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The function is defined for = # 0, i.e. everywhere except for the Y axis,
D = {(z,y) | = # 0}. There is of course no need to sketch the domain in this case.

By using polar coordinates we get from z = pcosy # 0 in D that ¢ > 0 and cos ¢ # 0. This
shows that in D,

sin(g® cospsing) | _ g% cos | |sing|
|f(zy)| =

ocosp ol cos ]

= o|singl,

‘which tends to 0 for o — 0+, hence lim  f(r,y) =
(z.y)—(0,0)

ALTERNATIVELY one can use directly that

sin(zy)

|f(z,y) — 0| = =ly|—0 forly </z2+y%>—0.
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The domain is the same as in 1). The limit does not exist, because e.g.

fz,z) = S]liﬂl forz—0, f(r,—z)= 7%ﬂ71 for z — 0.
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The vector function is defined for (z,y) # (0,0). Let us estimate the first coordinate function,

Tsint |z| . .
—_— ————|siny| < 1-|siny| — 0 for (z,y) — (0,0).
Wz \/ml yl<1-|siny| (z,9) = (0,0)

‘We see that the first coordinate function converges towards 0 by the limit.

In the examination of the second coordinate function we use polar coordinates 0 < ¢ < E,
0> 0. We get by insertion
::2y2+12+y2:g‘eoszgo-sin2(p+gz: 1 4 _sinqueos2qp
2+ 3y? 0%(1+2sin ) 1+ 2sin? ¢ 1+2sin?¢p
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The latter term converges towards 0 for p — 0; but the first term depends on ¢ and not on p.

Since the second coordinate function cannot be extended continuously to (0,0), neither can the
vector function itself be extended continuously to (0,0).
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The vector function  g(; ) — ( fr \/IT) is defined for £ +y # 0 and = +y > 0,
Tty

so the domain is {(z,y) | z +y > 0}.

The first coordinate function does not have a limit for (z,y) — (0,0) in the domain. In fact
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if we in particular restrict ourselves to the positive X axis where y = 0, then

lim fi(z,0) = L _ _ 1. If we instead restrict ourselves to the positive Y axis we get
20+ zalH» z+0
0
f1 0,y) = =0. Since 1 # 0, the limit does not exist.

y~0+ 0+y +y
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Ifz#0,then z%® —0and 2%y’ + (z—y)? 2 #0 fory—0,

hence  lim f(z,y) =0  forz 0. Note also that
y—
0
;jnél f(0,y) = !I’Lr% F =0. Since f(z,y) = f(y,x), it follows immediately that

i (1 ) ) = 1y (1 29 0.

y—
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Then consider the limit (z,y) — (0,0) along the line y = z. This is given by

s

T u;.;4+ 02

]J.m f(z )= =1# 0. We conclude that f does not have a limit for (z,y) — (0,0).
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1
sin —
Ed

Ifz#0, then |f(z,y) — f(0,0)| =

and it follows trivially for = = 0 that |f(0,y) — f(0,0)| =0 — 0

We conclude that ~_ lim_ f(z,y) = 0.
 conclude B0 @Y

Then it follows immediately that

]jm,,ﬁqsi.ul-siny:O, for z #0,
T
lim,_,,0= for z =0,

lim f(z,y) = {

- |siny| < [siny| — 0 for (z,y) — (0,0),

for (z,y) — (0,0).
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thus  limy (hm Iz, y)) 0.

