
Handbook
of Floating-Point
Arithmetic

Jean-Michel Muller
Nicolas Brunie
Florent de Dinechin
Claude-Pierre Jeannerod
Mioara Joldes
Vincent Lefèvre
Guillaume Melquiond
Nathalie Revol
Serge Torres

Second Edition

Chapter 3

Floating-Point Formats and
Environment

OUR MAIN FOCUS IN THIS CHAPTER is the IEEE1 754-2008 Standard for
Floating-Point Arithmetic [267], a revision and merge of the earlier

IEEE 754-1985 [12] and IEEE 854-1987 [13] standards. A paper written in 1981
by Kahan,Why Do We Need a Floating-Point Standard? [315], depicts the rather
messy situation of floating-point arithmetic before the 1980s. Anybody who
takes the view that the current standard is too constraining and that circuit
and system manufacturers could build much more efficient machines with-
out it should read that paper and think about it. Even if there were at that
time a few reasonably good environments, the various systems available then
were so different that writing portable yet reasonably efficient numerical soft-
ware was extremely difficult. For instance, as pointed out in [553], sometimes
a programmer had to insert multiplications by 1.0 to make a program work
reliably.

The IEEE 754-1985 Standard for Binary Floating-Point Arithmetic was
released in 1985, but the first meetings of the working group started more
than eight years earlier [553]. William Kahan, a professor at the University
of California at Berkeley, played a leading role in the development of the
standard.

IEEE 754-1985 drastically changed theworld of numerical computing, by
clearly specifying formats and the way exceptions must be handled, and by
requiring correct rounding of the arithmetic operations and the square root.
Two years later, another standard, the IEEE 854-1987 Standard for “Radix-
Independent” (in fact, radix 2 or 10) Floating-Point Arithmetic was released.
It generalized to radix 10 the main ideas of IEEE 754-1985.

1IEEE is an acronym for the Institute of Electrical and Electronics Engineers. For more
details, see https://www.ieee.org/about/index.html.

© Springer International Publishing AG, part of Springer Nature 2018
J.-M. Muller et al., Handbook of Floating-Point Arithmetic,
https://doi.org/10.1007/978-3-319-76526-6_3

47

jean-michel.muller@ens-lyon.fr

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76526-6_3&domain=pdf
https://www.ieee.org/about/index.html
https://doi.org/10.1007/978-3-319-76526-6_3

48 Chapter 3. Floating-Point Formats and Environment

IEEE 754-1985 was under revision between 2000 and 2008, and the new
standard was adopted in June 2008. In the following, it will be called IEEE
754-2008. In the literature published before its official release (e.g., [116]),
IEEE 754-2008 is sometimes called IEEE 754R. IEEE 754-2008 is also known
as ISO/IEC/IEEE 60559:2011 Information technology – Microprocessor Systems
– Floating-Point arithmetic [277]. At the time of writing these lines, IEEE 754-
2008 is under revision, and a new version (which will not be much different)
is to be released in 2018.

Some languages, such as Java and ECMAScript, are based on IEEE 754-
1985. The ISO C11 standard (released in 2011) for the C language has optional
support for IEEE 754-1985 in its normative annex F; support for IEEE 754-
2008 is planned for the C2x standard. Details will be given in Chapter 6.

The description of the IEEE standard given in this chapter is not exhaus-
tive: standards are big documents that contain many details. Anyone who
wants to implement a floating-point arithmetic function compliant to IEEE
754-2008 must carefully read that standard. Also, readers interested in the
older IEEE 754-1985 and IEEE 854-1987 standards will find brief descriptions
of them in Appendix B.

3.1 The IEEE 754-2008 Standard

3.1.1 Formats

The standard requires that the radix β be 2 or 10, and that for all formats, the
minimum and maximum exponents obey the following relation:

emin = 1− emax .

It defines several interchange formats, whose encodings are fully speci-
fied as bit strings, and that enable lossless data interchange between different
platforms.2 The main parameters of the interchange formats of size up to 128
bits are given in Tables 3.1 and 3.2.

A format is said to be an arithmetic format if all the mandatory operations
defined by the standard are supported by the format.

Among the interchange formats, the standard defines five basic formats
which must also be arithmetic formats: the three binary formats on 32, 64,
and 128 bits, and the two decimal formats on 64 and 128 bits. A conforming
implementation must implement at least one of them.

