
Introduction

Computer Architecture

Riad Bourbia

Computer Sciences department

Guelma University

[Adapted from slides of Dr. A. El-maleh]

Introduction COE 301– KFUPM slide 2

Next . . .

 High-Level, Assembly-, and Machine-Languages

 Components of a Computer System

 Technology Improvements

 Programmer’s View of a Computer System

Introduction COE 301– KFUPM slide 3

A Hierarchy of Languages

Application Programs

High-Level Languages

Assembly Language

Machine Language

Hardware

High-Level Language

Low-Level Language

Machine independent

Machine specific

Introduction COE 301– KFUPM slide 4

Assembly and Machine Language

 Machine language

 Native to a processor: executed directly by hardware

 Instructions consist of binary code: 1s and 0s

 Assembly language

 Slightly higher-level language

 Readability of instructions is better than machine language

 One-to-one correspondence with machine language instructions

 Assemblers translate assembly to machine code

 Compilers translate high-level programs to machine code

 Either directly, or

 Indirectly via an assembler

Introduction COE 301– KFUPM slide 5

Compiler and Assembler

Introduction COE 301– KFUPM slide 6

Instructions and Machine Language

 Each command of a program is called an instruction (it

instructs the computer what to do).

 Computers only deal with binary data, hence the

instructions must be in binary format (0s and 1s) .

 The set of all instructions (in binary form) makes up the

computer's machine language. This is also referred to as

the instruction set.

Introduction COE 301– KFUPM slide 7

Instruction Fields

 Machine language instructions usually are made up of

several fields. Each field specifies different information

for the computer. The major two fields are:

 Opcode field which stands for operation code and it

specifies the particular operation that is to be performed.

 Each operation has its unique opcode.

 Operands fields which specify where to get the source

and destination operands for the operation specified by

the opcode.

 The source/destination of operands can be a constant, the

memory or one of the general-purpose registers.

Introduction COE 301– KFUPM slide 8

MIPS Assembly Language:

sll $2,$5, 2

add $2,$4,$2

lw $15,0($2)

lw $16,4($2)

sw $16,0($2)

sw $15,4($2)

jr $31

Compiler

Translating Languages

Program (C Language):

swap(int v[], int k) {

int temp;

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

}

A statement in a high-level

language is translated

typically into several

machine-level instructions

MIPS Machine Language:

00051080

00821020

8C620000

8CF20004

ACF20000

AC620004

03E00008

Assembler

Introduction COE 301– KFUPM slide 9

Advantages of High-Level Languages

 Program development is faster

 High-level statements: fewer instructions to code

 Program maintenance is easier

 For the same above reasons

 Programs are portable

 Contain few machine-dependent details

 Can be used with little or no modifications on different machines

 Compiler translates to the target machine language

 However, Assembly language programs are not portable

Introduction COE 301– KFUPM slide 10

Why Learn Assembly Language?

 Many reasons:

 Accessibility to system hardware

 Space and time efficiency

 Accessibility to system hardware

 Assembly Language is useful for implementing system software

 Also useful for small embedded system applications

 Space and Time efficiency

 Understanding sources of program inefficiency

 Tuning program performance

 Writing compact code

Introduction COE 301– KFUPM slide 11

Assembly Language Programming Tools

 Editor

 Allows you to create and edit assembly language source files

 Assembler

 Converts assembly language programs into object files

 Object files contain the machine instructions

 Linker

 Combines object files created by the assembler with link libraries

 Produces a single executable program

 Debugger

 Allows you to trace the execution of a program

 Allows you to view machine instructions, memory, and registers

Introduction COE 301– KFUPM slide 12

Assemble and Link Process

Source

File

Source

File

Source

File

Assembler
Object

File

Assembler
Object

File

Assembler
Object

File

Linker
Executable

File

Link

Libraries

A project may consist of multiple source files

Assembler translates each source file separately into an object file

Linker links all object files together with link libraries

Introduction COE 301– KFUPM slide 13

MARS Assembler and Simulator Tool

Introduction COE 301– KFUPM slide 14

MARS Assembler and Simulator Tool

 Simulates the execution of a MIPS program

 No direct execution on the underlying Intel processor

 Editor with color-coded assembly syntax

 Assembler

Converts MIPS assembly language programs into object files

 Debugger

 Allows you to trace the execution of a program and set

breakpoints

 Allows you to view machine instructions, edit registers and

memory

Introduction COE 301– KFUPM slide 15

Next . . .

 High-Level, Assembly-, and Machine-Languages

 Components of a Computer System

 Technology Improvements

 Programmer’s View of a Computer System

Introduction COE 301– KFUPM slide 16

John von Neumann (1903–1957)

was a Hungarian-American

mathematician and physicist.