Y

Ontheotherhand,sinl-sinyfory#pvr,pel,doesnothavea]jmitfora:ﬂo,so
T

lim (hm F(a, y)) is ot defined.

y—0
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When f(z,y) = Arctan f, y # 0, we get
y

af 1 1 Y of 1

y

y £
2ty 2ty

hence Vi(zy) = (

% 1+(£)2-;712+y2’ oy 1+(£)2'(7

), y#0.
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When f(z,y) =In\/z2 + 3% = §In(z? + y?), (z,y) # (0,0), we get

T Y

of z of Y thus Vf(zy) = (—z Tt ) -
= = ) T

dr 2 +y?’ Oy z2+y? 22 +y? 22 +y?
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It follows from  f(z,y,2) = z3¥+"** = zexp{(y + zz) In3}

that @,
a£ =3YHT 4 5 3¥HT; In3 = ¥ (14 2210 3),
of y4oz of
— n3. ytaz
zé , e =z2In3- 3

and accordingly,  V/f(z,y,2) = 3¢*** (1 + zzIn3,zIn3,2° In3) .
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When f(z,y,2) = exp(s® — y + z), then ? —exp(e® —y+2)-2,
”

Foenw -yt L yia),

hence Vi(z,y,2) = exp(a® —y +2) (22,-1,1).
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The task is to insert (correctly) into the chain rule,

F'(u) = z£ z (;i :y where z and y are the coordinates of X = (z,y).
‘When f(z,y) = zy and (z,y) = (e%,cosu), we get
de  dy .
vy, dEdy _ _ -~
Fl(u) = Y, tT g, =cosu- e —e"sinu = e"(cosu — sinu).

TesT. By insertion we also have  F(u) = e* cosu,
so  F'(u) =e*(cosu —sinu).

‘We see that we get the same result, and in this case the application of the chain rule is not
easier than the traditional method.
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When f(z,y) = ™ and (z,y) = (3u?,u%), we get by the chain rule,
Fllw)=ey % peve B o

TEST. By insertion we get F(u) = e®¥ = exp(3u®),

5

ud - 6u+ e 3u? - 3u? = 15ut exp(3ud).

so by a differentiation, F’(u) = 15u* exp(3u®).

‘We see that the two results agree, and also that the direct method is easier to apply in this
case than the chain rule.
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The chain rule is written in two versions,

OF _9f 0z 0f &y OF _9f 0z 0f &y

- d -
u 0z0u Oyou ¢ Bo 9z dv By ov

where one should be very careful to insert the right coordinates. Whenever f and z and y are
present, we first calculate in the intermediate coordinates = and y, and then afterwards we put
z = z(u,v) and y = y(u,v). Therefore, in the rough workings we obtain a mixed result in which
both z and y as well as u and v occur. Then z and y are eliminated in the next step.

When f(z,y) = z%y and (z,y) = X(u,v) = (v +v,uv), then

of o _ or ay or ay
9 =12, and — _
or v o8 gymeoad or=l 5T %l B
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so %:m.lJﬂ;?

and %:21y-1+I2-1l:2("+'1)“"+(“+")2":"(“+v)(u+3")'

v = 2(u+ v)uv + (u+ v)o = v(u + v)(3u + v),

TesT. We get by insertion  F(u,v) = (u + v)?uv,

thus % — 2+ o) + (ut v)20 = v(u + v)(Bu+ v),
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and OF _ 2uv_u)

50 = sy The results agree.
u+tv
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By partial differentiation we get

% ={cF'(z + ct) + G (z —ct)} = cy{F'(z + ct) + G'(z — ct)},
;’ﬂ =y{F'(z+ct)— G'(z—ct)}, and
Z—" =F'(z+ct)+G(z—ct),
Ou v 4 ’ ,
E’CF (z+ct)—cG'(z—ct) =c{F'(z+ ct) - G'(z — ct)}.
It follows from the equation a @ = —ﬂ that
ot oz

acy{F'(z + ct) + G'(z — ct)} = —{F'( + ct) + G'(z — ct)}.
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dw

Since F and G are arbitrary, we get acy = —1. Then it follows from the equation b % =% that
)z

be{F'(z+ct) — G'(z —ct)} = —v{F'(z + ct) = G'(z — ct) }.
Since F and G are arbitrary, we get bc = —y. Then solve the system of two equations

acy=-1 and be=—y

1
in ¢ and « for given a, b > 0 by eliminating v, i.e. —abc? = —1, and then accordingly c= +ﬁ.,
a

