Introduction

Computer Architecture
Riad Bourbia

Computer Sciences department
Guelma University

[Adapted from slides of Dr. A. El-malen]

Next . ..

“* High-Level, Assembly-, and Machine-Languages
s Components of a Computer System
¢ Technology Improvements

*» Programmer’s View of a Computer System

slide 2

A Hierarchy of Languages

Machine independent

Machine specific

Application Programs

High-Level

Languages

Assembly

Language

Machine Language

Hardware

High-Level Language

Low-Level Language

slide 3

Assembly and Machine Language

* Machine language
<> Native to a processor: executed directly by hardware
< Instructions consist of binary code: 1s and Os
“ Assembly language
< Slightly higher-level language
<> Readabillity of instructions is better than machine language

< One-to-one correspondence with machine language instructions
“» Assemblers translate assembly to machine code

“ Compilers translate high-level programs to machine code
< Either directly, or
< Indirectly via an assembler

slide 4

A

Compiler and Assembler

High-level languages

Assembly language

Machine language

slide 5

Instructions and Machine Language
“ Each command of a program is called an instruction (it
Instructs the computer what to do).

“ Computers only deal with binary data, hence the
Instructions must be in binary format (0Os and 1s) .

¢ The set of all instructions (in binary form) makes up the
computer's machine language. This is also referred to as
the instruction set.

slide 6

Instruction Fields

“* Machine language instructions usually are made up of
several fields. Each field specifies different information
for the computer. The major two fields are:

“* Opcode field which stands for operation code and it
specifies the particular operation that is to be performed.
<> Each operation has its unique opcode.
“ Operands fields which specify where to get the source

and destination operands for the operation specified by
the opcode.

<> The source/destination of operands can be a constant, the
memory or one of the general-purpose registers.

slide 7

Translating Languages

Program (C Language):

swap (int v[], int k) {

int temp;

temp = v[k];
vik] = v[k+1l];

v[k+1l] =

temp;

@ Compiler

MIPS Assembly Language:

sll $2,85, 2
add $2,%4,%2

1w
1w
SwW
SwW

jr

$15,0($2)
$16,4(S2)
$16,0($2)
$15,4($2)
$31

Assembler

>

A statement in a high-level
language is translated
typically into several
machine-level instructions

MIPS Machine Language:

00051080
00821020
8C620000

8CF20004
ACF20000
AC620004
O03E00008

slide 8

Advantages of High-Level Languages

“*+ Program development is faster

< High-level statements: fewer instructions to code

“* Program maintenance is easier

< For the same above reasons

“ Programs are portable

< Contain few machine-dependent details

= Can be used with little or no modifications on different machines
< Compiler translates to the target machine language

< However, Assembly language programs are not portable

slide 9

Why Learn Assembly Language?

** Many reasons:
<> Accessibility to system hardware

< Space and time efficiency

» Accessibility to system hardware
< Assembly Language is useful for implementing system software

< Also useful for small embedded system applications

% Space and Time efficiency
< Understanding sources of program inefficiency
< Tuning program performance

< Writing compact code

slide 70

Assembly Language Programming Tools

» Editor
<> Allows you to create and edit assembly language source files
% Assembler
< Converts assembly language programs into object files
< Object files contain the machine instructions
*» Linker
<> Combines object files created by the assembler with link libraries
<> Produces a single executable program
“ Debugger
< Allows you to trace the execution of a program

< Allows you to view machine instructions, memory, and registers

slide 11

Assemble and Link Process

Object
Assembler Eile
Object
Assembler Fijle Linker Exegﬁ(taable

A

Object , L|nI§
Assembler Eile Libraries

A project may consist of multiple source files

Assembler translates each source file separately into an object file

Linker links all object files together with link libraries

slide 12

MARS Assembler and Simulator Too

=)

- C:\Users\mudawar\Documents\+CO! 301\Tools\MARS\Fibonacci.asm - MARS 4.5
. —_—

File Edit Rum Settings Tools Help

[A Y E3EIE1Ed

Run speed at max (no interaction})

