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Chapter 1

Differential Calculus

1.1 Regions in the plane
Let D be a subset of the plane R2 and let (a, b) ∈ R2 be any point.
An ε-disk around (a, b) is the set of all points (x, y) ∈ R2 whose distance from (a, b) is less than ε .
(a, b) is an interior point of D iff some ε-disk around (a, b) is contained in D.

(a, b) ∈ D is an isolated point of D iff (a, b) is the only point of D that is contained in some ε-disk
around (a, b).
(a, b) is a boundary point of D iff every ε-disk around (a, b) contains points from D and points
not from D.

R is an open subset of R2 iff all points of D are its interior points.
D is a closed subset of R2 iff it contains all its boundary points.
D = D∪ the set of boundary points of D; It is the closure of D.

D is a bounded subset of R2 iff D is contained in some ε-disk. (around some point)

An interior point A boundary point
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D is called a iff it contains all its interior points, possibly some of its boundary points, and satisfies
the property of connectedness that any two points in D can be joined by a polygonal line entirely
lying in D. A region is sometimes called a domain.

Let D be a region in the plane. Let f : D → R be a function.
The graph of f is {(x, y, z) ∈ R3 : z = f (x, y), (x, y) ∈ D}.
The graph here is also called the surface z = f (x, y).
The domain of f is D.
The co-domain of f is R.
The range of f is {z ∈ R : z = f (x, y) for some (x, y) ∈ D}.

Sometimes, we do not fix the domain D of f but ask you to find it.

The function f (x, y) =
√
y − x2

has domain D = {(x, y) : x2 ≤ y}.

Its range is the set of all non-negative reals.
What is its graph?
Some examples of surfaces are here:

1.2 Level curves and surfaces
Let f (x, y) be a function of two variables. That is, f : D → R, where D is a region in R2.

A contour curve of f is the curve of intersection of the surface z = f (x, y) and the plane z = c for
some constant c in the range of f . It is the curve f (x, y) = c for some constant c in the range of f .
The union of all contour curves is the surface z = f (x, y); it is also the graph of f .
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A level curve of f is the set of points (x, y) in the domain of f for which f (x, y) = c for some
constant c in the range of f .

The level curve is the projection of the contour curve on the xy-plane (with same c).

Example 1.1. Consider the function f (x, y) = 100 − x2 − y2.

Its domain is R2. Its range is the interval (−∞, 100].
The level curve f (x, y) = 0 is {(x, y) : x2 + y2 = 100}.
The level curve f (x, y) = 51 is {(x, y) : x2 + y2 = 49}.

Similarly, for a function f (x, y, z) of three variables, the level surfaces are the sets of points (x, y, z)
such that f (x, y, z) = c for values c in the range of f .

Let f : D → R be a function, where D is a region in the plane. Let (a, b) ∈ D.

The limit of f (x, y) as (x, y) approaches (a, b) is L iff corresponding to each ε > 0, there exists
δ > 0 such that for all (x, y) ∈ D with 0 <

√
(x − a)2 + (y − b)2 < δ, we have | f (x, y) − L | < ε.

In this case, we write lim
(x,y)→(a,b)

f (x, y) = L.

We also say that L is the limit of f at (a, b).

If for no real number L, the above happens, then limit of f at (a, b) does not exist.
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The intuitive understanding of the notion of limit is as follows:
The distance between f (x, y) and L can be made arbitrarily small by making the distance between
(x, y) and (a, b) sufficiently small but not necessarily zero.
It is often difficult to show that limit of a function does not exist at a point. We will come back to
this question soon. When limit exists, we write it in many alternative ways:

The limit of f (x, y) as (x, y) approaches (a, b) is L.

f (x, y) → L as (x, y) → (a, b).

lim
(x,y)→(a,b)

f (x, y) = L.

lim
x→a
y→b

f (x, y) = L.

Example 1.2. Determine if lim
(x,y)→(0,0)

4xy2

x2 + y2 exists.

Observe that the region D of f is R2 \ {(0, 0)}. And f (0, y) = 0 for y , 0; f (x, 0) = 0 for x , 0.
We guess that if the limit exists, it would be 0. To see that it is the case, we start with any ε > 0.
We want to choose a δ > 0 such that the following sentence becomes true:

If 0 <
√

x2 + y2 < δ, then ���
4xy2

x2 + y2
��� < ε.

