[image: ]
Exercise 1. (Two variables) 
[image: ]
Exercise 2. (Three variables) 
[image: ]
Exercise 3. 
[image: ]
Exercise 4. [image: ]
Exercise 5.[image: ]

Remark : Exercise 1.(Q3 and Q4)+ Exercise 2.(Q3 ,Q4 and Q6) are additional questions
Exercise 4 (additional)
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a) FIRST VARIANT. It is seen by inspection that

1\ 3
f(z,y):121»212—21—23/:(z—l)z+2(y—5) —3

‘We conclude that (l, %) is the only stationary point and that it is a minimum.

b) SECOND VARIANT. Traditionally the equations of the stationary points are

of _ - [P
%721—270 and 3y74y 2=0,

1
from which follows that (1, E) is the only stationary point.
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i) FIRST SUBVARIANT. The approximating polynomial of at most second degree is found
1
by translating the coordinate system to the point (1, 5), so we introduce the new

variables g =gz, +1, y:yl+%_
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3
Then by insertion, Pa(a1,1) (= f(.9)] =3 + 2 ~ 5

1
[cf. the first variant], which clearly has a minimum for (z1,y;) = (0,0), i.e. for (z,y) = (1, E)
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ii) SECOND SUBVARIANT. The (r, s, t)-method. It follows from

P2f
=5 =4,

Pf

)2
o T2 o

© T dwoy

that r, ¢ > 0 and s < rt, so we conclude that we have a minimum.

-

0, t
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a) INSPECTION. It is immediately seen that  f(z,y) = 2® + 4 + 22y = (z + )%,

which has a minimum (= 0) on the line y = —z. The points of this line are of course not
proper minima.
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THE STATIONARY POINTS. These are the solutions of the equations

g—i =22+2y=2x+y) =0, g—;j =2y+22=2z+y) =0,
thus every point on the line y = —z is a stationary point.

In this case we cannot conclude anything by the (r,s,¢)-method. One should, however, be
able to see that e.g.

df:gdawr %dy:?(ery)(derdy):d(ery)Z,

so f(z,y) = (x + y)?, and we are back to the first variant.
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It follows by the rearrangement
flay) = @ +y° 29" +y° - 6y)
(@ =12 = 1) (o + {y =3 - )
that f is zero on the circles

22+ (y—1)2=1 and 2?4+ (y—3)?=3% "

Zero curves for f(z,y).
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The function is positive inside both circles (i.e. inside the smaller circle), and outside both
circles. It is negative at every point inside the larger circle and outside the smaller circle. The
function is continuous and 0 on both circles, so it follows from the main theorem that we must
have a local maximum inside the smaller circle, and a local minimum inside the larger disc
(and outside the smaller disc). Finally, f is both positive and negative in any neighbourhood
of (0,0), so this point cannot be an extremum.
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THE STATIONARY POINTS. We shall now start on the tough calculations of the example. It
follows from () — (22 4y — 29)(e + 4% — 6)
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that

of
ox
of
ay

= 2z(2% +y* — 6y) + 22(2” +y* — 2y)

=da(a® +y° —dy).

= (2y—-2)@® +y7 —6y) + (2y —6)(" +y° — 2y)

= (2y—4)(@®+y° —6y)+2(a* +y° —6y)
= 4y—-2)® +y —4y) —8y
= 4{(y-2)(=" +y* —y) -2y} .

+(2y—

(@ +y* ~2y)—

2(z%+y* -2y

)
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The two equations of the stationary points are therefore written more conveniently

(2% + 92 — 4y) = 0,
()]

(y=2)@*+y*—4y) = 2y
It follows from the first equation that the stationary points (if any) either lies on the line 2 = 0
or on the circle 22 + (y — 2)? = 22,
a) If 2 = 0, then we get from the latter equation (2) that

0 = -2 -4 -2=y{k-Dy-9-2}

=yl -oy+o} =y {w-92- (37},

so either y = 0 or y = 3 + /3. Hence we get three stationary points,
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0,0, (0.3+V3),  (0,3—V3).

b) If 2% + y? — 4y = 0, then it follows from the latter equation of (2) that y = 0, and thus
=0, so we find again (0,0).

