
Introduction

Computer Architecture

Riad Bourbia

Computer Sciences department

Guelma University

[Adapted from slides of Dr. A. El-maleh]

Introduction COE 301– KFUPM slide 2

Next . . .

 High-Level, Assembly-, and Machine-Languages

 Components of a Computer System

 Technology Improvements

 Programmer’s View of a Computer System

Introduction COE 301– KFUPM slide 3

A Hierarchy of Languages

Application Programs

High-Level Languages

Assembly Language

Machine Language

Hardware

High-Level Language

Low-Level Language

Machine independent

Machine specific

Introduction COE 301– KFUPM slide 4

Assembly and Machine Language

 Machine language

 Native to a processor: executed directly by hardware

 Instructions consist of binary code: 1s and 0s

 Assembly language

 Slightly higher-level language

 Readability of instructions is better than machine language

 One-to-one correspondence with machine language instructions

 Assemblers translate assembly to machine code

 Compilers translate high-level programs to machine code

 Either directly, or

 Indirectly via an assembler

Introduction COE 301– KFUPM slide 5

Compiler and Assembler

Introduction COE 301– KFUPM slide 6

Instructions and Machine Language

 Each command of a program is called an instruction (it

instructs the computer what to do).

 Computers only deal with binary data, hence the

instructions must be in binary format (0s and 1s) .

 The set of all instructions (in binary form) makes up the

computer's machine language. This is also referred to as

the instruction set.

Introduction COE 301– KFUPM slide 7

Instruction Fields

 Machine language instructions usually are made up of

several fields. Each field specifies different information

for the computer. The major two fields are:

 Opcode field which stands for operation code and it

specifies the particular operation that is to be performed.

 Each operation has its unique opcode.

 Operands fields which specify where to get the source

and destination operands for the operation specified by

the opcode.

 The source/destination of operands can be a constant, the

memory or one of the general-purpose registers.

Introduction COE 301– KFUPM slide 8

MIPS Assembly Language:

sll $2,$5, 2

add $2,$4,$2

lw $15,0($2)

lw $16,4($2)

sw $16,0($2)

sw $15,4($2)

jr $31

Compiler

Translating Languages

Program (C Language):

swap(int v[], int k) {

int temp;

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

}

A statement in a high-level

language is translated

typically into several

machine-level instructions

MIPS Machine Language:

00051080

00821020

8C620000

8CF20004

ACF20000

AC620004

03E00008

Assembler

Introduction COE 301– KFUPM slide 9

Advantages of High-Level Languages

 Program development is faster

 High-level statements: fewer instructions to code

 Program maintenance is easier

 For the same above reasons

 Programs are portable

 Contain few machine-dependent details

 Can be used with little or no modifications on different machines

 Compiler translates to the target machine language

 However, Assembly language programs are not portable

Introduction COE 301– KFUPM slide 10

Why Learn Assembly Language?

 Many reasons:

 Accessibility to system hardware

 Space and time efficiency

 Accessibility to system hardware

 Assembly Language is useful for implementing system software

 Also useful for small embedded system applications

 Space and Time efficiency

 Understanding sources of program inefficiency

 Tuning program performance

 Writing compact code

Introduction COE 301– KFUPM slide 11

Assembly Language Programming Tools

 Editor

 Allows you to create and edit assembly language source files

 Assembler

 Converts assembly language programs into object files

 Object files contain the machine instructions

 Linker

 Combines object files created by the assembler with link libraries

 Produces a single executable program

 Debugger

 Allows you to trace the execution of a program

 Allows you to view machine instructions, memory, and registers

Introduction COE 301– KFUPM slide 12

Assemble and Link Process

Source

File

Source

File

Source

File

Assembler
Object

File

Assembler
Object

File

Assembler
Object

File

Linker
Executable

File

Link

Libraries

A project may consist of multiple source files

Assembler translates each source file separately into an object file

Linker links all object files together with link libraries

Introduction COE 301– KFUPM slide 13

MARS Assembler and Simulator Tool

Introduction COE 301– KFUPM slide 14

MARS Assembler and Simulator Tool

 Simulates the execution of a MIPS program

 No direct execution on the underlying Intel processor

 Editor with color-coded assembly syntax

 Assembler

Converts MIPS assembly language programs into object files

 Debugger

 Allows you to trace the execution of a program and set

breakpoints

 Allows you to view machine instructions, edit registers and

memory

Introduction COE 301– KFUPM slide 15

Next . . .

 High-Level, Assembly-, and Machine-Languages

 Components of a Computer System

 Technology Improvements

 Programmer’s View of a Computer System

Introduction COE 301– KFUPM slide 16

John von Neumann (1903–1957)

was a Hungarian-American

mathematician and physicist.