Since |y2 | = y2 ≤ x2 + y2 and |x2 | = x2 ≤ x2 + y2, we have

�����
4xy2

x2 + y2

�����
≤ 4|x | ≤ 4

√
x2 + y2.

So, we choose δ = ε/4. Let us verify whether our choice is all right.
Assume that 0 <

√
x2 + y2 < δ. Then

�����
4xy2

x2 + y2 − 0
�����
≤ 4

√
x2 + y2 < 4δ = ε .

Hence
lim

(x,y)→(0,0)

4xy2

x2 + y2 = 0.

Observation: Suppose we have obtained a δ corresponding to some ε . If we take ε1 which is
larger than the earlier ε , then the same δ will satisfy the requirement in the definition of the limit.
Thus while showing that the limit of a function is such and such at a point, we are free to choose a
pre-assigned upper bound for our ε .

Similarly, suppose for some ε , we have already obtained a δ such that the limit requirement is
satisfied. If we choose another δ, say δ1, which is smaller than δ, then the limit requirement is also
satisfied. Thus, we are free to choose a pre-assigned upper bound for our δ provided it is convenient
to us and it works.

Example 1.3. Consider f (x, y) =
√

1 − x2 − y2 where D = {(x, y) : x2 + y2 ≤ 1}.
We guess that limit f (x, y) is 1 as (x, y) → (0, 0).
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To show that the guess is right, let ε > 0. Observe that 0 ≤ f (x, y) ≤ 1 on D.
Using our observation, assume that 0 < ε < 1. Choose δ =

√
1 − (1 − ε )2. Let |(x, y) − (0, 0) | < δ.

Then 0 < x2 + y2 < 1 − (1 − ε )2 ⇒ 1 − x2 − y2 > (1 − ε )2 ⇒ f (x, y) > 1 − ε .
That is, | f (x, y) − 1| = 1 − f (x, y) < ε. Therefore, f (x, y) → 1 as (x, y) → (0, 0).

Theorem 1.1. (Uniqueness of limit) Let f (x, y) be a real valued function defined on a region
D ⊆ R2. Let (a, b) ∈ D. If limit of f (x, y) as (x, y) approaches (a, b) exists, then it is unique.

Proof: Suppose f (x, y) → ` and also f (x, y) → m as (x, y) → (a, b). Let ε > 0. For ε/2, we have
δ1 > 0, δ2 > 0 such that

0 < (x−a)2+(y−b)2 < δ2
1 ⇒ | f (x, y)−` | < ε/2, 0 < (x−a)2+(y−b)2 < δ2

2 ⇒ | f (x, y)−m | < ε/2.

Choose a point (α, β) so that both 0 < (α − a)2 + (β − b)2 < δ2
1, 0 < (α − a)2 + (β − b)2 < δ2

2
hold. Then

| f (α, β) − ` | < ε/2 and | f (α, β) − m | < ε/2.

Now, |` − m | ≤ |` − f (α, β) | + | f (α, β) − m | < ε/2 + ε/2 = ε . That is, for each ε > 0, we have
|` − m | < ε . Hence ` = m. �

For a function of one variable, there are only two directions for approaching a point; from left
and from right. Whereas for a function of two variables, there are infinitely many directions, and
infinite number of paths on which one can approach a point. The limit refers only to the distance
between (x, y) and (a, b). It does not refer to any specific direction of approach to (a, b). If the limit
exists, then f (x, y) must approach the same limit no matter how (x, y) approaches (a, b). Thus, if
we can find two different paths of approach along which the function f (x, y) has different limits,
then it follows that limit of f (x, y) as (x, y) approaches (a, b) does not exist.

Theorem 1.2. Suppose that f (x, y) → L1 as (x, y) → (a, b) along a path C1 and f (x, y) → L2
as (x, y) → (a, b) along a path C2. If L1 , L2, then the limit of f (x, y) as (x, y) → (a, b) does not
exist.

Example 1.4. Consider f (x, y) =
x2 − y2

x2 + y2 for (x, y) , (0, 0).What is its limit at (0, 0)?