Summarizing we get the three stationary points

0,0),  (0.3++3).  (0.3—3).
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INVESTIGATION OF THE TYPE OF THE STATIONARY POINTS, STANDARD PROCEDURE.

a) We first check (0,0).
i) FIRST VARIANT, the (r, s,t)-method. This breaks totally down because

r=s=1=0, and nothing can be concluded.

ii) SECOND VARIANT. Approximating polynomials of at most second degree. This cannot
be used either, because

Py(z,y) =0, and nothing can be concluded.
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iii) THIRD VARIANT. A dirty trick. If follows from

dab= (a+b)*—(a—b)% ab:%{(aer)z—(a—b)z}, that

a=2*+y* -2y and b=2"+y> -6y, so
1

flay) = {4 +y° —4)* —16y°} = (2 +* — dy)* — 4.





image21.png
If we go towards (0, 0) along the line y = 0, then f(z,0) > 0, and if we go towards (0,0)
along the circle 22 + y? — 4y = 0, then f(z,y) < 0, so f takes on both positive and
negative values in any neighbourhood of(0,0). Therefore we cannot have an extremum

at (0,0).
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b) Let us return to the points (0,3 = /3). These are checked by the (r,s,t)-method. First
calculate
2f

= o =4{2? +y— 4y} + 827 = 1222 + dy(y — 4),
_ o7 _
s = Pay 4x(2y —4) = 8x(y — 2),
2f 2
t = =4(2? +y* —dy) +4(y — 2)(2y — 4) — 8 = 42 + 12y(y — 4).

02
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Since both s{ationary points satisfy = 0 we can reduce in the following way
Te=o = 4yly—4),

2 2
S0 = 0, thus  Tja=otje=0 = 3 (rje=0)” > 0 = s{,_q-

te=o = 12y(y —4) =3rpz=0,
‘We therefore have extremum when rj,—o #0.

i) We have at the point (0,3 + v/3) that 3+ /3 > 4, so 7 > 0, and ¢ > 0, so we have a
minimum.

i) We have at the point (0,3 — /3) that 3 — /3 < 4, s0o 7 < 0, and ¢ < 0, and we have a
maximum.
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o

6I:2z+yz:0, z:,y?zy
af __zz
3y72y+zz7 . (5) S y= 2
af _ _

S =2z4+ay=0,

‘When we multiply the equations of (5) we get a necessary condition of stationary points,

Tyz = —é(zyz)z, ie. ayz{zyz + 8} = 0. Then either zyz =0 or zyz = —8 = (—2)*.
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, then one of the factors must be 0. Assume that 2 = 0. Then it follows
= 0. Analogously, if we assume that y = 0 or z = 0.

a) If ayz =
that y =
Summarizing we get in this case that (0,0,0) is a stationary point.
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b) If zyz # 0, then all three factors are # 0. By insertion of the latter equation into (5), we

1 1
get y:—izz:+1121, hence 22 = 4.

Analogously we get y? = 4 and 22 = 4, so the candidates shall be found among (£2, +2, £2)
with all possible combinations of the signs. By a simple test in (5) we see that we in this
case get the stationary points

(2,2,-2), (2,-2,2), (-2.2,2), (-2,-2,-2).

