Let 71 and 7, be tangent lines to the curves C; and C; at the point P(a, b, f(a, b)). The tangent
plane to the surface S at P is the plane containing 77 and 7>.

The tangent plane to S at P consists of all possible tangent lines at P to the curves C that lie on §
and pass through P. This plane approximates S at P most closely.

Write the z-coordinate of P as ¢. Then P = (a, b, ¢). Equation of any plane passing through P is
z—c=A(x—a)+ B(y—>b). When y = b, the tangent plane represents the tangent to the intersected
curve at P. Thus, A = f.(a,b), the slope of the tangent line. Similarly, B = f,(a, b). Hence
equation of the tangent plane to the surface z = f(x, y) at the point P(a, b,c) on § is

z—c = fx(a,b)(x —a) + fy(a,b)(y — b)
provided that f,, f, are continuous at (a, b).

Example 1.18. Find the equation of the tangent plane to the elliptic paraboloid z = 2x* + y? at
(1,1,3).

Here, z, = 4x,zy, = 2y. So, z,(1,1) = 4,z,(1,1) = 2. Then the equation of the tangent plane is
z=3=4(x—-1)+2(y - 1). It simplifies to z = 4x + 2y — 3.

The tangent plane gives a linear approximation to the surface at that point. Why?
Write the equation as f(x,y) — f(a,b) = fx(a,b)(x —a) + fy(a,b)(y — D). Then

fx,y) = f(a,b) + fx(a,b)(x —a) + fy(a,b)(y — D).

This formula holds true for all points (x,y, f(x,y)) on the tangent plane at (a, b, f(a, b)). For
approximating f(x, y) for (x, y) close to (a, b), we may take

fx,y) = f(a,b) + fr(a,b)(x —a) + fy(a,b)(y = b).

The RHS is called the standard linear approximation of f(x,y, 7).
Writing in the increment form,

fla+hb+k)=~ f(a,b)+ fr(a,b)h + f,(a,b)k.

This gives rise to the total increment f(a + h, b+ k) — f(a, b).

The total increment can be written in a more suggestive form. Towards this, write
Af:=fla+hb+k)- f(a+hb)+ f(a+ hb) - f(a,b).
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By MVT, there exist ¢ € [a,a + h] and d € [b, b + k] such that

fla+hb) - f(a,b)
fla+hb+k)—f(a+hb)

hlfx(c,b) = fx(a, D)] + hfi(a, b)
k[fy(a+h,d) - fy(a,b)] + k fy(a, b)

Write €1 = fx(d,b) — fx(a,b) and €; = f\(a + h,c) — fy(a,b). When both h — 0,k — 0, we see
that c — a and d — b. Since f, and f) are assumed to be continuous, we have €; — O and €, — 0.
Then the total increment can be written as

Af =fla+hb+k)- f(a,b)=hf(ab)+kfy(ab)+ e h+ ek,

where €; > 0and e - 0asbothh — 0,k — 0.
We also write the increments £, k in x, y as Ax, Ay respectively.

From the above rewriting of Af it is also clear that f(x, y) is a continuous function. Let us note
down what we have proved.

Theorem 1.5. (Increment Theorem) Let D be a region in R?. Let the function f : D — R have
continuous first order partial derivatives on D. Then f(x,y) is continuous on D and the total
increment Af = f(a+ Ax,b+ Ay) — f(a,b) at (a, b) € D can be written as

Af = fx(a,b)Ax + fyAy + €1Ax + €Ay,
where €1 — 0 and €y — 0 as both Ax — 0 and Ay — 0.

Recall that for a function g of one variable, its differential is defined as dg = g’(¢)dr.
Let f(x, y) be a given function. The differential of f, also called the total differential, is

df = fx(x,y)dx + fy(x, y)dy.

Here, dx = Ax and dy = Ay are the increments in x and y, respectively. Then df is a linear
approximation to the total increment Af .

Example 1.19. The dimensions of a rectangular box are measured to be 75cm, 60cm, and 40 cm,
and each measurement is correct to within 0.2cm. Use differentials to estimate the largest possible
error when the volume of the box is calculated from these measurements.