[1,

%]

Edit rExecute | if Registers rCoproc1 rCoprocl)
fib.asm Fibonacci.asm | Mame Number Value
= ; 5 =] ; : ; 3 ; [i] [i]
1 # Compute first twelwve Fibonacci numbers and put in array, then print z:im 1 o
2 .data ev0 2 o
3 fibs: .word 0o : 12 # “array" of 12 words to contain Tib wvalues svl 3 i
4 size: .word 12 # size of "array” SN 2 o
1 5 1]
5 . text z:2 - :
6 Ta $t0, fibs # Toad s of array ca3 = o
7 Ta $t5, size # load s of size variable st0 3 0
& Tw $t5, 0CFLSD # load size stl 9 a
9 11 Ftz2, 1 # 1 1s and second Fib. number ztg 12 g
T.
10 add.d $fo, $fz, $f4 std e 0
11 sw $t2, 0CELOD # FrojJ 5t5 13 0
12 sw $t2, 4CEt0d # Fr17 [=1 SEE Lo a
: — - 2 - . 7 - - - - = 7 15 1]
13 addi $tl, $ts5, -2 # Counter for Toop, will execute (size-2) t z:a e o
14 Toop: 1w $t3, 0CHTOD # Cet wvalue from array FLnJ Py 17 o
15 Tw $t4, 4CHEtod # GCet wvalue from array F[n+1] §32 18 0
16 add $t2, $t3, $t4d # $t2 = F[n+17 £33 19 0
— — —r = 4 20 [i}
17 sw $t2, 8CHt0d # Store F[) Fnl + = = :
18 addi $to, $t0, 4 # Tncremen ess of number source ey 22 0
19 addi $ti, $t1i, -1 # decremen counter 537 23 0
20 bgtz $tl, loop # repe:] inished vet SiEd Lo a
- . £l 25 a
21 Ta $ao, fibs # Tirs for print (array) z;a] =
22 add %ail, $zero, $tS # secol for pri (size) skl 27 0
23 jal print # call utine. sap 28 268468224
24 11 $v0, 10 # Syste exit Fap 29 2147479548
e ! P sfp 30 0
W .
|%|5 - Svscaﬂl # we 3l ere. Py 31 alll
j=lsd 4194304
Line: 1 Column: 1 Show Line Numbers hi a
lo a
Mars Messages rRuner |
Clear

slide 13

MARS Assembler and Simulator Tool

*» Simulates the execution of a MIPS program

<> No direct execution on the underlying Intel processor

¢ Editor with color-coded assembly syntax

“» Assembler
Converts MIPS assembly language programs into object files
*» Debugger
<> Allows you to trace the execution of a program and set
breakpoints

< Allows you to view machine instructions, edit registers and

memory

slide 74

Next . ..

*» High-Level, Assembly-, and Machine-Languages
s Components of a Computer System
¢ Technology Improvements

** Programmer’s View of a Computer System

slide 75

Von Neumann Architecture

John von Neumann (1903-1957)
was a Hungarian-American
mathematician and physicist.

slide 16

Components of a Computer System

** Processor Computer
< Datapath Memory
+ Control ! I/0O Devices
<« Memory & Storage [Control } «—{ Input |
. B , ,
< Main Memory Processor U » Output |
<~ Disk Storage] S
[DatapathJ < » Disk
¢ Input devices "
<% Output devices Network

“ Bus: Interconnects processor to memory and 1/O

“* Network: newly added component for communication

slide 17

Memory

¢ Ordered sequence of bytes

< The sequence number is called the memory address

*+ Byte addressable memory
< Each byte has a unique address

<> Supported by almost all processors

“+ Physical address space
<> Determined by the address bus width

< Pentium has a 32-bit address bus
= Physical address space = 4GB = 2%?bytes
< Itanium with a 64-bit address bus can support