To implement a function that must return a result in a basic format,
it may be convenient to have the intermediate calculations performed in a
somewhat wider format:

2Platforms may exchange character strings, or binary data. In the latter case, endianness
problems (see Section 3.1.1.5) must be considered.

jean-michel.muller@ens-lyon.fr

3.1. The IEEE 754-2008 Standard 49

Name binary16 binary32 binary64 binary128
(basic) (basic) (basic)

Former name N/A single double N/A
precision precision

p 11 24 53 113
emax +15 +127 +1023 +16383
emin −14 −126 −1022 −16382

Table 3.1: Main parameters of the binary interchange formats of size up to 128 bits
specified by the 754-2008 standard [267]. In some articles and software libraries,
128-bit formats were sometimes called “quad precision.” However, quad precision
was not specified by IEEE 754-1985.

Name decimal32 decimal64 decimal128
(basic) (basic)

p 7 16 34
emax +96 +384 +6144
emin −95 −383 −6143

Table 3.2: Main parameters of the decimal interchange formats of size up to 128 bits
specified by the 754-2008 standard [267].

• the wider precision makes it possible to get a result that will almost
always be significantly more accurate than that obtained with the basic
format only;

• the wider range will drastically limit the occurrences of “apparent” or
“spurious” under/overflow (that is, cases where there is an underflow
or overflow in an intermediate result, whereas the final value would
have been in the range of the basic format).

For this purpose, the standard also defines an extended precision format as a
format that extends a basic format with a wider precision and range, in a
language-defined or implementation-defined way. Also, an extendable preci-
sion format is similar to an extended format, but its precision and range are
defined under program control. For both extended and extendable formats,
the standard does not specify the binary encoding: it may be a straightfor-
ward generalization of the encoding of an interchange format, or not. Offer-
ing extended or extendable formats is optional.

Finally, the standard requires that conversions between any two sup-
ported formats be implemented.

Let us now describe the interchange formats in more detail.

jean-michel.muller@ens-lyon.fr

50 Chapter 3. Floating-Point Formats and Environment

3.1.1.1 Binary interchange format encodings

The binary interchange formats, whose main parameters are given in Ta-
ble 3.1, are very much like the formats of the older IEEE 754-1985 standard.
Actually, the binary32 and binary64 formats correspond to the single- and
double-precision formats of IEEE 754-1985: the encodings are exactly the
same. However, IEEE 754-1985 did not specify any 128-bit format. What was
called “quad precision” in some articles and software libraries was some-
times slightly different from the new binary128 format of IEEE 754-2008.
Some authors call “half precision” the binary16 format.

As illustrated in Figure 3.1, a floating-point number is encoded using a
1-bit sign, aWE-bit exponent field, and a (p−1)-bit field for the trailing signif-
icand. Let us remindwhat wemean by “trailing significand.” Aswe are going
to see, the information according to which the number is normal or subnor-
mal is encoded in the exponent field. As already explained in Section 2.1.2,
since the first bit of the significand of a binary floating-point number is nec-
essarily a “1” if the number is normal (i.e., larger than or equal to 2emin) and
a “0” if the number is subnormal, there is no need to store that bit. We only
store the p − 1 other bits: these bits constitute the trailing significand (also
known as “fraction”). That choice of not storing the leftmost bit of the sig-
nificand is sometimes called the “hidden bit convention” or the “leading bit
convention.”

1 bit

WE bits p −1 bits

TES

MSB LSB

Figure 3.1: Binary interchange floating-point formats [267] (c©IEEE, 2008, with
permission).

Define E as the integer whose binary representation consists of the bits
of the exponent field, T as the integer whose representation consists of the
bits of the trailing significand field, and S as the sign bit. The binary encoding
(S,E, T) should be interpreted as follows [267]:

• if E = 2WE − 1 (i.e., E is a string of ones) and T #= 0, then a NaN,
either quiet (qNaN) or signaling (sNaN), is represented. A quiet NaN
is the default result of an invalid operation (e.g.,

√
−5.0), and for most

operations, a signaling NaN will signal the invalid operation exception
whenever it appears as an operand (see Section 3.1.7.1);

jean-michel.muller@ens-lyon.fr

3.1. The IEEE 754-2008 Standard 51

• if E = 2WE − 1 and T = 0, then (−1)S × (+∞) is represented;

• if 1 ≤ E ≤ 2WE − 2, then the (normal) floating-point number being
represented is

(−1)S × 2E−b ×
(
1 + T · 21−p

)
,

where the bias b is defined as b = emax = 2WE−1−1 (see Table 3.4 for the
actual values);

• if E = 0 and T #= 0, then the (subnormal) number being represented is

(−1)S × 2emin ×
(
0 + T · 21−p

)
;

• if E = 0 and T = 0, then the number being represented is the signed
zero (−1)S × (+0).

