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Next . . .

 High-Level, Assembly-, and Machine-Languages

 Components of a Computer System

 Technology Improvements

 Programmer’s View of a Computer System
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A Hierarchy of Languages

Application Programs

High-Level Languages

Assembly Language

Machine Language

Hardware

High-Level Language

Low-Level Language

Machine independent

Machine specific
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Assembly and Machine Language

 Machine language

 Native to a processor: executed directly by hardware

 Instructions consist of binary code: 1s and 0s

 Assembly language

 Slightly higher-level language

 Readability of instructions is better than machine language

 One-to-one correspondence with machine language instructions

 Assemblers translate assembly to machine code

 Compilers translate high-level programs to machine code

 Either directly, or

 Indirectly via an assembler
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Compiler and Assembler
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Instructions and Machine Language

 Each command of a program is called an instruction (it 

instructs the computer what to do).   

 Computers only deal with binary data, hence the 

instructions must be in binary format (0s and 1s) .

 The set of all instructions (in binary form) makes up the 

computer's machine language. This is also referred to as 

the instruction set.
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Instruction Fields

 Machine language instructions usually are made up of 

several fields. Each field specifies different information 

for the computer. The major two fields are: 

 Opcode field which stands for operation code and it 

specifies the particular operation that is to be performed. 

 Each operation has its unique opcode. 

 Operands fields which specify where to get the source 

and destination operands for the operation specified by 

the opcode. 

 The source/destination of operands can be a constant, the 

memory or one of the general-purpose registers. 
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MIPS Assembly Language:

sll $2,$5, 2

add $2,$4,$2

lw $15,0($2)

lw $16,4($2)

sw $16,0($2)

sw $15,4($2)

jr $31

Compiler

Translating Languages

Program (C Language):

swap(int v[], int k) {

int temp;

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

}

A statement in a high-level 

language is translated 

typically into several 

machine-level instructions

MIPS Machine Language:

00051080

00821020

8C620000

8CF20004

ACF20000

AC620004

03E00008

Assembler
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Advantages of High-Level Languages

 Program development is faster

 High-level statements: fewer instructions to code

 Program maintenance is easier

 For the same above reasons

 Programs are portable

 Contain few machine-dependent details

 Can be used with little or no modifications on different machines

 Compiler translates to the target machine language

 However, Assembly language programs are not portable
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Why Learn Assembly Language?

 Many reasons:

 Accessibility to system hardware

 Space and time efficiency

 Accessibility to system hardware

 Assembly Language is useful for implementing system software

 Also useful for small embedded system applications

 Space and Time efficiency

 Understanding sources of program inefficiency

 Tuning program performance

 Writing compact code
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Assembly Language Programming Tools

 Editor

 Allows you to create and edit assembly language source files 

 Assembler

 Converts assembly language programs into object files

 Object files contain the machine instructions

 Linker

 Combines object files created by the assembler with link libraries

 Produces a single executable program

 Debugger

 Allows you to trace the execution of a program

 Allows you to view machine instructions, memory, and registers
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Assemble and Link Process

Source

File

Source

File

Source

File

Assembler
Object

File

Assembler
Object

File

Assembler
Object

File

Linker
Executable

File

Link

Libraries

A project may consist of multiple source files

Assembler translates each source file separately into an object file

Linker links all object files together with link libraries
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MARS Assembler and Simulator Tool
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MARS Assembler and Simulator Tool

 Simulates the execution of a MIPS program

 No direct execution on the underlying Intel processor

 Editor with color-coded assembly syntax

 Assembler

Converts MIPS assembly language programs into object files

 Debugger

 Allows you to trace the execution of a program and set 

breakpoints

 Allows you to view machine instructions, edit registers and 

memory
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Next . . .

 High-Level, Assembly-, and Machine-Languages

 Components of a Computer System

 Technology Improvements

 Programmer’s View of a Computer System



Introduction COE 301– KFUPM                  slide 16

John von Neumann (1903–1957) 

was a Hungarian-American 

mathematician and physicist.