= Up to 254 bytes of physical address space

slide 78

Address Space

Address Address
(in decimal) (in hex)
2°21 FFFFFFFF
FFFFFFFE
FFFFFFFD
. Address Space is
. the set of memory
locations (bytes) that
° can be addressed
2 00000002
1 00000001
0 00000000

slide 79

Address, Data, and Control Bus

«» Address Bus

< Memory address is put on address bus

< If memory address = a bits then 2% locations are addressed

+»» Data Bus: bi-directional bus

<> Data can be transferred in both directions on the data bus

s+ Control Bus

< Signals control
transfer of data

< Read request
< Write request
<> Done transfer

Processor

Address Register

address bus

Data Register

Bus Control

vy /2 \/

a bits
data bus
< d bits
read
write
< done

Memory

w NP, O

2% -1

slide 20

Memory Devices

+» Volatile Memory Devices
< Data is lost when device is powered off
< RAM = Random Access Memory

< DRAM = Dynamic RAM
» 1-Transistor cell + trench capacitor
» Dense but slow, must be refreshed
= Typical choice for main memory

< SRAM: Static RAM
= 6-Transistor cell, faster but less dense than DRAM
= Typical choice for cache memory
*» Non-Volatile Memory Devices
Stores information permanently
ROM = Read Only Memory
Used to store the information required to startup the computer

Many types: ROM, EPROM, EEPROM, and FLASH p '
FLASH memory can be erased electrically in blocks %‘,/

slide 21

R R

A Magnetic disk consists of
a collection of platters

Provides a number of
recording surfaces

Read/write head

Arm provides read/write
heads for all surfaces

The disk heads are

connected together and = |
. ' ' irect Platt
maove In COﬂJunCtlon Direction of atter

rotation

-

Spindle

slide 22

Magnetic Disk Storage

Disk Access Time =
Seek Time +
Rotation Latency +
Transfer Time

Read/write head

Track 2 A
Track 1
Track O A

Rotation Latency: disk rotation until <N

desired sector arrives under the head Direction of Platter
rotation

Transfer Time: to transfer data Spindle

Seek Time: head movement to the
desired track (milliseconds)

—

slide 23

Example on Disk Access Time

* Given a magnetic disk with the following properties
< Rotation speed = 7200 RPM (rotations per minute)
< Average seek = 8 ms, Sector = 512 bytes, Track = 200 sectors

¢ Calculate
<> Time of one rotation (in milliseconds)
< Average time to access a block of 32 consecutive sectors

% Answer
< Rotations per second = 7200/60 = 120 RPS
<> Rotation time in milliseconds = 1000/120 = 8.33 ms

<> Average rotational latency = time of half rotation = 4.17 ms
< Time to transfer 32 sectors = (32/200) * 8.33 = 1.33 ms

< Average accesstime=8 + 4.17 + 1.33=13.5ms

slide 24

Processor-Memory Performance Gap

CPU: 55% per year

1000 [~ S T I
Moore's Law
Q
L e
qv)
S
O
= QO f e R s
Q
al
1 L L L L L T 1 1 1 "1 1 II:::
O -1 NN ST OMNMNODOGZLO--E-ANMNMSTLWL ONMN~NOO O O
0O 00O OO OO 0O O OO OOOOOOOOHLOLO)O)O) OO ©
OO0 OO OO OO OO OO OO OO OLOHhoooho o o
— v e v v e e e e e e (N

* 1980 — No cache in microprocessor

*» 1995 — Two-level cache on microprocessor

Processor-Memory
Performance Gap:
(grows 50% per year)

DRAM: 7% per year

slide 25

The Need for a Memory Hierarchy

*» Widening speed gap between CPU and main memory
<> Processor operation takes less than 1 ns

<> Main memory requires more than 50 ns to access

¢ Each instruction involves at least one memory access
< One memory access to fetch the instruction