‘where we have chosen the sign +, such that ¢ > 0. If we instead choose the sign —, we interchange

b
F and G. By the choices above of ¢ we get v = —bc = 7\/j, thus
a

and y=- 4

1
Vab a

c=
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t t
The system has the solutions u(z,t) =F(z+ 73 +G|z— =)

e -(E{r o))}

These solutions are valid for any C'-functions F, G : R — R.
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Insert into the formula f (x‘ v (),
v \V\

Here, Vf(z,y)=(1+2y,22-6y) and |v|=1/32+42=5, s0

((1 2); (g ‘;)) = 139 (+42-12)=1(E49 (510 = (3,41 2=
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Here, V(z,y,2) = (2€” cos(my), —mze” sin(y), e” cos(r2)) ,

and [v|=vIT4+1=16,s0

f ((0, —-1,1); %(71,2, 1))

(-1,2,1) - (1-€°- (~1),0,-1)

3

1 2 —
VP01 =0
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vi

First calculate 7 f(1,—1,1). Then conclude that the direction must be e = oA

We get by differentiation v f = 5,2zcosh(z? — 1) |,
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hence Vf(1,-1,1)=(1,-1,2) where | v f(1,-1,1)] =6.

! . 1 vF(1,-1,1) A -
Using the direction e = — 1,-1,2) = — R we get the directional derivative
MR B (R

F@-t i = vst -1 =4I o a1~ v
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When (z,y) # (0,0), we see that f(x,y) is a quotient of two polynomials where the denominator
is > 0. Accordingly the partial derivatives of f(z,y) exist of any order when (x,y) # (0,0).

. af 2%y Ry P
We get for (z,y) # (0,0) that it T - @R

o U3 2 w34y
By Pt+y? (@P+y)? @172

We find at (0,0)  f(z,0) — £(0,0) = 0= £(0,y) — £(0,0), so we conclude that
of _of _
5,00 =5,0.0=0.

Summarizing we see that the partial derivatives of first order exist everywhere in R2.
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9.
Then it follows from the expressions of 7f and i that
Ox Ay
of aof y° of af
a(ﬂ,y)*a(ﬂ,o):E*UZy, and a—y(z,o)fa—y(o,o):o

>f 1(of of .}
‘We conclude that 0,0) = lim —{ ==(0,y) — =—(0,0)$ = lim £ =1
Broy 00 =l =1 5,0 v) — 5,(0,0)p = Iim 7

9?2 .10 9.
wd - ZLo0,.0 - i 2 { w0 - Fo.o} -0
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>*f
B0y

82
so both  —=(0,0)=1 and o i; (0,0) =0 exist and yet they are different.
s
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B2 — 72 5 _ 232
It follows from 1) that 2L - £°07 =7 _ 3 —ye®
oz (22 +42)2 (22 +42)2’

rf_ v Lt
oy (@ +¢7)? (12+y2)3-

‘When we switch to polar coordinates = = pcos¢p, y = psinp, we get

(59* —32%) (" —=%).
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2 sin? 4 gin?
sin’ . sin’ .

fa@y) = 2522 o £ (50%sin? p — 30 cos? ) - L0 F = £ (¢?sin? p — g* cos? )
= sin?p(5sin? ¢ — 3cos? p) — sin p(sin? p — cos? p)

2
1-cos2
= sine (4 sin® p—4 cos? p+sin’ p+cos® p+ (%) cosZ(p)

= sin’p (—40052901» 1+ 411 {1—2cos2p + cos® 20} 005290) .

This expression is not constant in ¢ (the latter factor is a polynomial of third degree in cos 2¢),
hence the limit does not exist when p — 0, and there are no further conditions on ¢.
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1 of T af Y
=In/z2 + 2 = = In(22 + ¢?), we =
When f(z,y) 2% +y? = 3 1In(2? +y7), we get T EiE By - gt
o°f 1 222 Y2 — 22 Of a2y

%2R @HAP @R W @)

hence

Pf  # poa? 22—y

Then by insertion =
52 T T WA @R

=0, and the equation is fulfilled.
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Here 2 _ e cos(ay), Zy—f = —ae*®sin(ay), and

2 .
—3 = a’e*” cos(ay), % = —a®e™” cos(ay). Then by insertion into the differential equation

N . a? {e°% cos(ay) — e cos(ay)} = 0.The equation is satisfied, and we can choose any a.