When y = 0, limit of f (x, y) as x → 0 is lim
x→0

x2

x2 = lim
x→0

(1) = 1.

That is, f (x, y) → 1 as (x, y) → (0, 0) along the x-axis.

When x = 0, limit of f (x, y) as y → 0 is lim
y→0

−y2

y2 = −1.

That is, f (x, y) → −1 as (x, y) → (0, 0) along the y-axis.
Hence lim

(x,y)→(0,0)
f (x, y) does not exist.
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Example 1.5. Consider f (x, y) =
xy

x2 + y2 for (x, y) , (0, 0).What is its limit at (0, 0)?

Along the x-axis, y = 0; then limit of f (x, y) as (x, y) → (0, 0) is 0.
Along the y-axis, x = 0; then limit of f (x, y) as (x, y) → (0, 0) is 0.
Does it say that limit of f (x, y) as (x, y) → (0, 0) is 0?

Along the line y = x, limit of f (x, y) as (x, y) → 0 is lim
x→0

x2

x2 + x2 = 1/2.

Hence lim
(x,y)→(0,0)

f (x, y) does not exist.

Example 1.6. Consider f (x, y) =
xy2

x2 + y4 for (x, y) , (0, 0).What is its limit at (0, 0)?

If y = mx, for some m ∈ R, then f (x, y) =
m2x

1 + m4x2 . So, lim
(x,y)→(0,0)

along all straight lines is 0.

If x = y2, y , 0, then f (x, y) =
y4

y4 + y4 = 1/2. As (x, y) → (0, 0) along x = y2, f (x, y) → 1/2.

Hence lim
(x,y)→(0,0)

f (x, y) does not exist.

A question: are the following same?

lim
(x,y)→(a,b)

f (x, y), lim
x→a

lim
y→b

f (x, y), lim
y→b

lim
x→a

f (x, y)

Example 1.7. Let f (x, y) =
(y − x)(1 + x)
(y + x)(1 + y)

for x + y , 0,−1 < x, y < 1. Then

lim
y→0

lim
x→0

f (x, y) = lim
y→0

y

y(1 + y)
= 1.

lim
x→0

lim
y→0

f (x, y) = lim
x→0

−x(1 + x)
x

= −1.

Along y = mx, lim
(x,y)→(0,0)

f (x, y) = lim
(x,y)→(0,0)

x(m − 1)(1 + x)
x(1 + m)(1 + mx)

=
m − 1
m + 1

.

For different values of m, we get the last limit value different. So, limit of f (x, y) as (x, y) → (0, 0)
does not exist. But the two iterated limits exist and they are not equal.

Example 1.8. Let f (x, y) = x sin
1
y
+ y sin

1
x

for x , 0, y , 0. Then

lim
x→0

y sin
1
x

and lim
y→0

x sin
1
y

do not exist.

So, neither lim
y→0

lim
x→0

f (x, y) exists nor lim
x→0

lim
y→0

f (x, y) exists.

However, | f (x, y) − 0| ≤ |x | + |y | =
√

x2 +
√
y2 ≤ 2

√
x2 + y2 = 2|(x, y) |. Take δ = ε/2. Now,

If |(x, y) − (0, 0) | < δ = ε/2, then | f (x, y) − 0| < ε. Therefore,

lim
(x,y)→(0,0)

f (x, y) = 0.

That is, the two iterated limits do not exist, but the limit exists.
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Hence existence of the limit of f (x, y) as (x, y) → (a, b) and the two iterated limits have no
connection.

The usual operations of addition, multiplication etc have the expected effects as the following
theorem shows. Its proof is analogous to the single variable limits.

Theorem 1.3. Let L, M, c ∈ R; lim
(x,y)→(a,b)

f (x, y) = L; lim
(x,y)→(a,b)

g(x, y) = M . Then

1. Constant Multiple : lim
(x,y)→(a,b)

c f (x, y) = cL.

2. Sum : lim
(x,y)→(a,b)

( f (x, y) + g(x, y)) = L + M .

3. Product : lim
(x,y)→(a,b)

( f (x, y) g(x, y)) = LM .