<> A second memory access for load and store instructions
“ Memory bandwidth limits the instruction execution rate
*»» Cache memory can help bridge the CPU-memory gap

s Cache memory is small in size but fast

slide 26

Typical Memory Hierarchy

“* Registers are at the top of the hierarchy

< Typical size <1 KB
< Access time < 0.5 ns

*» Level 1 Cache (8 — 64 KB)

Microprocessor

< Accesstime: 0.5-1ns
“ L2 Cache (64 KB — 8 MB)

Registers

L1 Cache

< Access time: 2—-10ns

L2 Cache

J

Faster

“ Main Memory (1 — 64 GB)

Bigger

Memory Bus

< Access time: 50 - 70 ns

Memory

¢ Disk Storage (> 200 GB)

/O Bus

< Access time: milliseconds

Disk, Tape, etc

slide 27

Processor

« Datapath: part of a processor that executes instructions

“+ Control: generates control signals for each instruction

Next Program
Counter

i

Instruction lp Data

Cache

Registers

— >
oL

Instruction
v \ 4 v

Program Counter

slide 28

L)

*

L)

*

L)

*

L)

*

L)

*

)

L)

Datapath Components

Program Counter (PC)

< Contains address of instruction to be fetched

< Next Program Counter: computes address of next instruction
Instruction Register (IR)

< Stores the fetched instruction
Instruction and Data Caches

< Small and fast memory containing most recent instructions/data
Register File

< General-purpose registers used for intermediate computations
ALU = Arithmetic and Logic Unit

< Executes arithmetic and logic instructions
Buses

< Used to wire and interconnect the various components

slide 29

Infinite Cycle implemented in Hardware

Fetch - Execute Cycle

\ 4

Instruction Fetch

A 4

Instruction Decode

A\ 4

Execute

\ 4

Memory Access

\ 4

Writeback Result

Fetch instruction
Compute address of next instruction

Generate control signals for instruction
Read operands from registers

Compute result value

Read or write memory (load/store)

Writeback result in a register

slide 30

Harvard Architecture

The Harvard architecture is a processor design that
physically separates data memory from program memory.
Access to each of the two memories is done through two
distinct buses.

4 - ., adresses Mémoire
Unité de calcul Unité de contréle ———————9» instructions
- \ [PC=) | | — ()] 010
‘:_ P ' instructions | |n110110
- - adresses 1011101
| 0101110
-) " oy
Mémoire
données
données
0010010
0110110
1011101
0101110

slide 31

Difference between Von Neumann
and Harvard Architecture

Comparison Table

It is a theoretical design based on the
stored-program computer concept.

It uses same physical memory
address for instructions and data.

Processor needs two clock cycles to
execute an instruction.

Simpler control unit design and
development of one is cheaper and
faster.

Data transfers and instruction
fetches cannot be performed
simultaneously.

Used in personal computers, laptops,
and workstations.

It is a modern computer architecture
based on the Harvard Mark I relay-
based computer model.

[t uses separate memory addresses
for instructions and data.

Processor needs one cycle to
complete an instruction.

Control unit for two buses is more
complicated which adds to the
development cost.

~ Data transfers and instruction
fetches can be performed at the same
time.

Used in microcontrollers and signal slide 32
processing.

Next . ..

s Assembly-, Machine-, and High-Level Languages
s Components of a Computer System
¢ Technology Improvements

** Programmer’s View of a Computer System

slide 33

Technology Improvements

+» Vacuum tube — transistor - — VLSI

*¢» Processor

< Transistor count: about 30% to 40% per year

“* Memory

< DRAM capacity: about 60% per year (4x every 3 yrs)
< Cost per bit: decreases about 25% per year

¢ Disk
< Capacity: about 60% per year

“ Opportunities for new applications

+ Better organizations and designs

slide 34

Growth of Capacity per DRAM Chip

“+ DRAM capacity quadrupled almost every 3 years
< 60% increase per year, for 20 years