Biased exponent Ne

Trailing
significand
t1t2 . . . tp−1

Value represented

111 · · · 12 #= 000 · · · 02 NaN
111 · · · 12 000 · · · 02 (−1)s ×∞
000 · · · 02 000 · · · 02 (−1)s × 0
000 · · · 02 #= 000 · · · 02 (−1)s × 0.t1t2 . . . tp−1 × 2emin

0 < Ne < 2WE − 1 any (−1)s × 1.t1t2 . . . tp−1 × 2Ne−b

Table 3.3: How to interpret the encoding of an IEEE 754 binary floating-point num-
ber.

format binary16 binary32 binary64 binary128
former name N/A single double N/A

precision precision
storage width 16 32 64 128
p− 1, trailing
significand width 10 23 52 112

WE , exponent field width 5 8 11 15

b = emax 15 127 1023 16383
emin −14 −126 −1022 −16382

Table 3.4: Parameters of the encodings of binary interchange formats [267]. As stated
above, in some articles and software libraries, 128-bit formats were called “quad pre-
cision.” However, quad precision was not specified by IEEE 754-1985.

jean-michel.muller@ens-lyon.fr

52 Chapter 3. Floating-Point Formats and Environment

Smallest positive Smallest positive Largest finite
subnormal normal
2emin+1−p 2emin 2emax(2− 21−p)

binary16 2−14−10 2−14 (2− 2−10)× 215

≈ 5.96× 10−8 ≈ 6.10× 10−5 = 65504

binary32 2−126−23 2−126 (2− 2−23)× 2127

≈ 1.401× 10−45 ≈ 1.175× 10−38 ≈ 3.403× 1038

binary64 2−1022−52 2−1022 (2− 2−52)× 21023

≈ 4.941× 10−324 ≈ 2.225× 10−308 ≈ 1.798× 10308

binary128 2−16382−112 2−16382 (2− 2−112)× 216383

≈ 6.68× 10−4966 ≈ 3.36× 10−4932 ≈ 1.19× 104932

Table 3.5: Extremal values of the IEEE 754-2008 binary interchange formats.

Datum Sign Biased exponent Trailing significand
−0 1 00000000 00000000000000000000000
+0 0 00000000 00000000000000000000000
−∞ 1 11111111 00000000000000000000000
+∞ 0 11111111 00000000000000000000000
NaN 0 11111111 nonzero string

5 0 10000001 01000000000000000000000

Table 3.6: Binary encoding of various floating-point data in the binary32 format.

Table 3.3 summarizes this encoding. The sizes of the various fields are
given in Table 3.4, and extremal values are given in Table 3.5.

Table 3.6 gives examples of the binary encoding of various floating-point
values in the binary32 format. Let us now detail two examples.

Example 3.1 (Binary encoding of a normal number). Consider the binary32
number x whose binary encoding is

0 01101011 01010101010101010101010

sign exponent trailing significand

• the bit sign of x is a zero, which indicates that x ≥ 0;

• the biased exponent is neither 000000002 nor 111111112, which indicates that
x is a normal number. It is 011010112 = 10710, hence, since the bias in bi-
nary32 is 127, the actual exponent of x is 107− 127 = −20;

jean-michel.muller@ens-lyon.fr

3.1. The IEEE 754-2008 Standard 53

• by placing the hidden bit (which is a 1, since x is not subnormal) at the left of
the trailing significand, we get the significand of x:

1.010101010101010101010102 =
5592405

222
;

• hence, x is equal to

5592405

222
× 2−20 =

5592405

242

= 0.000001271565679417108185589313507080078125.