The volume of the box is V = xyz. So,

ov ov ov
dV = —dx + —dy + —dz.
ox T ay y* 0z ¢

Given that |Ax|, |Ay|, |Az| < 0.2cm, the largest error in cubic cm is
IAV]| = |dV]| =60%x40%x0.2+40%x 75 % 0.2+ 75 % 60 x 0.2 = 1980.

Notice that the relative error is 1980/(75 x 60 x 40) which is about 1%.
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Remark: Let D be a region in R%. A function f : D — R is called differentiable at a point
(a, b) € D if the total increment Az = f(a + Ax,b+ Ay) — f(a, b) in f with respect to increments
Ax, Ay in x, y, can be written as

Az = fy(a,b)Ax + fy(a,b)Ay + €1Ax + €Ay

where €; — 0 and € — 0 as both Ax —» 0and Ay — 0.

The following statements give some connections between differentiability, continuity and the partial
derivatives.

* Let D be a region in R%. Let f : D — R be such that both f, and fy existon D and at least
one of them is continuous at (a, b) € D. Then f is differentiable at (a, b).

* Let D be aregioninR%. Let f : D — R be differentiable at (a, b) € D. Then f is continuous
at (a, b).

Notice that the first statement strengthens the increment theorem. Instead of increasing the load
on terminology, we will continue with the increment theorem. Note that whenever we assume
that f, and f, are continuous, you may replace this with the weaker assumption: “ f(x,y) is
differentiable”.

Remember that we formulate and discuss our results for a function f(x,y) of two variables.
Analogously, all the notions and the results can be formulated for a function f(xi,...,x,) of n
variables for n > 2.

1.6 Chain Rules

We apply the increment theorem to partially differentiate composite functions.

Theorem 1.6. (Chain Rule 1) Let x(t) and y(t) be differentiable functions. Let f(x,y) have
continuous first order partial derivatives. Then

df _ofdx dfdy
dt  dxdt dydt

Proof: Using the increment theorem (Theorem 1.5) at a point P we obtain

AF _0fAr afAy  Ax Ay

= +el—+e—.
At 0x At 0y At AT
As At — 0, we have Ax — 0,Ay — 0,e; — 0, e, — 0. Then the result follows. O
For example, if z = xy and x = sint, y = cost, then
d 0 0
d—j = 8—ix’(t) + a—j}y’(r) = cos’t — sin’ 1.

Check: z(t) = sintcost = %sin 2t. S0, 7/(t) = cos 2t = cos? t — sin?¢.
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Theorem 1.7. (Chain Rule 2) Let f(x, y) have continuous first order partial derivatives. Suppose
x = x(s,t) and y = y(s,t) are functions such that x, x;, ys and y; are also continuous. Then

of _ofox 9fdy 9f _ofox 9fdy

ds Oxds dyds Ot 0xot Oy ot

Proof of this follows a similar line to that of Chain Rule - 1. The pattern is clearer if you use the
subscript notation:

fs = fxxs+ fyyse  Sfo = fxxo + fyyr

Example 1.20. Let z = e*siny, x = st2, y = s’¢. Then

0
0—Z = (e*sin y)t* + (¢ cos y)2st = 1" (¢ sin(s%t) + 25 cos(s21)).
s

0
a—f = (e sin y)2st + (e* cos y)s® = se”2(2t sin(s%r) + s cos(s%1)).

Substitute expressions for x and y to get z = z(s, ) and then check that the results are correct.

Example 1.21. Given that z = f(x, y) has continuous second order partial derivatives and that
x=r?+s2 y = 2rs, find z,,.

We have x, = 2r, y, = 2s. Then

r = 2rzx +2szy.
Zar = ZoxXr t ZuyVr = 28 Zox + 2824y,
Zyr = ZyxXr + ZyyYr = 2rZyx + 2852y,
0z, 0
Iy = = —2rzy +2sz7y) = 22, + 2rzy + 252y,
or  Or

= 22 +2r(2rzye +282xy) + 25(2rzyy + 252yy)

= 2z, + 4r2zxx +8rszyy + 4s2zyy.
Functions can be differentiated implicitly. If F is defined within a sphere S containing a point
(a,b,c), where F(a,b,c) = 0, F,(a,b,c) # 0, and F,, F,, F, are continuous inside the sphere,
then the equation F(x, y, z) = 0 defines a function z = f(x, y) in a sphere containing (a, b, ¢) and

contained in the sphere S. Moreover, the function z = f(x, y) can now be differentiated partially
with z, = -F\/F,, z, = =F,/F,.