Von Neumann Architecture

Introduction COE 301– KFUPM slide 17

 Processor

 Datapath

 Control

 Memory & Storage

 Main Memory

 Disk Storage

 Input devices

 Output devices

 Bus: Interconnects processor to memory and I/O

 Network: newly added component for communication

Components of a Computer System

Computer

Memory

I/O Devices

Input

Output
B
U
S

Control

Datapath

Processor

Disk

Network

Introduction COE 301– KFUPM slide 18

Memory

 Ordered sequence of bytes

 The sequence number is called the memory address

 Byte addressable memory

 Each byte has a unique address

 Supported by almost all processors

 Physical address space

 Determined by the address bus width

 Pentium has a 32-bit address bus

 Physical address space = 4GB = 232 bytes

 Itanium with a 64-bit address bus can support

 Up to 264 bytes of physical address space

Introduction COE 301– KFUPM slide 19

Address Space

Address Space is

the set of memory

locations (bytes) that

can be addressed

Introduction COE 301– KFUPM slide 20

Address, Data, and Control Bus

 Address Bus

 Memory address is put on address bus

 If memory address = a bits then 2
a

locations are addressed

 Data Bus: bi-directional bus

 Data can be transferred in both directions on the data bus

 Control Bus

 Signals control

transfer of data

 Read request

 Write request

 Done transfer

Memory

0

1

2

3

2
a

– 1

. . .
read

write

done

data bus

address bus

Processor

d bits

a bitsAddress Register

Data Register

Bus Control

Introduction COE 301– KFUPM slide 21

Memory Devices
 Volatile Memory Devices

 Data is lost when device is powered off

 RAM = Random Access Memory

 DRAM = Dynamic RAM

 1-Transistor cell + trench capacitor

 Dense but slow, must be refreshed

 Typical choice for main memory

 SRAM: Static RAM

 6-Transistor cell, faster but less dense than DRAM

 Typical choice for cache memory

 Non-Volatile Memory Devices

 Stores information permanently

 ROM = Read Only Memory

 Used to store the information required to startup the computer

 Many types: ROM, EPROM, EEPROM, and FLASH

 FLASH memory can be erased electrically in blocks

Introduction COE 301– KFUPM slide 22

Arm provides read/write

heads for all surfaces

The disk heads are

connected together and

move in conjunction

Track 0
Track 1

Recording area

Spindle

Direction of

rotation

Platter

Read/write head

Actuator

Arm

Track 2

A Magnetic disk consists of

a collection of platters

Provides a number of

recording surfaces

Magnetic Disk Storage

Introduction COE 301– KFUPM slide 23

Magnetic Disk Storage

Track 0
Track 1

Sector

Recording area

Spindle

Direction of

rotation

Platter

Read/write head

Actuator

Arm

Track 2

Disk Access Time =

Seek Time +

Rotation Latency +

Transfer Time

Seek Time: head movement to the

desired track (milliseconds)

Rotation Latency: disk rotation until

desired sector arrives under the head

Transfer Time: to transfer data

Introduction COE 301– KFUPM slide 24

Example on Disk Access Time

 Given a magnetic disk with the following properties

 Rotation speed = 7200 RPM (rotations per minute)

 Average seek = 8 ms, Sector = 512 bytes, Track = 200 sectors

 Calculate

 Time of one rotation (in milliseconds)

 Average time to access a block of 32 consecutive sectors

 Answer

 Rotations per second

 Rotation time in milliseconds

 Average rotational latency

 Time to transfer 32 sectors

 Average access time

= 7200/60 = 120 RPS

= 1000/120 = 8.33 ms

= time of half rotation = 4.17 ms

= (32/200) * 8.33 = 1.33 ms

= 8 + 4.17 + 1.33 = 13.5 ms

Introduction COE 301– KFUPM slide 25

Processor-Memory Performance Gap

 1980 – No cache in microprocessor

 1995 – Two-level cache on microprocessor

CPU: 55% per year

DRAM: 7% per year
1

10

100

1000
1

9
8

0

1
9

8
1

1
9

8
3

1
9

8
4

1
9

8
5

1
9

8
6

1
9

8
7

1
9
8
8

1
9

8
9

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

1
9

8
2

Processor-Memory

Performance Gap:

(grows 50% per year)

P
e
rf

o
rm

a
n
c
e

“Moore’s Law”

Introduction COE 301– KFUPM slide 26

The Need for a Memory Hierarchy

 Widening speed gap between CPU and main memory

 Processor operation takes less than 1 ns

 Main memory requires more than 50 ns to access

 Each instruction involves at least one memory access

 One memory access to fetch the instruction

 A second memory access for load and store instructions

 Memory bandwidth limits the instruction execution rate

 Cache memory can help bridge the CPU-memory gap

 Cache memory is small in size but fast

Introduction COE 301– KFUPM slide 27

Typical Memory Hierarchy

 Registers are at the top of the hierarchy

 Typical size < 1 KB

 Access time < 0.5 ns

 Level 1 Cache (8 – 64 KB)