Example 3.2 (Binary encoding of a subnormal number). Consider the binary32
number x whose binary encoding is

1 00000000 01100000000000000000000

sign exponent trailing significand

• the bit sign of x is a one, which indicates that x ≤ 0;

• the biased exponent is 00000000, which indicates that x is a subnormal num-
ber. It is not a zero, since the significand field is not a string of zeros. Hence,
the real exponent of x is emin = −126;

• by placing the hidden bit (which is a 0, since x is subnormal) at the left of the
trailing significand, we get the significand of x:

0.011000000000000000000002 =
3

8
;

• hence, x is equal to

−3

8
× 2−126 = −4.408103815583578154882762014583421291819995837895

328205657818898544064722955226898193359375 × 10−39.

3.1.1.2 Decimal interchange format encodings

The decimal format encodings are more complex than the binary ones, for
several reasons.

• Two encoding systems are specified, called the decimal and binary encod-
ings: the members of the revision committee could not agree on a single
encoding system. The reason for that is that the binary encoding makes
a software implementation of decimal arithmetic easier, whereas the dec-
imal encoding is more suited for a hardware implementation. And yet,

jean-michel.muller@ens-lyon.fr

54 Chapter 3. Floating-Point Formats and Environment

despite this problem, one must understand that the set of representable
floating-point numbers is the same for both encoding systems, so that
this additional complexity will be transparent for most users. Also, a
conforming implementation must provide conversions between these
two encoding systems [267, §5.5.2].

• Contrary to the binary interchange formats, the sign, exponent, and
(trailing) significand fields are not fully separated: to preserve as much
accuracy as possible, some information on the significand is partly en-
coded in what used to be the exponent field and is hence called the
combination field.

• In the decimal formats, the representations (M, e) are not normalized
(i.e., it is not required that e should be minimal), so that a decimal
floating-point number may havemultiple valid representations. The set
of the various representations of a same number is called a cohort. As a
consequence, we will have to explain which exponent is preferred for the
result of an arithmetic operation.

• Even if the representation itself (that is, values of the sign, exponent,
and significand) of a number x (or an infinite, or a NaN) and the type
of encoding (binary or decimal) are chosen, a same number (or infinite,
or NaN) can still be encoded by different bit strings. One of them will
be said to be canonical.

Roughly speaking, the difference between the decimal and binary en-
codings of decimal floating-point numbers originates from a choice in the
encoding of the significand. The integral significand is a nonnegative integer
less than or equal to 10p − 1. One can encode it either in binary (which gives
the binary encoding) or in decimal (which gives the decimal encoding).

Concerning the decimal encoding, in the early days of computer arith-
metic, people would use binary coded decimal (BCD) encoding, where each
decimal digit was encoded by four bits. That encoding was quite wasteful,
since among the 16 possible values representable on four bits, only 10 were
actually used. Since 210 = 1024 is very close to 103 (and larger), one can de-
sign a much denser encoding by encoding three consecutive decimal digits
by a 10-bit declet [95]. Many possible ways of performing this encoding are
possible. The one chosen by the standard committee for the decimal encod-
ing of decimal numbers is given in Tables 3.10 (declet to decimal) and 3.11
(decimal to declet). It was designed to facilitate conversions: all these tables
have a straightforward hardware implementation and can be implemented in
three gate levels [184]. Note that Table 3.10 has 1024 possible inputs and 1000
possible outputs (hence, there is some redundancy), and Table 3.11 has 1000
possible inputs and outputs. This implies that there are 24 “noncanonical”

jean-michel.muller@ens-lyon.fr

3.1. The IEEE 754-2008 Standard 55

bit patterns,3 which are accepted as input values but cannot result from an
arithmetic operation. An encoding that contains a noncanonical bit pattern is
called noncanonical.

Let us explain more precisely why there is no clear separation between
an exponent field and a significand field (as is the case in the binary formats).
Consider as an example the decimal64 format (see Table 3.2). In that format,
emax = 384 and emin = −383; therefore, there are 768 possible values of the ex-
ponent. Storing all these values in binary in an exponent field would require
10 bits. Since we can store 1024 possible values in a 10-bit field, that would be
wasteful. This explains why it was decided to put all the information about
the exponent plus some other information in a “combination field,” where
will be stored:

• “classification” information: Does the datum represent a finite number,
or ±∞, or a NaN (see Section 3.1.7)?