4. Quotient : If M , 0 and g(x, y) , 0 in an open disk around the point (a, b), then
lim

(x,y)→(a,b)
( f (x, y)/g(x, y)) = L/M

5. Power : If r ∈ R, Lr ∈ R and lim
(x,y)→(a,b)

f (x, y) = L, then lim
(x,y)→(a,b)

( f (x, y))r = Lr .

1.3 Continuity
Let f (x, y) be a real valued function defined on a subsets D ofR2.We say that f (x, y) is continuous
at a point (a, b) ∈ D iff for each ε > 0, there exists δ > 0 such that for all points (x, y) ∈ D with√

(x − a)2 + (y − b)2 < δ we have | f (x, y) − f (a, b) | < ε .
Observe that if (a, b) is an isolated point of D, then f is continuous at (a, b). When D is a region,
(a, b) is not an isolated point of D; and then f is continuous at (a, b) ∈ D iff the following are
satisfied:

1. f (a, b) is well defined, that is, (a, b) ∈ D;

2. lim
(x,y)→(a,b)

f (x, y) exists; and

3. lim
(x,y)→(a,b)

f (x, y) = f (a, b).

The function f (x, y) is said to be continuous on a subset of D iff f (x, y) is continuous at all points
in the subset.
Therefore, constant multiples, sum, difference, product, quotient, and rational powers of continuous
functions are continuous whenever they are well defined.
Polynomials in two variables are continuous functions.
Rational functions, i.e., ratios of polynomials, are continuous functions provided they are well
defined.

Example 1.9. f (x, y) =



3x2y
x2+y2 if (x, y) , (0, 0)

0 if (x, y) = (0, 0)
is continuous on R2.
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At any point other than the origin, f (x, y) is a rational function; therefore, it is continuous. To
see that f (x, y) is continuous at the origin, let ε > 0 be given. Take δ = ε/3. Assume that√

x2 + y2 < δ. Then

���
3x2y

x2 + y2 − f (0, 0)��� ≤
���
3(x2 + y2)y

x2 + y2
��� ≤ 3|y | ≤ 3

√
x2 + y2 < 3δ = ε .

Example 1.10. f (x, y) =



xy(x2−y2)
x2+y2 if (x, y) , (0, 0)

0 if (x, y) = (0, 0)
is continuous on R2.Why?

Being a rational function, it is continuous at all nonzero points. For the point (0, 0), let ε > 0 be
given. Choose δ =

√
ε . Notice that xy ≤ x2 + y2 and x2 − y2 ≤ x2 + y2.

For all (x, y) with
√

x2 + y2 < δ, we have

| f (x, y) − 0| ≤
(x2 + y2)(x2 + y2)

x2 + y2 < δ2 = ε .

Hence lim
(x,y)→(0,0)

f (x, y) = 0 = f (0, 0).

Example 1.11. f (x, y) =
x2 − y2

x2 + y2 is continuous on D = R2 \ {(0, 0)}.

f (x, y) is not continuous at (0, 0) since (0, 0) < D.

What about the function g(x, y), where

g(x, y) =



x2−y2

x2+y2 if (x, y) , (0, 0)

0 if (x, y) = (0, 0)

By Example 1.4, lim
(x,y)→(0,0)

g(x, y) does not exist. Hence g(x, y) is not continuous at (0, 0).

As in the single variable case, composition of continuous functions is continuous:

Let f : D → R be continuous at (a, b) with f (a, b) = c. Let g : I → R be continuous
at c ∈ I for some interval I in R. Then g( f (x, y)) from D to R is continuous at (a, b).

Proof of this fact is left to you as an exercise.
For example,

ex−y is continuous at all points in the plane.

cos
xy

1 + x2 and ln(1 + x2 + y2) are continuous on R2.

At which points is tan−1(y/x) continuous?
Well, the function y/x is continuous everywhere except when x = 0.
The function tan−1 is continuous everywhere on R.
So, tan−1(y/x) is continuous everywhere except when x = 0.
The function (x2 + y2 + z2 − 1)−1 is continuous everywhere except on the sphere x2 + y2 + z2 = 1,
where it is not defined.
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1.4 Partial Derivatives
Let f (x, y) be a real valued function defined on a region D ⊆ R2. Let (a, b) ∈ D.