It is easier to differentiate implicitly than remembering the formula.
Example 1.22. Find z, and z,, if By + 2 +6xyz=1.

We differentiate ‘the equation’ with respect to x and y as follows:

2
+2
3x% + 3z2zx +6y(z+x2,)=0= 2z = _M.
7+ 2xy
(y* + 2x2)
3y% +37%z, + 6x(z + =0 gy = -7
y 27Zy + 6x(z + x2y) Zy 2+ 21y
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d
Example 1.23. Find d_y if y = y(x)is givenby y? = x? + sin(xy).
X

dy dy dy 2x+ ycos(xy)
2y2 _ox- T =0=00 '
yo- = 2x cos(xy)(y xdx) = I 2y — xcos(xy)

Example 1.24. Find w, if w = x>+ y?>+ 7% and z = x> + y°.

As it looks,

ow
— =2x.
ox o

However, since z = x2 + y%, we have w = x2 + y> + (x> + y*)2. Then

v _ 2x +4x° + 4xy2.
0x

Notice that, here we take z as the dependent variable and x, y as independent variables. But suppose
we know that x and z are the independent variables and y is the dependent variable. Then the
second equation says that y> = z — x>. Then w = x> + (z — x?) + z°> = z + z2. Thus

ow

Ir 0.

The correct procedure to get dw/0x is :
1. w must be dependent variable and x must be independent variable.
2. Decide which of the other variables are dependent or independent.
3. Eliminate the dependent variables from w using the constraints.

4. Then take the partial derivative dw/0x.

Example 1.25. Given that w = x> + y? + z% and z(x, y) satisfies z°> — xy + yz + y> = 1, evaluate
ow/dx at (2,-1,1).

It is now clear that z, w are dependent variables and x, y are independent variables. So,

ow 0z 202 0z
=2x+2z—, 372 = -—y+ 0.
ox T 0x Ttex T8k T
These two together glve =2x+ +3 5. Evaluating it at (2,1, 1) gives 6”’ (2,-1,1) = 3.

A function f(x,y) is called homogeneous of degree 7 in a region D C R? if for all (x, y) € D,
and for each positive A, f(Ax, 1y) = A" f(x,y).

-4/3

For example, f(x,y) = x!3y tan~!(y/x) is homogeneous of degree —1 in the region D, which

is any quadrant without the axes.

f(x,y) = (1/x2 + y2)? is homogeneous of degree 3 in the whole plane.

Theorem 1.8. (Euler) Let D be a region in R?. Let f : D — R have continuous first order partial
derivatives. Then f is a homogeneous function of degree n iff xfx +yf, =nf.
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Proof: Differentiate f(Ax, 1y) — 1" f(x,y) = 0 partially with respect to A to obtain:
X fe(Ax, Ay) + ¥ fr(Ax, Ay) = n A" f(x, y).

Then set 2 = 1to get xfr(x,y) + yfy(x,y) =nf(x,y).
Conversely, let (a, b) € D. Define ¢(1) = f(Aa, Ab). Differentiate with respect to A to get

A () = afy(Aa, Ab) + bfy(1a, D).
However,
nf(da, Ab) = af(da, Ab) + bf,(da, Ab) = Adaf(da, Ab) + Abf,(Aa, Ab).
That is,
A4 (1) = ng(Q).
Now, differentiate A7"¢(A) with respect to A to obtain
[¢()AT"] = ¢' (DA™ = ng()A™" = 0.
Therefore, ¢(1)A1™" = ¢ for some constant c. Set 4 = 1 to get ¢ = f(a, b). Then
f(da, Ab) = A" f(a, b).
Since (a, b) is any arbitrary point in D, we have f(Ax, 1y) = A" f(x, y). m|
For our earlier examples, you can check that

xa[x1/3y‘4/3 tan”'(y/0)]  Olx!Py™ tan”l (y/x)]
ox Y dy

2 23\3 2 233
x@[(«/xﬁ:y )] ”awxa;y i ST I

+ )c1/3y_4/3 tan_l(y/x) =0.

