
1st Year Mathematics – University of Guelma 1 Dr. Abderrahmane Kefali

Faculty of MISM 2023/2024

Department of Mathematics Algorithms and data structures 2

First year LMD Semester 2

Lab Sheet No 3. Pointers and Linked Lists

1) Objectives

The objective of this lab is to learn, through a set of activities and practical exercises,

the use of pointers and linked lists in the C language.

By the end of this lab, students should be familiar with pointers, dynamic memory

management, and be capable of solving complex problems using dynamic data

structures, specifically linked lists.

2) Example 1: Pointer Manipulation

Consider the following program:

#include <stdio.h>

int main() {

 int x,y;float z; int* p;

 x = 5;

 p = &x;

 y = *p-2;

 p++;

 *p = *p**(p-1);

 p = &z;

 p = malloc(4*2);

 *p = 1;

 *(p+1) = 2;

 free(p);

 return 0;

}

1. Create a new project and type the above code.

2. Complete the code to display the content of variables after each instruction,

then compile and execute.

1st Year Mathematics – University of Guelma 2 Dr. Abderrahmane Kefali

3) Example 2: Linked List Manipulation

The following program is supposed to insert numbers from 1 to 10 into a linked list of

integers (insertion at the head) and then display them.

#include <stdio.h>

//Declaration of the data structure (the type describing a linked list)

typedef struct node* List;

typedef struct node{

 int val;

 List next;

 }node;

List L;

//Function allowing to insert a value v at the head of a linked list L

List insertHead(List L,int v){

 List p = malloc(.......);

 p->val = v;

 p->next = L;

 return L;

}

//Function allowing to display the elements of a linked list L

void displayList(List L){

 List p;

 if(L == NULL)

printf("The list is empty");

 else{

 while(......){

 printf("%d ",p->val);

 }

 }

}

main(){

 int i;List L;

 L = NULL;

 for(i=1; i<=10; i++)

 L = insertHead(L,i);

 displayList(L);

}

1. Create a new project and type the above code.

2. Complete the code to achieve the desired processing, then compile and execute.

1st Year Mathematics – University of Guelma 3 Dr. Abderrahmane Kefali

3. Can you justify the obtained result?

4. Make the necessary modifications for the display to be as expected.

5. Finally, replace the insertHead function with a procedure.

4) Application Exercises

1. Add to the program from the previous Example 2, the procedure

sum(L,sPos,sNeg) that calculates and returns the sum of positive and

negative elements of the linked list L passed as input.

Test this procedure in the main function.

2. Let L be a list of integers without redundancies. We want to create a program

that separates the list L into two lists based on a value entered by the user. To

accomplish this:

a) Write the function insertTail(L, v) that inserts an integer value v into

the list L. (Covered in lecture).

b) Write the procedure displayList(L) that displays the elements of the list

L. (Covered in lecture).

c) Write the function exists(L, v) that checks if a value v exists in the list

L. This function should return the address of the element preceding the

element containing v if v exists and return NULL otherwise.

d) Write the procedure separate(L, L1, L2, v) that separates the list L

into two lists: L1 will contain the elements before the element containing the

value v, and L2 will start from that element. The original list L should be

empty.

e) Using the previous sub-programs, write the main function that allows the user

to enter n integers (where n is entered by the user), puts them into a linked

list, separates this list into two lists based on a value v also entered by the

user, and displays the resulting two lists.

3. Consider a list of real numbers. (Covered in TW).

a) Write the function insertSorted(L, v) that inserts an element into a

linked list sorted in ascending order, ensuring that the list remains sorted after

insertion.

b) Write the procedure displayList(L) that displays the elements of the

linked list L.

c) Write the main function that asks the user to enter 10 real numbers and

inserts them into a linked list in such a way that the resulting list is sorted in

ascending order. Display the obtained list.

1st Year Mathematics – University of Guelma 4 Dr. Abderrahmane Kefali

5) Additional Exercises

1. Polynomials can be represented by a linked list, where each term of the

polynomial is stored in a node of the list containing the degree (degree) of the

term and the corresponding coefficient (coeff).

For example, the polynomial 7x4 + 3x2 -2x + 5 is represented as follows:

 7 4 3 2 -2 1 5 0

 P

a) Provide the data structure Poly allowing to represent a polynomial. (The

algorithmic declaration was covered in TW).

b) Write the function createMonomial(deg, coeff) to create a monomial,

store its coefficient and degree, and return its address.

c) Write the function addMonomial(P, deg, coeff) that adds a monomial

(with degree deg and coefficient coeff) to the polynomial list P. Note: The

polynomial should always be sorted in descending order of exponents.

f) Write the function evaluate(P, x) to evaluate a polynomial P for a given

value x. The polynomial and the value x are passed as arguments. (The

algorithm was covered in TW).

d) Write the main function that allows keyboard input of a polynomial, stores it

in a linked list, reads a value x, and evaluates the polynomial for the given

value x.

2. Consider a program that manages rental housing by storing them in a linked list.

For each housing unit, we store its identifier (integer), category (economical,

social, or normal), price (real), and location (string). We are interested in the

following functionalities:

a) Create a linked list L to represent the set of housing units.

b) Display information for all housing units with the category "economical."

c) Delete the element with the identifier id from the list L. The identifier id

should be read from the keyboard.

d) Create three sub-lists L_eco, L_soc, and L_norm (based on the

category field) from the list L without allocating new spaces.

e) Assuming that the three created sub-lists are sorted by housing identifier, add

a housing unit with information entered through the keyboard.

Use subprograms for these functionalities.

