
1st Year Mathematics – University of Guelma 1 Dr. Abderrahmane Kefali

Faculty of MISM 2023/2024

Department of Mathematics Algorithms and data structures 2

First year LMD Semester 2

Lab Sheet No 2. Files

1) Objectives

The objective of this lab is to learn, through a set of activities and practical exercises,

the various aspects of file handling in the C language. By the end of this lab, the

student should be familiar with reading from and writing to files, handling file pointers,

and managing file operations correctly in C.

2) Example 1: Reading and appending a file

The following program, once completed, allows reading integers from the file

"E:/numbers.txt", calculates their sum, and appends the sum at the end of the

same file.

#include <stdio.h>

int main() {

 FILE *file;

 char filename[50]="E:/numbers.txt";

 int num, sum = 0;

 // Open the file in append mode

 file = fopen(filename, "....");

 if (file == NULL) {

 printf("Error opening the file %s.\n", filename);

 }

 else{

 // Read integers from file and calculate sum

 while (fscanf(file, "%d", &num) == 1) {

 ;

 }

 // Move file pointer to end of file

 fseek(file, 0,);

 // Append the sum to the file

 fprintf(...., "....",);

 // Close the file

 (file);

 }

 return 0;

}

1. Create a new project and type the provided code snippet

2. Complete the code to achieve the intended functionality.

1st Year Mathematics – University of Guelma 2 Dr. Abderrahmane Kefali

3. Modify the program so that the calculated sum is also saved in another file

named “E:/Sum.txt”.

3) Application Exercises

1. Given a text file "data.txt" containing a list of integers, write a program to

find and display the maximum and minimum values in the file.

Implement functions to read integers from the file, find the maximum and minimum

values, and display them on the screen.

2. Write a program that copies the contents of one text file "source.txt" to

another text file "destination.txt".

Implement functions to read from "source.txt", write to

"destination.txt", and handle any errors that may occur during file

operations.

3. Write a program to merge two sorted text files "file1.txt" and

"file2.txt" into a new sorted file "merged.txt".

Implement functions to read from both files, merge their contents while maintaining

sorted order, and write the sorted output into "merged.txt".

4. Consider an invoice saved as a structured file consisting of a sequence of lines,

each representing a command. Each line contains: a customer name, an item

name, and the unit price of the item. An example of such a file is as follows:

Achouri PC 42000

Khemmal Ecran 18000

Selatnia Table 7000

Write a program that reads the invoice command by command, asks the user to

enter the number of items purchased for each command via keyboard input,

calculates the command total, and saves all the information in another file. Each

line in the resulting file should contain: the customer name, the item name, the

unit price, the number of items purchased, and the command total.

The resulting file should start with the header ”Customer Item UP

Nb Total”, and end with the total amount of the invoice. An example of the

resulting file is:

Customer Item UP Nb Total

--

Achouri PC 42000.00 3 126000.00

Khemmal Ecran 18000.00 2 36000.00

Selatnia Table 7000.00 10 70000.00

Invoice total: 232000.00

1st Year Mathematics – University of Guelma 3 Dr. Abderrahmane Kefali

4) Additional Exercises

1. Implement a program that reads a text file "employees.txt" containing

employee details (ID, Name, Salary) separated by ‘;’ and calculates the total

salary expenditure for all employees.

Use file handling operations to parse the text file, calculate the total salary, and

display it on the screen.

2. Write a program that reads a text file "words.txt" and counts the occurrences

of each word in the file. Display the results in alphabetical order.

Implement functions to read from the file, tokenize words, count their occurrences

using data structures like arrays or linked lists, and display the results sorted

alphabetically.

3. Create a program that reads a text file "message.txt", encrypts its contents

using a simple encryption technique (e.g., shifting characters by a fixed number),

and writes the encrypted message to another file "encrypted.txt".