—

a2 ' By?
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1 of T
Whe - hay __
en f(z,y,z) Nz we have - ErE TR

o*f 1 322 2Pyt

Frc 7(,:2 T2+ 22)32 + (@2 + 22052 (2242 + 232

Due to the symmetry we get by interchanging the letters

8f P42t -2 8 f o2 —y? 4222
a2 (P12 922 (BA P+

OPf PF Pf 2Py PP o422t

and

512+3y2 822 (22+y2+22)5/2 (z2+z2+22)5/2+(12++y2+z2)5/2

The equation is satisfied.
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dg _of dr 0f 9y _10f 10f

af of

v 0 9o 0y 9v 20:r 20y
0% 1% 0z 19*f dy

“5{

dx
92

-5}

?f

hence =_ -
udv ~ 2027 Ou 2 0y? Ou

using the assumption.

“i{

D2

o

}-o
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2f  9°f
Assume that —= 4 —= — 0. We perform the following calculation

022 " 92

99 _0f o 9f dy _1[3f Of
du  9r Ou Oy Ou 2 ay [’
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thus =
u?

OF B Bf oy OF Dx 9 By
927 Du ' Oydr Ou ' Dzdy Du Oy Ou

o Pf o\ 1 o
{ T gy T ?}’Eazay'

1
2
1
1

2 ) 2 2 ). 2

Finally, we get g _ 1 62f.6£+6f.6y+6f.61+6f.6y
02 21822 0v " Bydr Ov | Bxdy v | 02 O

L T A A W W

102 drdy | 0y | 2 dxdy’

so by adding, b +—==0.
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For f(z,y) = exp(z + zy — 2y) we get ‘;f = (1+y) exp(z + zu — 2y),

iz

1]

%:(I—Z)exp(zi»znyy), and g = (1+y)exp(z+zy — 29),

82 I

ﬁ = ayiafxz(x«{»zy—Zy—l)exp(zi»nyZ‘y), _g:J; = (z—2)%exp(z+zy —2y).

‘When the point of expansion is (0,0) we get the coefficients f(0,0) =1, £7(0,0) =1,

£3(0,0)=-2, f1z(0,00=1, f7,(0,0)= fy,(0,0)=~1, f,(0,0)=4, and accordingly,

P(z,y) £(0,0) + £2(0,0) -+ £,,(0,0) -y +% {£22(0,0) - =® +2£,(0,0) - zy + £,(0,0) - *}

1
1+£72y+51271y+2y2.
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1
ALTERNATIVELY,  exp(t) =1+t+ 5 24,




image1.png
The denominator is clearly only zero at (0,0), so M = {(0,0)}.If we use polar coordinates, we get for o > 0,

2 o in2
floy) = W — cos? i sin? o = cos2¢,

and it is obvious that we cannot have a continuous extension to (0,0), because there is no
restriction on ¢.
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so if we write ¢ = £ — 2y + zy and include every term of higher degree than 2 in the dots, we
get
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1
exp(z+zy—2y):1+{I—2y+zy}+E{I—2y+:l:y}2+---
1
=l+tz—2y+oy+52-2)°+
1
=l+z—2y+oy+5o°—2uy+2°+

:1+:|:72y+%:|:2—:|:y+2y2+---.

As mentioned above the dots indicate the terms of higher degree than 2. We get the wanted
approximating polynomial by deleting the dots, i.e.