Von Neumann Architecture
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 Processor

 Datapath

 Control

 Memory & Storage

 Main Memory

 Disk Storage

 Input devices

 Output devices

 Bus: Interconnects processor to memory and I/O

 Network: newly added component for communication

Components of a Computer System

Computer

Memory

I/O Devices

Input

Output
B
U
S

Control

Datapath

Processor

Disk

Network
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Memory

 Ordered sequence of bytes

 The sequence number is called the memory address

 Byte addressable memory

 Each byte has a unique address

 Supported by almost all processors

 Physical address space

 Determined by the address bus width

 Pentium has a 32-bit address bus

 Physical address space = 4GB = 232 bytes

 Itanium with a 64-bit address bus can support

 Up to 264 bytes of physical address space
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Address Space

Address Space is 

the set of memory 

locations (bytes) that 

can be addressed
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Address, Data, and Control Bus

 Address Bus 

 Memory address is put on address bus

 If memory address = a bits then 2
a

locations are addressed

 Data Bus: bi-directional bus

 Data can be transferred in both directions on the data bus

 Control Bus

 Signals control

transfer of data

 Read request

 Write request

 Done transfer

Memory

0

1

2

3

2
a

– 1

. . .
read

write

done

data bus

address bus

Processor

d bits

a bitsAddress Register

Data Register

Bus Control



Introduction COE 301– KFUPM                  slide 21

Memory Devices
 Volatile Memory Devices

 Data is lost when device is powered off

 RAM = Random Access Memory

 DRAM = Dynamic RAM

 1-Transistor cell + trench capacitor

 Dense but slow, must be refreshed

 Typical choice for main memory

 SRAM: Static RAM

 6-Transistor cell, faster but less dense than DRAM

 Typical choice for cache memory

 Non-Volatile Memory Devices

 Stores information permanently 

 ROM = Read Only Memory

 Used to store the information required to startup the computer

 Many types: ROM, EPROM, EEPROM, and FLASH

 FLASH memory can be erased electrically in blocks
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Arm provides read/write 

heads for all surfaces

The disk heads are 

connected together and 

move in conjunction

Track 0
Track 1

Recording area

Spindle

Direction of 

rotation

Platter

Read/write head

Actuator

Arm

Track 2

A Magnetic disk consists of 

a collection of platters

Provides a number of 

recording surfaces

Magnetic Disk Storage
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Magnetic Disk Storage

Track 0
Track 1

Sector

Recording area

Spindle

Direction of 

rotation

Platter

Read/write head

Actuator

Arm

Track 2

Disk Access Time = 

Seek Time + 

Rotation Latency + 

Transfer Time

Seek Time: head movement to the 

desired track (milliseconds)

Rotation Latency: disk rotation until 

desired sector arrives under the head

Transfer Time: to transfer data
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Example on Disk Access Time

 Given a magnetic disk with the following properties

 Rotation speed = 7200 RPM (rotations per minute)

 Average seek = 8 ms, Sector = 512 bytes, Track = 200 sectors

 Calculate

 Time of one rotation (in milliseconds)

 Average time to access a block of 32 consecutive sectors

 Answer

 Rotations per second

 Rotation time in milliseconds

 Average rotational latency

 Time to transfer 32 sectors

 Average access time

= 7200/60 = 120 RPS

= 1000/120 = 8.33 ms

= time of half rotation = 4.17 ms

= (32/200) * 8.33 = 1.33 ms

= 8 + 4.17 + 1.33 = 13.5 ms
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Processor-Memory Performance Gap

 1980 – No cache in microprocessor

 1995 – Two-level cache on microprocessor

CPU: 55% per year

DRAM: 7% per year
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The Need for a Memory Hierarchy

 Widening speed gap between CPU and main memory

 Processor operation takes less than 1 ns

 Main memory requires more than 50 ns to access

 Each instruction involves at least one memory access

 One memory access to fetch the instruction

 A second memory access for load and store instructions

 Memory bandwidth limits the instruction execution rate

 Cache memory can help bridge the CPU-memory gap

 Cache memory is small in size but fast
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Typical Memory Hierarchy