1.7 Directional Derivative

Recall that if f(x, y) is a function, then f(xq, yo) is the rate of change in f with respect to change
in x, at (xo, yo), that is, in the direction 7. Similarly, f,(xo, yo) is the rate of change at (xo, yo) in
the direction j. How do we find the rate of change of f(x, y) at (xo, yo) in the direction of any unit
vector 1?7

¢ P'lag, ¥ 0) D

i S
hb e

/ . 0'fx, 3.0)
Az
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Consider the surface S with the equation z = f(x, y). Let zo = f(x0, yo). The point P(xo, yo, z0)
lies on S. The vertical plane that passes through P in the direction of # (containing i) intersects S
in a curve C. The slope of the tangent line 7 to the curve C at the point P is the rate of change of z
in the direction of 4.

Let f(x,y) be a function defined in a region D. Let (xq, yg) € D. The directional derivative of
f(x,y) in the direction of a unit vector & = ai + bj at (xg, yo) is given by

d
(Duf)(x0,y0) = (—f)

= lim f(xo + ha, yo + hb) — f(x0, y0)
(x0,50)  h—0 h '

ds

Example 1.26. Find the derivative of z = x2 + y? at (1, 2) in the direction & = (1/V2)7 + (1/V2)].

FO+RN22+0N2) = f(L2) L 2hN2+2-20)V2 _ 6

D,z(1,2) = 1i
2(1,2) hlg(l) h h—0 h

sl

Notice that f,(1,2)(1/¥2) + £,(1,2)(1/V2) = 2+ 2(2)) - (1/V2) = 6/V2.

Theorem 1.9. Let f(x,y) have continuous first order partial derivatives. Then f(x,y) has a
directional derivative at (x, y) in any direction il = ai + bjJ; and it is given by

D, f(x,y) = fx(x,y)a + fy(x, y)b.

Proof: Let (xo, yo) be a point in the domain of definition of f(x,y). Define the function g(-) by
g(h) = f(xo + ah, yo + bh). Then g(h) is a continuously differentiable function of /4. Now,

, dx dy
g (h) :fx%"'fy% :fxa"‘fyb'
Then g’(0) = fi(x0, y0) a + fy(x0, yo) b. Also,

h) —9(0
¢ = lim P ZEQ _ pr, yy).

Hence D, f (xo, yo) = g'(0) = fx(x0, yo)a + fy(x0, yo)b. O

Example 1.27. Find the directional derivative of f(x,y) = x> — 3xy + 4y? in the direction of the
line that makes an angle of /6 with the x-axis.

3.1
Here, the direction is given by the unit vector &I = cos(mr/6)i + sin(r/6)] = gi + Ej. Thus
3 1 3 1 1
D, f(x,y) = gfx +5fy = §(3x2 = 3y) + 5 (Bx +8y) = 5[3\/§x2 —3x+ (8- 3\/§)y].

The formula for the directional derivative in the direction of the unit vector i = ai + bj can be
written as

D,f = fxa+ fyb= (fil+ fy]) - (ai + bj).
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0 0
The vector operator V := a—i + (9_j is called the gradient and the gradient of f(x, y) is
X y

Therefore, D, f = grad f - . That is, at (xq, yo), the directional derivative is given by

Duf|(x0,y0) = grad fl(xo,yo) 4.

For example, for the function f(x,y) = xe” + cos(xy), grad f|20) = 7 + 2j. Thus, the directional
derivative of f in the direction of 37 — 4jis grad f|12) - ((3/5)1— (4/5))) = —1.

Caution: To apply this formula, we have assumed that f, f, are continuous at (xo, yo), and i is a
unit vector.

Example 1.28. How much the value of y sin x + 2yz change if the point (x, y, z) moves 0.1 units
from (0, 1, 0) toward (2,2, -2)?

Let f(x,y,7) = ysinx +2yz. P(0,1,0), 0(2,2,-2). V = PQ = 2i+ j— 2k. The unit vector in the
direction of V' is &t = $7. We find D, at P which requires grad f.

grad f = (ycosx)i+ (sinx +2z)j+ 2y k.

