procedure:

a.1) In algorithmics

Procedure initializeQueue(Var q: Queue);

Begin

q  Nil;

End;

a.2) In C language

void initializeQueue(Queue* q){

 *q = NULL;

}

b) Checking if a Queue is Empty

To check if a queue is empty, it suffices to test the Head pointer. If it is Nil, then

the queue is empty. The following function isQueueEmpty returns True if the

queue is empty and returns False othersiwe.

b.1) In algorithmics

Function isQueueEmpty(q: Queue): Boolean;

Begin

If q = Nil Then isQueueEmpty  True

Else isQueueEmpty  False;

End;

Algorithmics and Data Structures 2 Chapter 3. Special Linked Lists

1st Year Mathematics – University of Guelma 11 Dr. Abderrahmane Kefali

b.2) In C language

int isQueueEmpty (Queue q){

 if(q == NULL) return 1;

 else return 0;

}

c) Enqueuing an Element

Enqueueing translates to inserting at the end of the list. To add a new element, we

simply reach the last node and attach the new element to it, making it the new last

element. If the queue is empty, the newly inserted element is considered both the

first and the last.

c.1) In algorithmics

Procedure enqueue(e: Integer; Var q: Queue);

Var p,r: List;

Begin

Allocate(p);

p^.val  e;

p^.Next  Nil;

If q = Nil Then

 q  p

Else Begin

 r  q;

 While r^.next ≠ Nil Do

 r  r^.next;

 r^.next  p;

 End;

End;

c.2) In C language

void enqueue(int e,Queue* q){

 Queue p,r;

 p = malloc(sizeof(node));

 p->val = e;

 p->next = NULL;

 if((*f) == NULL) (*q) = p;

 else{

 r = *q;

 while(r->next != NULL)

 r = r->next;

 r->next = p;

 }

}

Algorithmics and Data Structures 2 Chapter 3. Special Linked Lists

1st Year Mathematics – University of Guelma 12 Dr. Abderrahmane Kefali

d) Dequeuing an Element

Dequeuing involves removing the first element from the queue and storing it in a

variable. When a queue contains only one element, removing that element involves

setting the Head pointer of the queue to Nil.

d.1) In algorithmics

Procedure dequeue(Var e: Integer; Var q: Queue);

Var p: Queue;

Begin

e  q^.val;

p  q;

q  q^.next;

Free(p);

End;

Remark:

Dequeuing cannot be performed when the queue is empty.

d.2) In C language

void dequeue(int* e,Queue* q){

 Queue p;

 *e = (*q)->val;

 P = *q;

 (*q) = (*q)->next;

 free(p);

}

e) Access the First Element of a Queue

The following peekQueue function allows access to the first element of a non-

empty queue and returns its value.

e.1) In algorithmics

Fonction peekQueue(q:Queue): integer;

Begin

peekQueue  q^.val;

End;

e.2) In C language

int peekQueue(Queue q){

 return q->val;

}