Von Neumann Architecture

Introduction COE 301– KFUPM slide 17

 Processor

 Datapath

 Control

 Memory & Storage

 Main Memory

 Disk Storage

 Input devices

 Output devices

 Bus: Interconnects processor to memory and I/O

 Network: newly added component for communication

Components of a Computer System

Computer

Memory

I/O Devices

Input

Output
B
U
S

Control

Datapath

Processor

Disk

Network

Introduction COE 301– KFUPM slide 18

Memory

 Ordered sequence of bytes

 The sequence number is called the memory address

 Byte addressable memory

 Each byte has a unique address

 Supported by almost all processors

 Physical address space

 Determined by the address bus width

 Pentium has a 32-bit address bus

 Physical address space = 4GB = 232 bytes

 Itanium with a 64-bit address bus can support

 Up to 264 bytes of physical address space

Introduction COE 301– KFUPM slide 19

Address Space

Address Space is

the set of memory

locations (bytes) that

can be addressed

Introduction COE 301– KFUPM slide 20

Address, Data, and Control Bus

 Address Bus

 Memory address is put on address bus

 If memory address = a bits then 2
a

locations are addressed

 Data Bus: bi-directional bus

 Data can be transferred in both directions on the data bus

 Control Bus

 Signals control

transfer of data

 Read request

 Write request

 Done transfer

Memory

0

1

2

3

2
a

– 1

. . .
read

write

done

data bus

address bus

Processor

d bits

a bitsAddress Register

Data Register

Bus Control

Introduction COE 301– KFUPM slide 21

Memory Devices
 Volatile Memory Devices

 Data is lost when device is powered off

 RAM = Random Access Memory

 DRAM = Dynamic RAM

 1-Transistor cell + trench capacitor

 Dense but slow, must be refreshed

 Typical choice for main memory

 SRAM: Static RAM

 6-Transistor cell, faster but less dense than DRAM

 Typical choice for cache memory

 Non-Volatile Memory Devices

 Stores information permanently

 ROM = Read Only Memory

 Used to store the information required to startup the computer

 Many types: ROM, EPROM, EEPROM, and FLASH

 FLASH memory can be erased electrically in blocks

Introduction COE 301– KFUPM slide 22

Arm provides read/write

heads for all surfaces

The disk heads are

connected together and

move in conjunction

Track 0
Track 1

Recording area

Spindle

Direction of

rotation

Platter

Read/write head

Actuator

Arm

Track 2

A Magnetic disk consists of

a collection of platters

Provides a number of

recording surfaces

Magnetic Disk Storage

Introduction COE 301– KFUPM slide 23

Magnetic Disk Storage

Track 0
Track 1

Sector

Recording area

Spindle

Direction of

rotation

Platter

Read/write head

Actuator

Arm

Track 2

Disk Access Time =

Seek Time +

Rotation Latency +

Transfer Time

Seek Time: head movement to the

desired track (milliseconds)

Rotation Latency: disk rotation until

desired sector arrives under the head

Transfer Time: to transfer data

Introduction COE 301– KFUPM slide 24

Example on Disk Access Time

 Given a magnetic disk with the following properties

 Rotation speed = 7200 RPM (rotations per minute)

 Average seek = 8 ms, Sector = 512 bytes, Track = 200 sectors

 Calculate

 Time of one rotation (in milliseconds)

 Average time to access a block of 32 consecutive sectors

 Answer

 Rotations per second

 Rotation time in milliseconds

 Average rotational latency

 Time to transfer 32 sectors

 Average access time

= 7200/60 = 120 RPS

= 1000/120 = 8.33 ms

= time of half rotation = 4.17 ms

= (32/200) * 8.33 = 1.33 ms

= 8 + 4.17 + 1.33 = 13.5 ms

Introduction COE 301– KFUPM slide 25

Processor-Memory Performance Gap

 1980 – No cache in microprocessor

 1995 – Two-level cache on microprocessor

CPU: 55% per year

DRAM: 7% per year
1

10

100

1000
1

9
8

0

1
9

8
1

1
9

8
3

1
9

8
4

1
9

8
5

1
9

8
6

1
9

8
7

1
9
8
8

1
9

8
9

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

1
9

8
2

Processor-Memory

Performance Gap:

(grows 50% per year)

P
e
rf

o
rm

a
n
c
e

“Moore’s Law”

Introduction COE 301– KFUPM slide 26

The Need for a Memory Hierarchy

 Widening speed gap between CPU and main memory

 Processor operation takes less than 1 ns

 Main memory requires more than 50 ns to access

 Each instruction involves at least one memory access

 One memory access to fetch the instruction

 A second memory access for load and store instructions

 Memory bandwidth limits the instruction execution rate

 Cache memory can help bridge the CPU-memory gap

 Cache memory is small in size but fast

Introduction COE 301– KFUPM slide 27

Typical Memory Hierarchy

 Registers are at the top of the hierarchy

 Typical size < 1 KB

 Access time < 0.5 ns

 Level 1 Cache (8 – 64 KB)