10,000,000 -

4G
1,000,000 +

100,000 -

10,000 -

Kibibit capacity

1000 4

100 -

1O I 1 I 1 I 1] 1] 1 1 L] 1 I I 1

1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012
Year of introduction

slide 35

Performance (vs. VAX-11/780)

Processor Performance

100,000
Intel Xeon 4 cores 3.6 GHz (Boost 10 4.0)
Intel Core |7 4 cores 3.4 GHz (boost 10 3.8 GHz)
Intel Xeon 6 cores, 3.3 GHz (boost to 3.6 GHz) 34 967
Intel Xeon 4 cores, 3.3 GHz (boost to 3.6 GHz) 1.999
Intel Core |7 Extreme 4 cores 3.2 GHz (boost 1o 3.5 GHz) 1
Intel Core Duo Extreme 2 cores, 3.0 GHz
Intel Core 2 Extreme 2 cores, 2.9 GHz 4 387
10.00) T e nnnInnnmIIIIIIII sieessasisavs sbqsssasraovs sovesee I mmmImmmIr A’\‘D Athk)n 64 2 8 GHZ ' ra.q
AMD A 6 GHz
Intel Xeon EESZG z 7,108
Inted DBSOEMVR motherboard {3.06 GHz, Pentium 4 processor with Hyper-threading Technology) 6.043 6681
1BM Powerd, 1.3 GHz
Intel VC820 motherboard, 1.0 GHz Pentium 1l processor
Professional Workstation XP1000, 667 MHz 21264A
1000+ +se1eerrersarrarsesranssisrassssrannsensvsnsses- IUBL ARTASAVEr. 0400 B/BT5, 576 MHR 21264, g otor 207 EUESSIIIETS I
22%/year
G L R R A S S e e) 100y S0 el W o S e S Slowed down
by power and
IBM RS6000/540, 30 MHz, memory latency
MIPS M2000, 25 MHz
MIPS M/120, 16.7 MHz
10 f-ieriamnianiciiaraasinzaen Sl o Al sits i oLk ap s 6 A MR I AAN S A R4 R A e AT A R R SRS N A e 8 S A A P I et S e A e S A o B - < = « « = = o < «
Almost 10000x improvement
between 1978 and 2005
1.5, VAX-11/785
1 T T T T T T T T T T T T T T T

T
1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

slide 36

Next . ..

s Assembly-, Machine-, and High-Level Languages
s Components of a Computer System
¢ Technology Improvements

“* Programmer’s View of a Computer System

slide 37

Programmer’s View of a Computer System

Software <

Interface .
SW & HW

Hardware <

AY 4

AY 4

Application Programs
High-Level Language

Assembly Language

Operating System

Instruction Set
Architecture

Microarchitecture

Physical Design

Level 5

Level 4

Level 3

Level 2

Level 1

Level O

Increased level
of abstraction

A

\4

Each level hides
the details of the
level below it

slide 38

Programmer’s View of a Computer System

*» Application Programs (Level 5)
< Written in high-level programming languages
< Such as Java, C++, Pascal, Visual Basic . . .

< Programs compile into assembly language level (Level 4)

* Assembly Language (Level 4)

< Instruction mnemonics (symbols) are used
<> Have one-to-one correspondence to machine language
< Calls functions written at the operating system level (Level 3)

< Programs are translated into machine language (Level 2)

slide 39

Programmer’s View of a Computer System

¢ Operating System (Level 3)
<> Provides services to level 4 and 5 programs

< Translated to run at the machine instruction level (Level 2)

¢ Instruction Set Architecture (Level 2)

< Interface between software and hardware
< Specifies how a processor functions
<> Machine instructions, registers, and memory are exposed

<> Machine language is executed by Level 1 (microarchitecture)

slide 40

Programmer’s View of a Computer System

** Microarchitecture (Level 1)

< Controls the execution of machine instructions (Level 2)

< Implemented by digital logic
“* Physical Design (Level 0)
< Implements the microarchitecture at the transistor-level

<> Physical layout of circuits on a chip

slide 41