If C is the curve of intersection of the surface z = f (x, y) with the plane y = b, then the slope of
the tangent line to C at (a, b, f (a, b)) is the partial derivative of f (x, y) with respect to x at (a, b).
In the figure take x0 = a, y0 = b. A formal definition of the partial derivative follows.
The partial derivative of f (x, y) with respect to x at the point (a, b) is

f x (a, b) =
∂ f
∂x

���(a,b)
=

df (x, b)
dx

���x=a
= lim

h→0

f (a + h, b) − f (a, b)
h

,

provided this limit exists. Notice that f (x, b) must be continuous at x = a.
The partial derivative of f (x, y) with respect to y at the point (a, b) is

f y (a, b) =
∂ f
∂y

���(a,b)
=

df (a, y)
dy

���y=b
= lim

k→0

f (a, b + k) − f (a, b)
k

,

provided this limit exists. Again, f (a, y) must be continuous at y = b.

Example 1.12. Find f x (1, 1) where f (x, y) = 4 − x2 − 2y2.

f x (1, 1) = lim
h→0

(4 − (1 + h)2 − 2) − (4 − 1 − 2)
h

= lim
h→0

−2h − h2

h
= −2.

That is, treat y as a constant and differentiate with respect to x.

f x (1, 1) = f x (x, y)��(1,1) = −2x��(1,1) = −2.
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The vertical plane y = 1 crosses the paraboloid in the curve C1 : z = 2 − x2, y = 1. The slope
of the tangent line to this parabola at the point (1, 1, 1) (which corresponds to (x, y) = (1, 1)) is
f x (1, 1) = −2.

Example 1.13. Find f x and f y, where f (x, y) = y sin(xy).

Treating y as a constant and differentiating with respect to x, we get f x . Similarly, f y .

f x (x, y) = y cos(xy) y, f y (x, y) = yx cos(xy) + sin(xy).

Example 1.14. Find ∂z/∂x and ∂z/∂y where z = f (x, y) is defined by x3 + y3 + z3 − 6xyz = 1.

Differentiate x3 + y3 + z3 − 6xyz − 1 = 0 with respect to x treating y as a constant:

3x2 + 0 + 3z2 ∂z
∂x
− 6y

(
z + x

∂z
∂x

)
− 0 = 0.

Solving this for ∂z/∂x, we have

∂z
∂x

(3z2 − 6xy) + (3x2 − 6yz) = 0, that is,

∂z
∂x
= −

x2 − 2yz
z2 − 2xy

.

Similarly,
∂z
∂y
= −

y2 − 2xz
z2 − 2xy

.

Example 1.15. The plane x = 1 intersects the surface z = x2 + y2 in a parabola. Find the slope of
the tangent to the parabola at the point (1, 2, 5).

The asked slope is ∂z/∂y at (1, 2). It is

∂(x2 + y2)
∂y

(1, 2) = (2y)(1, 2) = 4.

Alternatively, the parabola is z = x2 + y2, x = 1 OR, z = 1 + y2. So, the slope at (1, 2, 5) is

dz
dy

���y=2
=

d(1 + y2)
dy

���y=2
= (2y) |y=2 = 4.

For a function f (x, y), partial derivatives of second order are:

f xx = ( f x)x =
∂

∂x
∂ f
∂x
=
∂2 f
∂x2 .

f xy = ( f x)y =
∂ f x

∂y
=

∂

∂y

∂ f
∂x
=

∂2 f
∂y∂x

.

f yx = ( f y)x =
∂ f y
∂x
=

∂

∂x
∂ f
∂y
=

∂2 f
∂x∂y

.

f yy = ( f y)y =
∂

∂y

∂ f
∂y
=
∂2 f
∂y2 .
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Similarly, higher order partial derivatives are defined. For example,

f xxy =
∂

∂y

∂

∂x
∂ f
∂x
=

∂3 f
∂y∂x∂x

.

Observe that f x (a, b) is not the same as lim
(x,y)→(a,b)

f x (x, y). To see this, let

f (x, y) =



1 if x > 0
0 if x ≤ 0.