• the exponent (if the datum represents a finite number);

• the leading part of the significand (if the datum represents a finite num-
ber); more precisely, the leading decimal digit (if the decimal encoding is
used) or 3 to 4 leading bits (if the binary encoding is used). The remain-
ing significand bits/digits are stored in the trailing significand field.

1 bit

w + 5bits t = J × 10 bits

TGS

MSB LSB

Figure 3.2: Decimal interchange floating-point formats [267] (c©IEEE, 2008, with
permission).

The widths of the various fields are given in Table 3.7. It is important
to note that in this table the bias b is related to the quantum exponent (see
Section 2.1.1), which means that if e is the exponent of x, if q = e− p+ 1 is its
quantum exponent, then the biased exponent E is

E = q + b = e− p+ 1 + b.

The floating-point format illustrated in Figure 3.2, with a 1-bit sign, a
(w + 5)-bit combination field, and a t = (J × 10)-bit trailing significand field
must be interpreted as follows [267]:

3Those of the form 01x11x111x, 10x11x111x, or 11x11x111x.

jean-michel.muller@ens-lyon.fr

56 Chapter 3. Floating-Point Formats and Environment

decimal32 decimal64 decimal128
storage width 32 64 128
t = 10J , trailing significand width 20 50 110
w + 5, combination field width 11 13 17
b = E − (e− p+ 1), bias 101 398 6176

Table 3.7: Width (in bits) of the various fields in the encodings of the decimal inter-
change formats of size up to 128 bits [267].

• if the most significant five bits of G (numbered from the left, G0 to
G4) are all ones, then the datum being represented is a NaN (see Sec-
tion 3.1.7.1). Moreover, if G5 is 1, then it is an sNaN, otherwise it is a
qNaN. In a canonical encoding of a NaN, the bits G6 to Gw+4 are all
zeros;

• if the most significant five bits of G are 11110, then the value being rep-
resented is (−1)S×(+∞). Moreover, the canonical encodings of infinity
have bits G5 to Gw+4 as well as trailing significand T equal to 0;

• if the most significant four bits of G, i.e., G0 to G3, are not all ones, then
the value being represented is a finite number, equal to

(−1)S × 10E−b × C. (3.1)

Here, the value E − b is the quantum exponent (see Section 2.1.1), where
b, the exponent bias, is equal to 101, 398, and 6176 for the decimal32,
decimal64, and decimal128 formats, respectively. E and C are obtained
as follows.

1. If the decimal encoding is used for the significand, then the least
significant w bits of the biased exponent E are made up of the bits
G5 to Gw+4 of G, whereas the most significant two bits of E and
the most significant two digits of C are obtained as follows:

– if the most significant five bits G0G1G2G3G4 of G are of the
form 110xx or 1110x, then the leading significand digit C0 is
8 +G4 (which equals 8 or 9), and the leading biased exponent
bits are G2G3;

– if the most significant five bits of G are of the form 0xxxx or
10xxx, then the leading significand digit C0 is 4G2+2G3+G4

(which is between 0 and 7), and the leading biased exponent
bits are G0G1.

jean-michel.muller@ens-lyon.fr

3.1. The IEEE 754-2008 Standard 57

The p− 1 = 3J decimal digits C1, . . . , Cp−1 of C are encoded by T ,
which contains J declets encoded in densely packed decimal (see
Tables 3.10 and 3.11). Note that if the most significant five bits ofG
are 00000, 01000, or 10000, and T = 0, then the significand is 0 and
the number represented is (−1)S × (+0).
Table 3.8 summarizes these rules.

2. If the binary encoding is used for the significand, then

– if G0G1 is 00, 01, or 10, then E is made up of the bits G0 to
Gw+1, and the binary encoding of the significandC is obtained
by prefixing the last 3 bits of G (i.e., Gw+2Gw+3Gw+4) to T ;

– ifG0G1 is 11 andG2G3 is 00, 01 or 10, thenE is made up of the
bits G2 to Gw+3, and the binary encoding of the significand C
is obtained by prefixing 100Gw+4 to T .

Remember that the maximum value of the integral significand is
10p − 1 = 103J+1 − 1. If the value of C computed as above is
larger than that maximum value, then the value used for C will
be zero [267], and the encoding will not be canonical. Table 3.9
summarizes these rules.

