
1st Year Mathematics – University of Guelma 1 Dr. Abderrahmane Kefali

Faculty of MISM 2023/2024

Department of Mathematics Algorithms and data structures 2

First year LMD Semester 2

Correction of the Tutorial Series N°1

Exercise 1:

Choose the correct answer:

1) What does the code on the right represent:

 Algorithm

 Procedure

 Function

2) What does line 2 represent:

 Declaration of a function

 Declaration of variables

 Declaration of parameters

3) What does line 3 represent:

 An assignment

 A function

 The header of a function

4) What do a, b, c represent:

 Variables of the function

 Formal parameters

 Actual parameters

5) The word "real" in line 3 describes:

 The type of the algorithm

 The type of the function parameters

 The return type of the function

6) The identifier m in line 4 is a:

 Variable of the function

 Formal parameter0

 Actual parameter

1. Algorithm calculation;

2. Var Exam,TW,PW,avg:real;

3. Function Average(a,b,c:real):real;

4. Var m:real;

5. Begin

6. m  a * 0.6 + b *0.2 + c * 0.2;

7. Average  m;

8. End;

9. Begin

10. For i  1 To 10 Do

11. Begin

12. Read(Exam,TW,PW);

13. avg  Average(Exam,TW,PW);

14. Write(avg);

15. End;

16. End.

7) Line 7 describes:

 An assignment

 A function return statement

 A function call

8) The expression Average(Exam,TW,PW)

in line 13 is called:

 An assignment

 A function return statement

 A function call

Exercise 2:

1. Write the function distance with four real parameters: xa, ya and xb, yb, representing the

coordinates in a 2D plane of two points A and B. This function should return the distance

between these two points. The distance 𝐴𝐵̅̅ ̅̅ between two points A and B is given by the

following formula:

𝐴𝐵̅̅ ̅̅ = √(𝑥𝑎 − 𝑥𝑏)² + (𝑦𝑎 − 𝑦𝑏)²

2. Write the main algorithm that reads the coordinates of two points and displays the distance

between them. The distance between the two points should be calculated using the

distance function.

Assume that there is a predefined function called sqrt that returns the square root of a given

number.

1st Year Mathematics – University of Guelma 2 Dr. Abderrahmane Kefali

Solution:

1)

Function distance(xa,ya,xb,yb:real):real;

Begin

distance  sqrt((xa-xb)*(xa-xb)+(ya-yb)*(ya-yb));

End;

2)

Algorithm Ex2;

Var x1,x2,y1,y2,dis:real;

.....

Begin

Write("Enter the coordinates of point 1");

Read(x1,y1);

Write("Enter the coordinates of point 2");

Read(x2,y2);

dis  distance(x1,y1,x2,y2);

Write("The distance is ",dis);

End.

Exercise 3:

1. Write a function that takes two integers as input and returns the maximum of the two.

2. Exploiting the previous function, write another function that returns the maximum of four

integers passed as parameters.

3. Test the latter in a main algorithm.

Solution :

1)

Function max2Numbers(a, b: integer): integer;

Begin

If a > b Then max2Numbers ← a

Else max2Numbers ← b;

End;

2)

Function max4Numbers(a, b, c, d: integer): integer;

Var m1, m2: integer;

Begin

m1 ← max2Numbers(a, b);

m2 ← max2Numbers(c, d);

max4Numbers ← max2Numbers(m1, m2);

End;

3)

Algorithm Ex3;

Var x, y, z, t, max: integer;

.....

Begin

Read(x, y, z, t);

max ← max4Numbers(x, y, z, t);

Write(max);

End.

1st Year Mathematics – University of Guelma 3 Dr. Abderrahmane Kefali

Exercise 4 :

1. Write the function power that takes a real number x and an integer y as input and returns

xy.

2. Write the function conversion that takes an integer x, composed only of 0s and 1s,

considered as a binary number, and returns its equivalent in decimal.

Example : (10110)2 = 0*20 + 1*21 + 1*22 + 0*23 + 1*24 = 2+4+16 = (22)10

3. Finally, write the main algorithm that reads a binary number n and displays its decimal

equivalent. This is achieved by calling the conversion function.