 Registers are at the top of the hierarchy

 Typical size < 1 KB

 Access time < 0.5 ns

 Level 1 Cache (8 – 64 KB)

 Access time: 0.5 – 1 ns

 L2 Cache (64 KB – 8 MB)

 Access time: 2 – 10 ns

 Main Memory (1 – 64 GB)

 Access time: 50 – 70 ns

 Disk Storage (> 200 GB)

 Access time: milliseconds

Microprocessor

Registers

L1 Cache

L2 Cache

Memory

Disk, Tape, etc

Memory Bus

I/O Bus

F
a
s
te

r

B
ig

g
e
r
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Processor

 Datapath: part of a processor that executes instructions

 Control: generates control signals for each instruction
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Instruction

Cache

Next Program

Counter

Data

Cache

Control
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Datapath Components
 Program Counter (PC)

 Contains address of instruction to be fetched

 Next Program Counter: computes address of next instruction

 Instruction Register (IR)

 Stores the fetched instruction

 Instruction and Data Caches

 Small and fast memory containing most recent instructions/data

 Register File

 General-purpose registers used for intermediate computations

 ALU = Arithmetic and Logic Unit

 Executes arithmetic and logic instructions

 Buses

 Used to wire and interconnect the various components
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Fetch instruction

Compute address of next instruction

Generate control signals for instruction

Read operands from registers

Compute result value

Writeback result in a register

Fetch - Execute Cycle

Instruction Decode

Instruction Fetch

Execute

Writeback Result

In
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Memory Access Read or write memory (load/store)
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Harvard Architecture

The Harvard architecture is a processor design that 

physically separates data memory from program memory. 

Access to each of the two memories is done through two 

distinct buses.
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Difference between Von Neumann 
and Harvard Architecture

Comparison Table
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Next . . .

 Assembly-, Machine-, and High-Level Languages

 Components of a Computer System

 Technology Improvements

 Programmer’s View of a Computer System
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Technology Improvements

 Vacuum tube → transistor → → VLSI

 Processor

 Transistor count: about 30% to 40% per year

 Memory

DRAM capacity: about 60% per year (4x every 3 yrs)

Cost per bit: decreases about 25% per year

 Disk

Capacity: about 60% per year

 Opportunities for new applications

 Better organizations and designs
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Growth of Capacity per DRAM Chip

 DRAM capacity quadrupled almost every 3 years

 60% increase per year, for 20 years
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Processor Performance

Almost 10000x improvement 

between 1978 and 2005  

Slowed down 

by power and 

memory latency
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Next . . .

 Assembly-, Machine-, and High-Level Languages

 Components of a Computer System

 Technology Improvements

 Programmer’s View of a Computer System
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Programmer’s View of a Computer System

Application Programs

High-Level Language

Assembly Language

Operating System

Instruction Set

Architecture

Microarchitecture

Physical Design
Level 0

Level 1

Level 2

Level 3

Level 4

Level 5
Increased level 

of abstraction

Each level hides 

the details of the 

level below it

Software

Hardware

Interface 

SW & HW
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Programmer’s View of a Computer System

 Application Programs (Level 5)

 Written in high-level programming languages

 Such as Java, C++, Pascal, Visual Basic . . .

 Programs compile into assembly language level (Level 4)

 Assembly Language (Level 4)

 Instruction mnemonics (symbols) are used

 Have one-to-one correspondence to machine language

 Calls functions written at the operating system level (Level 3)

 Programs are translated into machine language (Level 2)
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Programmer’s View of a Computer System

 Operating System (Level 3)

 Provides services to level 4 and 5 programs

 Translated to run at the machine instruction level (Level 2)

 Instruction Set Architecture (Level 2)

 Interface between software and hardware

 Specifies how a processor functions

 Machine instructions, registers, and memory are exposed

 Machine language is executed by Level 1 (microarchitecture)
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Programmer’s View of a Computer System

 Microarchitecture (Level 1)

 Controls the execution of machine instructions (Level 2)

 Implemented by digital logic

 Physical Design (Level 0)

 Implements the microarchitecture at the transistor-level

 Physical layout of circuits on a chip