A decimal software implementation of IEEE 754-2008, based on the bi-
nary encoding of the significand, is presented in [116, 117]. Interesting in-
formation on decimal arithmetic can be found in [121]. A decimal floating-
pointmultiplier that uses the decimal encoding of the significand is presented
in [192].

Example 3.3 (Finding the encoding of a decimal number assuming decimal
encoding of the significands). Consider the number

x = 3.141592653589793× 100 = 3141592653589793× 10−15.

This number is exactly representable in the decimal64 format. Let us find its encod-
ing, assuming decimal encoding of the significands.

• First, the sign bit is 0;

• since the quantum exponent is −15, the biased exponent will be 383 (see
Table 3.7), whose 10-bit binary representation is 01011111112. One should
remember that the exponent is not directly stored in an exponent field, but
combined with the most significant digit of the significand in a combination
field G. Since the leading significand digit is 3, we are in the case

jean-michel.muller@ens-lyon.fr

58 Chapter 3. Floating-Point Formats and Environment

G
T

D
at
um

be
in
g
re
pr
es
en

te
d

11
11
1
0x

x
x
··
·x

an
y

qN
aN

11
11
1
1x

x
x
··
·x

an
y

sN
aN

11
11
0
x
x
x
x
··
·x

an
y

(−
1)

S
×
(+

∞
)

11
0x

x
··
·

or

11
10

x
··
·

T
0
T
1
··
·T

10
J
−
1

(−
1)

S
×
10

bi
na

ry
︷

︸︸
︷

G
2
G

3
G

5
G

6
··
·G

w
+
4
−
b
×
(8

+
G

4
)C

1
C
2
··
·C

p
−
1

︸
︷︷

︸
de

ci
m
al

w
ith

C
3j

+
1
C
3j

+
2
C
3j

+
3
de

du
ce
d
fr
om

T
10

j
T
10

j+
1
T
10

j+
2
··
·T

10
j+

9

fo
r
0
≤

j
<

J
us

in
g
Ta

bl
e
3.
10

.

0x
x
x
x
··
·

or

10
x
x
x
··
·

T
0
T
1
··
·T

10
J
−
1

(−
1)

S
×
10

bi
na

ry
︷

︸︸
︷

G
0
G

1
G

5
G

6
··
·G

w
+
4
−
b
×
(4
G

2
+
2G

3
+

G
4
)C

1
C
2
··
·C

p
−
1

︸
︷︷

︸
de

ci
m
al

w
ith

C
3j

+
1
C
3j

+
2
C
3j

+
3
de

du
ce
d
fr
om

T
10

j
T
10

j+
1
T
10

j+
2
··
·T

10
j+

9

fo
r
0
≤

j
<

J
us

in
g
Ta

bl
e
3.
10

.

Table 3.8: Decimal encoding of a decimal floating-point number (IEEE 754-2008).

jean-michel.muller@ens-lyon.fr

3.1. The IEEE 754-2008 Standard 59

G
T

D
at
um

be
in
g
re
pr
es
en

te
d

11
11
1
0x

x
x
··
·x

an
y

qN
aN

11
11
1
1x

x
x
··
·x

an
y

sN
aN

11
11
0
x
x
x
x
··
·x

an
y

(−
1)

S
×
(+

∞
)

00
x
x
x
··
·

or

01
x
x
x
··
·

or

10
x
x
x
··
·

T
0
T
1
··
·T

10
J
−
1

(−
1)

S
×
10

bi
na

ry
︷

︸︸
︷

G
0
G

1
G

2
··
·G

w
+
1
−
b
×
G

w
+
2
G

w
+
3
G

w
+
4
T
0
T
1
··
·T

10
J
−
1

︸
︷︷

︸
bi
na

ry
if
G

w
+
2
G

w
+
3
G

w
+
4
T
0
T
1
··
·T

10
J
−
1
≤

10
p
−
1,
ot
he

rw
is
e
(−

1)
S
×
(+

0)
.

11
00

x
x
x
··
·

or

11
01

x
x
x
··
·

or

11
10

x
x
x
··
·

T
0
T
1
··
·T

10
J
−
1

(−
1)

S
×
10

bi
na

ry
︷

︸︸
︷

G
2
G

3
G

4
··
·G

w
+
3
−
b
×
10
0G

w
+
4
T
0
T
1
··
·T

10
J
−
1

︸
︷︷

︸
bi
na

ry
if
10
0G

w
+
4
T
0
T
1
··
·T

10
J
−
1
≤

10
p
−
1,
ot
he

rw
is
e
(−

1)
S
×
(+

0)
.