Solution:

1)

Function power(x: real; y: integer): real;

Var i: integer; p: real;

Begin

p ← 1;

For i  1 to y Do

 p ← p * x;

power ← p;

End;

2)

Function conversion(x: integer): integer;

Var d, ch, i: integer;

Begin

i ← 0;

d ← 0;

While x ≠ 0 Do

 Begin

 ch ← x mod 10;

 d ← d + ch * power(2, i);

 x ← x div 10;

 i ← i + 1;

 End;

conversion ← d;

End;

3)

Algorithm Ex4;

Var n, dec: integer;

.....

Begin

Write("Enter a binary number: ");

Read(n);

dec ← conversion(n);

Write(n, " is equivalent to ", dec, " in decimal");

End.

Exercise 5:

We want to display the multiplication table for all numbers between 1 and a number n entered by

the user. To do this, you are asked to:

1. Write a procedure that displays the multiplication table of a number x passed as a parameter.

1st Year Mathematics – University of Guelma 4 Dr. Abderrahmane Kefali

2. Write another procedure to display the multiplication tables for all numbers between 1 and a

number y passed as a parameter. Use the previous procedure.

3. Write the main algorithm that allows entering an integer n and displays the multiplication

tables for all numbers between 1 and n. The display of multiplication tables should be done by

calling the previous procedure.

Solution:

1)

Procedure displayTable(x: integer);

Var i, result: integer;

Begin

Write("Multiplication table of ", x);

For i  1 to 10 Do

 Begin

 result ← x * i;

 Write(x, "*", i, "=", result);

 End;

End;

2)

Procedure displayAllTables(y: integer);

Var i: integer;

Begin

For i  1 to y Do

 displayTable(i);

End;

3)

Algorithm Ex5;

Var n: integer;

.....

Begin

Write("Enter an integer: ");

Read(n);

displayAllTables(n);

End.

Exercise 6:

A rational number in mathematics is a number that can be expressed as the quotient of two

integers: the numerator and the denominator.

1. Propose the declaration of the type Rational describing a relational number

2. Write the procedure sumProduct that takes two rational numbers R1 and R2 as input and

calculates and returns their sum and product.

3. Test this procedure in a main algorithm.

Solution:

Type Rational = Record

 Begin

 Num, Den: integer;

 End;

1st Year Mathematics – University of Guelma 5 Dr. Abderrahmane Kefali

1)

Procedure sumProduct(A, B: Rational; Var S, P: Rational);

Begin

S.Num ← A.Num * B.Den + A.Den * B.Num;

S.Den ← A.Den * B.Den;

P.Num ← A.Num * B.Num;

P.Den ← A.Den * B.Den;

End;

2)

Algorithm Ex6;

Type Rational = Record

 Begin

 Num, Den: integer;

 End;

Var R1, R2, S, P: Rational;

.....

Begin

Write("Enter the first rational number");

Read(R1.Num, R1.Den);

Write("Enter the second rational number");

Read(R2.Num, R2.Den);

sumProduct(R1, R2, S, P);

Write("The sum is ", S.Num, "/", S.Den);

Write("The product is ", P.Num, "/", P.Den);

End.

Exercise 7:

Let T be an array of 100 integers. A peak is defined as any element in the array that is greater than

its predecessor and its successor. Similarly, a valley is defined as any element that is smaller than

its predecessor and its successor in the array. The array is considered balanced if the number of

peaks equals the number of valleys.

1. Write the procedure nbPeaksValleys that takes an array as input and returns the number

of peaks and valleys in the array.