Then ,
D,(P) = grad f,1,0) =0+ 21%) ‘0= 3

The change df in the direction of % in moving ds = 0.1 units is approximately
2 .
df =~ D,(P)ds = -3 (0.1) = —0.067 units.

Theorem 1.10. Let f(x, y) have continuous first order partial derivatives. The maximum value of
the directional derivative D, f(x,y) is |grad f| and it is achieved when the unit vector ii has the
same direction as that of grad f.

This is obvious since D, f = grad f - ii says that the directional derivative is the scalar projection
of the gradient in the direction of .

Proof: D, f = grad f -ii = |grad f| || cos @ = |grad f|cos 6, where 6 is the angle between grad f
and 1. Since maximum of cos @ is 1, maximum of D, f is |grad f|. The maximum is achieved when
0 = 0, that is, when the directions of grad f and 7 coincide. O

This also says the following:
f(x,y) increases most rapidly in the direction of its gradient.
f(x,y) decreases most rapidly in the opposite direction of its gradient.
f(x,y) remains constant in any direction orthogonal to its gradient.
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/ Zero change
Most rapad ~ —"in f
decrease in f ! '
Muost rapid -~ Yf=1+j

increase in f

Example 1.29. Find the directions in which the function f(x, y) = (x> +y?)/2 changes most, least,
and not at all, at the point (1, 1).

Note: When we ask for a direction, we mean a unit vector.

grad f = fii+ fyj=xi+yj. (grad f)(1,1) =7+ ].

Thus the function f(x, y) increases most at (1, 1) in the direction (7 + j)/ V2. 1t decreases most at
(1, 1) in the direction —(7 + j)/ V2. And it does not change at (1, 1) in the directions +(7 — j)/ V2.

1.8 Normal to Level Curve and Tangent Planes

Let z = f(x,y) be a given surface. Assume that f, and f, are continuous. Recall that a level
curve to this surface is a curve in the plane where f(x, y) is a constant. Fix some constant ¢ in
the range of f. On the corresponding level curve, f(x,y) takes the constant value c¢. Suppose
7(t) = x(t)7 + y(¢)j is a parametrization of this level curve.

Differentiating, we have % f(x(),y()) =0.0r,

dr (1) _
dr

dx dy
feom+ fy 2 = grad f -

Since d7/dt is the tangent to the curve, grad f is the normal to the level curve. That is,

Let f(x,y) have continuous first order partial derivatives. At any point (xo, yo) in the domain of
f(x,y), its gradient grad f is the normal to the level curve that passes through (x¢, yo), provided
grad f is nonzero at (xg, o).

In higher dimensions, if f(xy,..., x,) is a function of n independent variables defined on D C R",
then its gradient at any point is

af aof
d =
grad f = ((9x1 axn)
The directional derivative at any point ¥ in the direction of a unit vector & = (uy, . . ., u,) is
—>+ hil) — —
Df—}l Of(x I/;L) f(x):gradf'ﬁ:fxlul+"'+fxnun'
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The algebraic rules for the gradient are as follows:

1. Constant multiple: grad (kf) = k(grad f) for k € R.
. Sum: grad (f + g) = grad f + grad g.
. Difference: grad (f — g) = grad f — grad g.

2
3
4. Product: grad (fg) = f(grad g) + g(grad f).
5

. Quotient: grad (f/g) = g(grad f)g—zf(grad g).

In R3, let 7(¢) = x(1)7 + y()j+ z(t)lAc be a smooth curve on the level surface f(x, y, z) = c. Then
f(x(2),y(t), z(t)) = c for all . Differentiating this we get

grad f-7'(t) = 0.

Look at all such smooth curves that pass through a point P on the level surface. The velocity
vectors 7 ’(t) to all these smooth curves are orthogonal to the gradient at P.

Let f(x, y, z) have continuous partial derivatives fy, fy, and f,. The tangent plane at P(xo, yo, Z0)
on the level surface f(x,y,z) = c is the plane through P which is orthogonal to grad f at P. Its
equation is

fx(x0, Y0, 20) (x — x0) + fy(x0, Y0, 20) (¥ = yo) + fz(x0, Y0, 20)(z — 20) = 0.