 Access time: 0.5 – 1 ns

 L2 Cache (64 KB – 8 MB)

 Access time: 2 – 10 ns

 Main Memory (1 – 64 GB)

 Access time: 50 – 70 ns

 Disk Storage (> 200 GB)

 Access time: milliseconds

Microprocessor

Registers

L1 Cache

L2 Cache

Memory

Disk, Tape, etc

Memory Bus

I/O Bus

F
a
s
te

r

B
ig

g
e
r

Introduction COE 301– KFUPM slide 28

Processor

 Datapath: part of a processor that executes instructions

 Control: generates control signals for each instruction

A
L
U

Registers

In
s

tr
u

c
ti

o
n

P
ro

g
ra

m
 C

o
u

n
te

r

Instruction

Cache

Next Program

Counter

Data

Cache

Control

Introduction COE 301– KFUPM slide 29

Datapath Components
 Program Counter (PC)

 Contains address of instruction to be fetched

 Next Program Counter: computes address of next instruction

 Instruction Register (IR)

 Stores the fetched instruction

 Instruction and Data Caches

 Small and fast memory containing most recent instructions/data

 Register File

 General-purpose registers used for intermediate computations

 ALU = Arithmetic and Logic Unit

 Executes arithmetic and logic instructions

 Buses

 Used to wire and interconnect the various components

Introduction COE 301– KFUPM slide 30

Fetch instruction

Compute address of next instruction

Generate control signals for instruction

Read operands from registers

Compute result value

Writeback result in a register

Fetch - Execute Cycle

Instruction Decode

Instruction Fetch

Execute

Writeback Result

In
fi

n
it

e
 C

y
c
le

 i
m

p
le

m
e
n

te
d

 i
n

 H
a
rd

w
a
re

Memory Access Read or write memory (load/store)

Introduction COE 301– KFUPM slide 31

Harvard Architecture

The Harvard architecture is a processor design that

physically separates data memory from program memory.

Access to each of the two memories is done through two

distinct buses.

Introduction COE 301– KFUPM slide 32

Difference between Von Neumann
and Harvard Architecture

Comparison Table

Introduction COE 301– KFUPM slide 33

Next . . .

 Assembly-, Machine-, and High-Level Languages

 Components of a Computer System

 Technology Improvements

 Programmer’s View of a Computer System

Introduction COE 301– KFUPM slide 34

Technology Improvements

 Vacuum tube → transistor → → VLSI

 Processor

 Transistor count: about 30% to 40% per year

 Memory

DRAM capacity: about 60% per year (4x every 3 yrs)

Cost per bit: decreases about 25% per year

 Disk

Capacity: about 60% per year

 Opportunities for new applications

 Better organizations and designs

Introduction COE 301– KFUPM slide 35

Growth of Capacity per DRAM Chip

 DRAM capacity quadrupled almost every 3 years

 60% increase per year, for 20 years

Introduction COE 301– KFUPM slide 36

Processor Performance

Almost 10000x improvement

between 1978 and 2005

Slowed down

by power and

memory latency

Introduction COE 301– KFUPM slide 37

Next . . .

 Assembly-, Machine-, and High-Level Languages

 Components of a Computer System

 Technology Improvements

 Programmer’s View of a Computer System

Introduction COE 301– KFUPM slide 38

Programmer’s View of a Computer System

Application Programs

High-Level Language

Assembly Language

Operating System

Instruction Set

Architecture

Microarchitecture

Physical Design
Level 0

Level 1

Level 2

Level 3

Level 4

Level 5
Increased level

of abstraction

Each level hides

the details of the

level below it

Software

Hardware

Interface

SW & HW

Introduction COE 301– KFUPM slide 39

Programmer’s View of a Computer System

 Application Programs (Level 5)

 Written in high-level programming languages

 Such as Java, C++, Pascal, Visual Basic . . .

 Programs compile into assembly language level (Level 4)

 Assembly Language (Level 4)

 Instruction mnemonics (symbols) are used

 Have one-to-one correspondence to machine language

 Calls functions written at the operating system level (Level 3)

 Programs are translated into machine language (Level 2)

Introduction COE 301– KFUPM slide 40

Programmer’s View of a Computer System

 Operating System (Level 3)

 Provides services to level 4 and 5 programs

 Translated to run at the machine instruction level (Level 2)

 Instruction Set Architecture (Level 2)

 Interface between software and hardware

 Specifies how a processor functions

 Machine instructions, registers, and memory are exposed

 Machine language is executed by Level 1 (microarchitecture)

Introduction COE 301– KFUPM slide 41

Programmer’s View of a Computer System

 Microarchitecture (Level 1)

 Controls the execution of machine instructions (Level 2)

 Implemented by digital logic

 Physical Design (Level 0)

 Implements the microarchitecture at the transistor-level

 Physical layout of circuits on a chip