2. Write the function isBalanced that checks if an array passed as a parameter is balanced.

3. Write the main algorithm that fills an array T and displays whether it is balanced or not.

Solution:

Const n=100;

Type Tab=Array[n] of Integer;

1)

Procedure nbPeaksValleys(T: Tab; Var nbPeaks, nbValleys: integer);

Var i: integer;

Begin

nbPeaks ← 0;

nbValleys ← 0;

For i  1 to n-2 Do

 If T[i] > T[i-1] and T[i] > T[i+1] Then

 nbPeaks ← nbPeaks + 1

 Else If T[i] < T[i-1] and T[i] < T[i+1] Then

 nbValleys ← nbValleys + 1;

End;

1st Year Mathematics – University of Guelma 6 Dr. Abderrahmane Kefali

2)

Function isBalanced(T: Tab): Boolean;

Var nbPeaks, nbValleys: integer;

Begin

nbPeaksValleys(T, nbPeaks, nbValleys);

If nbPeaks = nbValleys Then

 isBalanced ← True

Else isBalanced ← False;

End;

3)

Algorithm Ex7;

Const n = 100;

Type Tab = Array[n] of integer;

Var T: Tab;

 i, peakNum, valleyNum: integer;

Begin

For i  1 to n Do

 Read(T[i]);

If isBalanced(T) = True Then

 Write("The array is balanced")

Else Write("The array is not balanced");

End.

Exercise 8:

1. Write the recursive procedure display that displays numbers from 1 to an integer n

passed as a parameter.

2. Modify the previous procedure so that the display is in reverse order.

Modify the procedure again to display numbers from 1 to n and then from n to 1.

Solution:

1)

 Do not allow to answer question 3
First solution Second solution

Procedure display(n, i: integer);

Begin

If i ≤ n Then

 Begin

 Write(i);

 display(n, i+1);

 End;

End;

Procedure display(n: integer);

Begin

If i=1 Then Write(n)

Else Begin

 display(n-1);

 Write(n);

 End;

End;

2)

First solution Second solution

Procedure display(n, i: integer);

Begin

If i ≤ n Then

 Begin

 display(n, i+1);

 Write(i);

 End;

End;

Procedure display(n: integer);

Begin

If i=1 Then Write(n)

Else Begin

 Write(n);

 display(n-1);

 End;

End;

1st Year Mathematics – University of Guelma 7 Dr. Abderrahmane Kefali

3)

 Incorrect, display is from n to 1 and then
from 1 to n

First solution Second solution

Procedure display(n, i: integer);

Begin

If i ≤ n Then

 Begin

 Write(i);

 display(n, i+1);

 Write(i);

 End;

End;

Procedure display(n: integer);

Begin

If i=1 Then Write(n)

Else Begin

 Write(n);

 display(n-1);

 Write(n);

 End;

End;

Example of call:

Algorithm Ex8;

Var x: integer;

.......

Begin

Read(x);

display(x, 1); // The first number to display is always 1

End.

Exercise 9:

1. Write the recursive function nbEvenDigits to return the number of even digits in a number

passed as a parameter.

2. Test this function in a main algorithm.

Solution:

Before tackle this exercise, demand from the students to resolve an additional exercise considered

as preparation to this exercise.

The additional exercise is: Write the recursive function nbDigits to return the number of digits in

a number passed as a parameter.

1)

Function nbEvenDigits(n: integer): integer;

Var r:integer;

Begin

If n div 10 = 0 Then

 If n mod 2 = 0 then nbEvenDigits ← 1

 Else nbEvenDigits ← 0

Else Begin

R  n mod 10;

If r mod 2 = 0 Then

 nbEvenDigits ← 1 + nbEvenDigits(n div 10)

Else nbEvenDigits ← nbEvenDigits(n div 10);

End;

End.

Additional Exercises

Exercise 10:

1st Year Mathematics – University of Guelma 8 Dr. Abderrahmane Kefali

We would like to write a set of procedures and functions to easily manipulate hours and minutes.

Write the following subprograms:

1. The function Minutes, which calculates the number of minutes corresponding to a given

number of hours and minutes.

2. The function or procedure HoursMinutes that performs the inverse transformation of the

Minutes function. Thus, given a total number of minutes, it calculates the equivalent hours

and remaining minutes.

3. The procedure addTimes that adds two pairs of times represented in hours and minutes

using the two previous functions.