The normal line to the level surface f(x, y, z) = c at P(xo, yo, zo) is the line through P parallel to
grad f. Its parametric equation is

x = x0 + fx(X0, Y0, 20) £, ¥ = Yo + fy(x0, Y0, 20) &, 2= 20 + [z (X0, Y0, 20) I

The equation of the tangent plane to the surface z = f(x, y) at (a, b) can be obtained as follows:

Write the surface as F(x, y, z) = 0, where F(x,y,z) = f(x,y)—z. Then F, = f,, F, = f,, F, = 1.
Then the equation of the tangent plane is

fx(a,b)(x —a) + f,(a,b)(y = b) = (z = f(a, b)) = 0.

Example 1.30. Find the tangent plane and the normal line of the surface x> + y> + z —9 = 0 at the
point (1,2,4).

First, check that the point (1,2,4) lies on the surface. Next, f,(1,2,4) = 2, f,(1,2,4) = 4 and
fz(1,2,4) = 1. The tangent plane is given by

2x-1D+4(y-2)+(z—4)=0.
The normal line at (1,2,4) is given by
x=1+2t, y=2+4t, z=4+1.
Example 1.31. Find the tangent plane to the surface z = x cos y — ye* at the origin.
fx(0,0) =1, f,(0,0) = —1. The tangent plane is
x—y—z=0.
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Example 1.32. Find the tangent line to the curve of intersection of the surfaces
fx,y,2) =x>+y>=2=0and g(x,y,2) := x + z — 4 = 0 at the point (1, 1, 3).

The plane

‘-!

8 The ellipse E
{15 14:3)

: l/ The .L'}'_Iindcr

xpyi-2=0
ol A
flx.y.2)

The tangent line is orthogonal to both grad f and grad g at (1, 1, 3). So, it is parallel to
grad f x grad g = (20 +2)) x (I + k) = 21 — 2] - 2k.

Thus the tangent lineis x=1+2t, y=1-2¢, 7 =3-2¢.

1.9 Taylor’s Theorem

For a function of one variable, a polynomial approximation is given by the Taylor’s formula.
Observe that it is a generalization of the Mean value theorem.

Theorem 1.11. (Taylor’s Formula for one variable) Let n € N. Suppose that f" (x) is continuous
on [a, b] and is differentiable on (a, b). Then there exists a point c € (a, b) such that

" (n) (n+1)
S@ e  LO@ (i T©

n+l
21 Y a9

f(x) = f(a)+ f(a)(x —a) +
Proof: For x = a, the formula holds. So, let x € (a, b]. For any ¢ € [a, x], let

1 (n)
f@ g I@

2! n!

p(®) = fa) + f(a)(t —a) + (t—a)".

Here, we treat x as a certain point, not a variable; and ¢ as a variable. Write

f(x) - px)

(x ~ a)n+1 (l, _ a)n-f-l.

gt) = f(t) —pt) -

We see that g(a) =0, g'(a) =0, g”(a) =0, ...,g"™(a) =0, and g(x) =0.

By Rolle’s theorem, there exists ¢; € (a, x) such that g’(c;) = 0. Since g(a) = 0, apply Rolle’s
theorem once more to get a ¢; € (a, ¢1) such that g”(¢c2) = 0.

Continuing this way, we get a ¢,+1 € (a, ¢,) such that g("+1)(cn+1) =0.
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Since p(t) is a polynomial of degree at most n, p(”“)(t) = 0. Then

J(x) = px)

(n+1) _ p(n+l) _
g = S0 -

(n+ 1.
J(x) = p(x)

(x _ a)n+1

FO) =p@) _ f" D)
(x —a)r*l (n+ 1!~
(n+1)
Consequently, g(¢) = f(t) — p(t) — S ) (t —a)™.
(n+1)!
Evaluating it at r = x and using the fact that g(x) = 0, we get

Evaluating at t = ¢,;+; we have f(”+1)(c,,+1) - (n+1)! =0. That is,

_ f(n+l)(cn+l) n+1
f(x)—P(X)+—(n+l)! (x—a)"".
Since x is an arbitrary point in (a, b], this completes the proof. O

We have a similar result for functions of several variables.