 Access time: 0.5 – 1 ns

 L2 Cache (64 KB – 8 MB)

 Access time: 2 – 10 ns

 Main Memory (1 – 64 GB)

 Access time: 50 – 70 ns

 Disk Storage (> 200 GB)

 Access time: milliseconds

Microprocessor

Registers

L1 Cache

L2 Cache

Memory

Disk, Tape, etc

Memory Bus

I/O Bus

F
a
s
te

r

B
ig

g
e
r

Introduction COE 301– KFUPM slide 28

Processor

 Datapath: part of a processor that executes instructions

 Control: generates control signals for each instruction

A
L
U

Registers

In
s

tr
u

c
ti

o
n

P
ro

g
ra

m
 C

o
u

n
te

r

Instruction

Cache

Next Program

Counter

Data

Cache

Control

Introduction COE 301– KFUPM slide 29

Datapath Components
 Program Counter (PC)

 Contains address of instruction to be fetched

 Next Program Counter: computes address of next instruction

 Instruction Register (IR)

 Stores the fetched instruction

 Instruction and Data Caches

 Small and fast memory containing most recent instructions/data

 Register File

 General-purpose registers used for intermediate computations

 ALU = Arithmetic and Logic Unit

 Executes arithmetic and logic instructions

 Buses

 Used to wire and interconnect the various components

Introduction COE 301– KFUPM slide 30

Fetch instruction

Compute address of next instruction

Generate control signals for instruction

Read operands from registers

Compute result value

Writeback result in a register

Fetch - Execute Cycle

Instruction Decode

Instruction Fetch

Execute

Writeback Result

In
fi

n
it

e
 C

y
c
le

 i
m

p
le

m
e
n

te
d

 i
n

 H
a
rd

w
a
re

Memory Access Read or write memory (load/store)

Introduction COE 301– KFUPM slide 31

Harvard Architecture

The Harvard architecture is a processor design that

physically separates data memory from program memory.

Access to each of the two memories is done through two

distinct buses.

Introduction COE 301– KFUPM slide 32

Difference between Von Neumann
and Harvard Architecture

Comparison Table

Introduction COE 301– KFUPM slide 33

Next . . .

 Assembly-, Machine-, and High-Level Languages

 Components of a Computer System

 Technology Improvements

 Programmer’s View of a Computer System

Introduction COE 301– KFUPM slide 34

Technology Improvements

 Vacuum tube → transistor → → VLSI

 Processor

 Transistor count: about 30% to 40% per year

 Memory

DRAM capacity: about 60% per year (4x every 3 yrs)

Cost per bit: decreases about 25% per year

 Disk

Capacity: about 60% per year

 Opportunities for new applications

 Better organizations and designs

Introduction COE 301– KFUPM slide 35

Growth of Capacity per DRAM Chip

 DRAM capacity quadrupled almost every 3 years

 60% increase per year, for 20 years

Introduction COE 301– KFUPM slide 36

Processor Performance

Almost 10000x improvement

between 1978 and 2005

Slowed down

by power and

memory latency

Introduction COE 301– KFUPM slide 37

Next . . .

 Assembly-, Machine-, and High-Level Languages

 Components of a Computer System

 Technology Improvements

 Programmer’s View of a Computer System

Introduction COE 301– KFUPM slide 38

Programmer’s View of a Computer System

Application Programs

High-Level Language

Assembly Language

Operating System

Instruction Set

Architecture

Microarchitecture

Physical Design
Level 0

Level 1

Level 2

Level 3

Level 4

Level 5
Increased level

of abstraction

Each level hides

the details of the

level below it

Software

Hardware

Interface

SW & HW

Introduction COE 301– KFUPM slide 39

Programmer’s View of a Computer System

 Application Programs (Level 5)

 Written in high-level programming languages

 Such as Java, C++, Pascal, Visual Basic . . .

 Programs compile into assembly language level (Level 4)

 Assembly Language (Level 4)

 Instruction mnemonics (symbols) are used

 Have one-to-one correspondence to machine language

 Calls functions written at the operating system level (Level 3)

 Programs are translated into machine language (Level 2)

Introduction COE 301– KFUPM slide 40

Programmer’s View of a Computer System

 Operating System (Level 3)

 Provides services to level 4 and 5 programs

 Translated to run at the machine instruction level (Level 2)

 Instruction Set Architecture (Level 2)

 Interface between software and hardware

 Specifies how a processor functions

 Machine instructions, registers, and memory are exposed

 Machine language is executed by Level 1 (microarchitecture)

Introduction COE 301– KFUPM slide 41

Programmer’s View of a Computer System

 Microarchitecture (Level 1)

 Controls the execution of machine instructions (Level 2)

 Implemented by digital logic

 Physical Design (Level 0)

 Implements the microarchitecture at the transistor-level

 Physical layout of circuits on a chip