Solution:

1)

Function Minutes(h,m:integer):integer;

Begin

Minutes  h*60+m;

End;

2)

Procedure HoursMinutes(n:integer; Var h,m:integer);

Begin

h  n div 60;

m  n mod 60;

End;

3)

Procedure addTimes(h1,m1,h2,m2:integer; Var h,m:integer);

Var n1,n2,n:integer;

Begin

n1  Minutes(h1,m1);

n2  Minutes(h2,m2);

n  n1+n2;

HoursMinutes(n,h,m);

End;

Exercise 11:

Let T be an array of 20 real numbers.

1. Write a procedure MinMaxSom (T, minT, maxT,somT) that calculates and returns the

smallest element minT, the largest element maxT, and the sum of all elements sumT of the

array T.

2. The Olympic average of a set of numbers is the arithmetic mean of all the numbers in this set

except the smallest and the largest.

For example, for the set: 2, 3, 13, 7, 8, the arithmetic mean is 6.6, and the Olympic average is

6.

Write an algorithm that allows entering the array T and calculating and displaying its Olympic

average.

Solution:

Const n=20;

Type Tab=Array[n] of real;

1st Year Mathematics – University of Guelma 9 Dr. Abderrahmane Kefali

1)

Procedure MinMaxSum(T: Tab; Var minT, maxT, sumT: real);

Var i: integer;

Begin

minT ← T[0];

maxT ← T[0];

sumT ← T[0];

For i <- 1 to n-1 Do

 Begin

 sumT ← sumT + T[i];

 If T[i] < minT Then minT ← T[i]

 Else If T[i] > maxT Then maxT ← T[i];

 End;

End;

2)

Algorithm Ex11;

Const n = 20;

Type Tab = Array[n] of real;

Var T: Tab; i: integer; min, max, sum, avg: real;

......

Begin

For i  1 to n Do

 Read(T[i]);

MinMaxSum(T, min, max, sum);

avf ← (sum - min - max) / (n - 2);

Write("The Olympic average is ", avg);

End.

Exercise 12:

We want to calculate the greatest common divisor (GCD) between two numbers, a and b, using

the method of successive subtractions. This method operates as follows:

• If a = b, the GCD is a.

• Otherwise, we calculate the GCD of the pair formed by the difference between a and b

and the smaller of the two.

GCD(a,b) = GCD(a−b,b) if a > b

GCD(a,b) = GCD(a,b−a) if b > a

GCD(a,b) = a if a = b

To achieve this, you are asked to:

1. Provide a recursive function to calculate the GCD of two integers passed as parameters using

the method of successive subtractions.

2. Write the main algorithm that reads two numbers and calculates and displays their GCD. The

GCD calculation should be performed using the previous function.

Solution:

1)

Function GCD(a, b: integer): integer;

1st Year Mathematics – University of Guelma 10 Dr. Abderrahmane Kefali

Begin

If a = b Then GCD ← a

Else If a > b Then GCD ← GCD(a - b, b)

Else GCD ← GCD(a, b - a);

End;

2)

Algorithm Ex12;

Var x, y: integer;

Begin

Write("Enter 2 positive integers: ");

Read(x, y);

If x <= 0 or y <= 0 Then Write("Input error")

Else Write("The GCD is ", GCD(x, y));

End.

Exercise 13:

1. Write a recursive procedure to reverse an array of integers passed as a parameter.

2. Write the main algorithm that fills an array of integers, reverses it using the previous procedure,

and displays it.

Solution:

Const n=6;

Type Tab=Array[n] of Integer;

1)

Procedure Reverse(T: Tab; i: integer);

Var x: integer;

Begin

If i <= (n - 1) div 2 Then

 Begin

 x ← T[i];

 T[i] ← T[n - 1 - i];

 T[n - 1 - i] ← x;

 Reverse(T, i + 1);

 End;

End;

2)

Algorithm Ex13;

Const n = 6;

Var T: Array[n] of integer; i: integer;

Begin

For i  0 To n-1 Do

Read(T[i]);

Reverse(T, 0);

Write("After reversal, the array becomes: ");

For i  0 To n-1 Do

Write(T[i]);

End.