Theorem 1.12. (Taylor) Let D C R? be a region. Let (a,b) be an interior point of D. Let
f : D — R have continuous partial derivatives of order up to n + 1 in some open disk D centered
at (a, b) and contained in D. Then for any (a + h, b + k) € Dy, there exists 6 € [0, 1] such that

0

n 1 6 m
fla+hb+k) = f(a,b)+n;%(ha+k8—y) f(a,b)

1 g g, n+l1
(n+1)»(ha+k5) f(a+6h,b+06k).

For example, m = 2 on the right gives zl!(hzfxx +2hk fry + szyy).
Proof: Let ¢(t) = f(a+th,b+tk). Foranyt € [0, 1],
¢'(t) = fxla+thb+tk)h+ fy(a+thb+tk)k = (hg—x + kg—y)f(a +th, b+ tk).

¢ (1) = (fuxh + froy)h + (fyeh + fryk)k = (hd- + kg—y)zf(a +th b+ tk).
By induction, it follows that

o™ (1) = (ha— + ka—)mf(a +th, b+ tk).
0x oy

Using Taylor’s formula for the single variable function ¢(#), we have

o B0) gD ()
¢(1) = ¢(0) + + for some 6 € [0, 1].
mzzl m! (n+1)!

Substituting the expressions for ¢(1), ¢(0), (;S(’”)(O) and qb(”“) (8), we get the required result. O
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Example 1.33. Let f(x,y) = x> +xy—y% a=1, b= -2.
Here, f(1,-2) = =5, fx(1,=2) =0, fy(1,=2) =5, fux =2, fxy =1, fyy = 2. Then

1
fry)==5+5(+2)+[2(x - D2 +2(x = 1)(y+2)—2(y +2)%].
This becomes exact, since third (and more) order derivatives are 0.

Recall that the standard linearization (linear approximation) of f(x, y) at (a, b) is

L(x,y) = f(a,b) + fx(a,b)(x — a) + fy(a,D)(y - D).

The error in the standard linearization at (a, b) can now be written as

1
E(xr,y) = f(0y) = Lx.Y) = 57 ((x = @) fax + 200 = @)(y = D) fay + (0 = B2 fy)]|
where c =a+6(x —a), d = b+ 0(y — b) for some 0 € [0, 1].

Theorem 1.13. Let D C R? be a region. Let f : D — R have continuous first and second order

partial derivatives. Let R be a rectangle centered at (a, b) and contained in D. Suppose there exists
an M € R such that | fyx|, | fxyl, | fyy| £ M for all points in R. Then

1
EGoy)l < 5M(lx—al +1y - bl)>.

Proof: Taylor’s formula says that f(x,y) = L(x,y) + E(x,y), where

1
E(xy) = 5| = @ fur(e d) +2x = @)y = b) fuy(e.d) + (v = D) fry (e, )]

for some c in between x and a, and some d in between y and b. Since |frc| < M, |fry| < M, and
| fyyl < M for all points in R,

M M
ECoy)l < 1 - a)* +2(x —a)(y - b) + (y - b)*| < S (G —al+1y- bl)?. O

Example 1.34. Find the standard linearization of f(x,y) = x> — xy + y2/2 + 3 at (3, 2). Also find
an upper bound of the error in the linearization in the rectangle |x — 3| < 0.1, |y — 2| < 0.1.

The standard linearization (linear approximation) of f(x, y) at (a, b) is
L(x,y) = f(a,b) + fx(a,b)(x — a) + fy(a,D)(y - D).
Now, f(3,2) =8, fx(3,2) = 2x — y)I32) =4 and f,(3,2) = (—=x + y)|;32) = —1. Thus
L(x,y)=8+4(x-3)-(y—-2)=4x—-y-2.
The error in this linearization is
E(x,y) = f(x,y) = L(x,y) :xz—xy+y2/2+3—4x+y+2.

The rectangleis R: |x —3| < 0.1,]y —2| < 0.1. Here, fox =2, fry=-1, f), = 1.
So, we take M = 2 as an upper bound for their absolute values. Then

IE(x, y)| < |x =317+ |y =2]*> < (0.1+0.1)% = 0.04.
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