1
P(I,y):1+::72y+§:|:27:|:y+2y2.
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2) When the point of expansion is (1,1) we get the coefficients  f(1,1) =1,
Lan=2 f0)=-1 fLl)=4 f3,0LD)=fn1)=-1, f11)=1,

o Q) = SN+ ALDE-1)+A0DE-1)
+3 1)~ 1+ D - D - 1) + 370~ 1)

= 12— 1) - (- )21 - - D 1)+ 5 1)

The polynomial can also in this case be found alternatively. Since the point of expansion is (1,1),
we introduce the new variables (h,k) = (z — 1,y — 1), which are small in the neighbourhood of
(1,1). Hence, (z,y) = (h+ 1,k +1). Then
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exp(z +xy — 2y) = exp(h + 1+ (h+ 1)(k + 1) — 2(k + 1))
=exp(l+h+1+h+k+hk —2—2k) = exp(2h — k + hk)

:1+{2h—k+hk}+%{2h—k+hk}2+---
. 1
:1+2h—k+hk+2h2—2hk+5k2+---,
where the dots as usual indicate terms of higher degree. Thus
Qz,y) = 1+2h—k+2h2—hk+%k2

= 14— ) - - D+2e- 1) - Y- 1)+ 5D
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11 1 1 1 1 7
22) —l4Z-l4=-—=-4=-===0,875
3) We evaluate P(2’2) +2 +8 4+2 3 ,875, and
11 11 1 1 7 N
-2 — — — 4+ - — 4= =_=0.875. we get by using a calculator
0(2’2) I-ldg+g—5+g=5=08% get by using

11 1.1 1
1(33)=ow(3+5-1) mew(3) =0

The approximations have a relatively large error . This is caused by the fact

that the point (%, %) is fairly distant from both points of expansions.
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Since f € C*, we are allowed to interchange the order of the differentiations, whenever it is
necessary. By using the standard method we get

f0) =e, f0,00=1  fiw0)=e%, f40,0)=1, fi(,y)=2yf(z,v). £(0,0)=0,
(5,0 = SL0,0)= 1, fy(®y) =2 fi(xy), [4(0,0=0,

fo(@y) =2f(2,9) + @2 f(2,9),  fy,(0,0) = 2. We get the approximating polynomial,

1 1 1
Pz(:l:,y):1+1-z+0-y+5-1-::2+0-Iy+5-2y2:1+1+512+y2.
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It is actually possible to determine f(z,y) uniquely from the given information. In fact, if we
divide the latter equation by f(z,y) # 0, then
filzy) @
= —In|f(z,y)| = 2y. When we integrate with respect to
Ty oy W@l =2 egr pect toy
we get with some arbitrary function ¢(z) in z that In|f(z,y)| = y%+ ¢(z).

Hence there exists a function ®(z), such that f(z,y) = () - exp(y?).
‘We put y = 0. Then it follows from the former of the given equations that f(z,0) = e® = ®(z).

1
Hence f(r,y) = exp(z+y”)=1+{z+y"}+{z+" P+
1
= 1+z+y2+5:l:2+--- .
It follows immediately that the approximating polynomial is

1
Py(z,y) =14z + 512 +y*, and we have tested our result.
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Hoe M= {(o) |20 =39} = { (1)

_2
y=zz |-

The only possibility of a continuous extension must take place on that subset where the nu-

merator is also zero, i.e. on {(0,0)}. Using polar coordinates we get
3cosp — 2sin
flay) = st —=2f

2cosp —3sing’




image3.png
which clearly does not have a limit, when p — 0, and ¢ € [0,2n[. In this case we do not have
a continuous extension.




image4.png
Here we also have M = {(z,y) | y = z}. We get by a division
2 — ¢

r—y

flz,y) = =22+ oy +y? (z,y) ¢ M. Clearly, the latter expression can be

continuously extended to all of R%. On M we get  f(z,z) = 322, (z,z) € M.




image5.png
Here M = {(z,y) | z =0 or y = 0}, i.e. the union of the coordinate axes.
0

Since - . for ¢ — 0, it follows from an application of the

substitution ¢ = zy that f can be extended to the axes by f(0,) = f(z,0) = —1.