Then f x (x, y) = 0 for all x > 0. Also, f x (x, y) = 0 for all x < 0. Now, lim
(x,y)→(0,0)

f x (x, y) = 0. But

f x (0, 0) does not exist. Reason?

f x (0, 0) = lim
h→0

f (h, 0) − f (0, 0)
h

= lim
h→0

1 or 0
h

does not exist

On the other hand, f x (a, b) can exist though lim
(x,y)→(a,b)

f x does not.

However, if f x (x, y) is continuous at (a, b), then

f x (a, b) = lim
(x,y)→(a,b)

f x (x, y).

Similarly, f xy need not be equal to f yx . See the following example.

Example 1.16. Consider f (x, y) =
xy(x2 − y2)

x2 + y2 for (x, y) , (0, 0), and f (0, 0) = 0.

f (x, 0) = f (0, y) = f (0, 0) = 0.
f x (x, 0) = f y (0, y) = f xx (0, 0) = f yy (0, 0) = 0.

f x (0, y) = lim
h→0

f (h, y) − f (0, y)
h

= −y, f y (x, 0) = lim
k→0

f (x, k) − f (x, 0)
k

= x.

f xy (0, 0) = lim
k→0

f x (0, k) − f x (0, 0)
k

= lim
k→0

−k − 0
k

= −1.

f yx (0, 0) = lim
h→0

f y (h, 0) − f y (0, 0)
h

= lim
h→0

h − 0
h
= 1.

That is, f xy , f yx .

But continuity of both of f xy and f yx implies their equality.

Theorem 1.4. (Clairaut) Let D be a region in R2. Let the function f : D → R have continuous
first and second order partial derivatives on D. Then f xy = f yx .

Proof: Let (a, b) ∈ D. Let h , 0.Write g(x) = f (x, b + h) − f (x, b). Then

φ( f ) := g(a + h) − g(a) = [ f (a + h, b + h) − f (a + h, b)] − [ f (a, b + h) − f (a, b)].
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By MVT, we have c between a and a + h such that

φ( f ) = g′(c)h = h[ f x (c, b + h) − f x (c, b)].

Again, by MVT (on f x with the second variable), we have d between b and b + h such that

φ( f ) = h · h · f xy (c, d) = h2 f xy (c, d).

Due to continuity of f xy, we have

lim
h→0

φ( f )
h2 = lim

(c,d)→(a,b)
f xy (c, d) = f xy (a, b).

Write
φ( f ) = [ f (a + h, b + h) − f (a, b + h)] − [ f (a + h, b) − f (a, b)]

and apply MVT twice as above to get f yx (a, b) = limh→0
φ( f )

h2 . But the two limits with
φ( f )/h2 are equal. So, f xy (a, b) = f yx (a, b). �

In one variable, f ′(t) exists at t = a implies that f (t) is continuous at t = a.We have seen similarly
that existence of f x (a, b) and f y (a, b) guarantees continuity of f (x, b) and of f (a, y) at (a, b).
But for f (x, y), even both f x (x, y) and f y (x, y) exist at (a, b), the function f (x, y) need not be
continuous at (a, b). See the following example.

Example 1.17. Let f (x, y) =



xy
x2+y2 if (x, y) , (0, 0)

0 if (x, y) = (0, 0).

Here, f (x, 0) = 0 = f (0, y). So, f x (0, 0) = 0 = f y (0, 0). And limit of f (x, y) as (x, y) → (0, 0)
does not exist. Hence f (x, y) is not continuous at (0, 0).

Further, we find that f xx (x, 0) = 0 = f yy (0, y).What about f xy (0, 0)?

f x (0, y) = lim
h→0

f (h, y) − f (0, y)
h

= lim
h→0

y

h2 + y2 =
1
y
.

f x (0, y) is not continuous at y = 0.
Notice that the second partial derivatives f xy (0, 0) and f yx (0, 0) do not exist.

1.5 Increment Theorem
In order to see the connection between continuity of a function and the partial derivatives, the
associated geometry may help.

Let S be the surface z = f (x, y), where f x, f y are continuous on the region D, the domain of f . Let
(a, b) ∈ D. Let C1 and C2 be the curves of intersection of the planes x = a and of y = b with S.
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