Summarizing we have the five stationary points

(0,0,0), (2,2,-2), (2,-2,2), (-2,2,2), (-2,-2,-2).
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i) The point (0,0,0) is a proper minimum, because Ps(z,y,z) = 22 +y? + 2*
is positive in any dotted neighbourhood of (0,0,0). INSERTION. Notice that
T T P S S
Az Oy 022 T Ozdy ’ Ayoz ’ 920z ’
so the approximating polynomial P (z,y, z) from an expansion point (zo, yo, 20) is
Py(z.y,2) f(@o.90,20) + (2 —20)* + (y —0)* + (& — 20)*
+20(z—20)(Y—y0) +z0(y—y0) (2—20) +yo(z—20)(z—0)-

When |zo| = |yo| = |20] = 2 and zgyp29 = —8, then either one or three of the factors
are negative. {





image28.png
ii) Assume that only one of the factors is negative. Due to the symmetry we can assume
that z9 = —2, hence xy = yo = 2. Then

Py(z,y,2) = f(zo,y0.20) + (& = 20)* + (y = 40)* + (2 — 20)*
+2(z = 20)(y — y0) + 2(y — yo) (2 — 20)
+2(z — z0)(2 — 20) — 4(z — z0)(y — %0)
= f(@o,0.20) + {(z —20)* + (y —%0)* + (= 20)}* _4(z — 20)(y — w0)-

In the plane 2 — 2o = —(z — zo) — (y — yo) the term  —4(z — 20)(y — yo)

is both positive and negative in any neighbourhood of (g, 49), so (2o, 0. 20) = (2,2, —2)
is not an extremum.
It follows from the symmetry that neither (2, —2,2) nor (—2,2,2) are extrema.
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iii) If (2o, ¥o. 20) = (=2, —2,—2), then
Py(z,y.2) = f(=2.-2,-2)+(z+2)*+(y+2)*+ (2 +2)?
=2z +2)(y+2)-2(y+2)(2+2) —2(z+2)(z+2)
= f(=2-2,-2)+ (z+2)* + (y+2)* + (2 +2)*
2z +2)(y+2) +2y+2)(z+2) —2(z+2)(x+2) — 4y +2) (2 +2)
= f(-2-2,-2)+{-(2+2)+ (W +2) + (2 +2)}* -4y + 2)(z + 2).

We see that in the plane x 4+ 2 = (y 4 2) + (z + 2) the term —4(y + 2)(z + 2) is both
positive and negative in any neighbourhood of (y,z) = (=2, —2), so (=2, —2,—2) is not
an extremum.

The conclusion is that only (0,0,0) is an extremum (a proper minimum).
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In this case,

f _52 _

a—fiz +yz=0, e — —322 <0,

%:3y2+zz:0, ie. (6) { zz=-3y2<0,
=-322<0.

3]'7 N _ Ty =

g—fiz +xy=0,

From (6) we get the necessary condition
(y2) - (22) - (ay) = (2y2)°

for a stationary point. The only possibility is zyz = 0. Since e.g. = = 0 implies that y = z =0,
and analogously for y = 0 and z = 0, it follows that (0,0,0) is the only stationary point.

—27(zyz)?
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There is no extremum at(0,0,0), because e.g. f(z,0,0) = z® is both positive and negative in
any neighbourhood of zg = 0.
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If f(z,y,2) = exp(xy +yz+2x), then f(x,y.z) > 0, and the equations of the stationary points
are

A =+ A7)

0,
9 y+z=0,
/ =(z+a)f(z.y.2) =0, ie. (9 { z2+2=0,
dy z+y=0.
of

2; = @+ f(z.y,2) =0,

The system (9) has only the solution 2 = y = z = 0, so (0,0,0) is the only stationary point.
By a Taylor expansion,
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f@y,2) = exp(ay+yz+zz)
= ltay+yz+az+ (@ +y%+22)e(n,y,2),

where g(z,y,z) — 0 for (z,y.2) — (0,0,0). Hence
Py(z,y,2) = 1+ 2y + yz + 2z, where e.g. Py(x,y,0) — 1 =zy

attains both positive and negative values in any neighbourhood of (z,y) = (0,0). Thus there

is no extremum at (0,0,0).
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The coordinates of the possible stationary points are the solutions of the equations

af—aﬂyfl=o and g:aﬂz—%:o, accordingly,

or 22 dy I
Wty =1 oz almP—l—aly soy—z.

11
We get by insertion 2 = y = —, so there is just one stationary point, (E' ;), and the value of

=3a.

— 2=

the function is here 1 (l 1
o’ a
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Furthermore,

2%

Pf

027

2

=
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and whence gt — 2 = 4ab —

=3a%>0,
showing that we have an extremum.

1) Ifa >0, then r = 2a% > 0 and ¢ = 2a% > 0, and we have a proper minimum.
2) If instead a < 0, we get analogously a proper maximum.
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1) First solve the equation 0= f(0,y) =4*+y —2.
It is obvious that y = 1 is a solution. Since f(0,4) = (y —1)(y* +2),

it follows that y = 1 is the only real solution.
2) Then clearly Y'(0) = 1. Furthermore,

Jilw,y) = —ysinz +1, f:(0.1) =1,

fyla,y) = 3y*cosz + 1, £,(0,1) =4,
o (@,y) = —y° cos, (0,1) =1,

Jiy (@, y) = =3y’ sinz, f2,(0,1) =0,

iy (2,y) = Gy cos z, 1y(0,1) = 6.
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!
weget v(0)= 20D _ 1 4

I CHVEE
S0, ) {Y(0) 12 +2/7,(0.1) - Y'(0)+/£,(0.1)
£,(0,1)
6-(-12+2:0. (-1 £H-1 1/3 _ 5
4 T T ( ) -

Y'(0) =

It is seen on the figure that the approximation is very accurate in the neighbourhood of (0,1).
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Find in each of the following cases first the stationary points of the given function

f:R%2 = R. Then check if f in any of these points has an extremum; whenever this is the case, decide
whether it is a mazimum or a minimum.

o B
1) f(zy) =+ 29— 22 —2y. 2) f(z,:;) =22+ g2 +2zy. 3) fz,y) =y’

4) f(z,y) =32 +4y° + 62y> — 922, 5) f(z,y) = (22 +y* — 2y)(2% + y* — 6y)
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Find in each of the following cases the stationary points of the given function f:R® — R.

Then check if f in these points has an extremum; whenever this is the case check if it is a mazimum

or a minimum.
1) f(zy.z) =22 +y? + 22 +ayz. 2) fla,y.2) = 2% +y° + 2% + ayz.

3) fla,y,2) = a* +yt + 24 —dayz. 4) f(x,y,2) = zcosz +y*

5) f(z,y,2) = exp(zy +yz + zz). 6) f(z,y,2) =y°+In(1+22+22).
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Let o # 0 be a constant. Consider the function
f(z,y) =’z +l+l zy # 0
2Y) = Y Ty Y g

Find the extremum of the function, and indicate for every value of o the type of the extremum.
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It is well-known that an equation like f(x,y) =0

under suitable circumstances can be solved with respect to one of its variables, and one has e.g. y =
Y (x), and then a differentiation of f(z,y) = 0 with respect to x gives a formula of the derivative:

.
’M‘ Prove by a similar procedure the formula
fy(@,Y ()

V(o) = — Sin(@ Y @)Y (@)} +2f7, (@, Y (2) Y (2) + i (@, Y (2))
fy(@,Y ()

This formula holds under the assumptions that the denominator is different from zero, and that both
f andY are C?-functions.

Y'(z) =





image6.png
Given the function  f(z,y) =y cosz +y+x —2, (z,y) €R2
1. Solve the equation f(0,y) = 0.

Then we get the information that the equation f(z,y) = 0 in a neighbourhood of the point (0,1) defines
y uniquely as a function of z, i.e. y =Y ().

2. Find Y(0), and then find Y'(0) and Y”(0) - Find the
approzximating polynomial of at most second degree for Y with the point of expansion xg = 0.