Table 3.9: Binary encoding of a decimal floating-point number (IEEE 754-2008).

jean-michel.muller@ens-lyon.fr

60 Chapter 3. Floating-Point Formats and Environment

b6b7b8b3b4 d0 d1 d2

0xxxx 4b0 + 2b1 + b2 4b3 + 2b4 + b5 4b7 + 2b8 + b9
1 0 0xx 4b0 + 2b1 + b2 4b3 + 2b4 + b5 8 + b9
1 0 1xx 4b0 + 2b1 + b2 8 + b5 4b3 + 2b4 + b9
1 1 0xx 8 + b2 4b3 + 2b4 + b5 4b0 + 2b1 + b9
1 1 1 0 0 8 + b2 8 + b5 4b0 + 2b1 + b9
1 1 1 0 1 8 + b2 4b0 + 2b1 + b5 8 + b9
1 1 1 1 0 4b0 + 2b1 + b2 8 + b5 8 + b9
1 1 1 1 1 8 + b2 8 + b5 8 + b9

Table 3.10: Decoding the declet b0b1b2 · · · b9 of a densely packed decimal encoding to
three decimal digits d0d1d2 [267] (c©IEEE, 2008, with permission).

d00 d
0
1 d

0
2 b0 b1 b2 b3 b4 b5 b6 b7 b8 b9

0 0 0 d10 d
2
0 d

3
0 d11 d

2
1 d

3
1 0 d12 d

2
2 d

3
2

0 0 1 d10 d
2
0 d

3
0 d11 d

2
1 d

3
1 1 0 0 d32

0 1 0 d10 d
2
0 d

3
0 d12 d

2
2 d

3
1 1 0 1 d32

0 1 1 d10 d
2
0 d

3
0 1 0 d31 1 1 1 d32

1 0 0 d12 d
2
2 d

3
0 d11 d

2
1 d

3
1 1 1 0 d32

1 0 1 d11 d
2
1 d

3
0 0 1 d31 1 1 1 d32

1 1 0 d12 d
2
2 d

3
0 0 0 d31 1 1 1 d32

1 1 1 0 0 d30 1 1 d31 1 1 1 d32

Table 3.11: Encoding the three consecutive decimal digits d0d1d2, each of them being
represented in binary by four bits (e.g., d0 is written in binary d00d

1
0d

2
0d

3
0), into a 10-

bit declet b0b1b2 · · · b9 of a densely packed decimal encoding [267] (c©IEEE, 2008,
with permission).

jean-michel.muller@ens-lyon.fr

3.1. The IEEE 754-2008 Standard 61

“if the most significant five bits ofG are of the form 0xxxx or 10xxx, then
the leading significand digit C0 is 4G2 + 2G3 + G4 (which is between 0

and 7), and the leading biased exponent bits are G0G1.”

Hence,

– G0 and G1 are the leading biased exponent bits, namely 0 and 1;
– G2, G3, and G4 are the binary encoding of the first significand digit 3,
i.e., G2 = 0, and G3 = G4 = 1; and

– the bits G5 to G12 are the least significant bits of the biased exponent,
namely 01111111.

• Now, the trailing significand field T is made up of the five declets of the densely
packed decimal encoding of the trailing significand 141592653589793:

– the 3-digit chain 141 is encoded by the declet 0011000001, according to
Table 3.11;

– 592 is encoded by the declet 1010111010;
– 653 is encoded by the declet 1101010011;
– 589 is encoded by the declet 1011001111;
– 793 is encoded by the declet 1110111011.

• Therefore, the encoding of x is

0︸︷︷︸
sign

0101101111111︸ ︷︷ ︸
combination field

. . .

00110000011010111010110101001110110011111110111011︸ ︷︷ ︸
trailing significand field

.

Example 3.4 (Finding an encoding of a decimal number assuming binary en-
coding of the significands). Consider the number

x = 3.141592653589793× 100 = 3141592653589793× 10−15.

(This is the same number as in Example 3.3, but now we consider binary encoding,
in the decimal64 format.) The sign bit will be zero. Since 3141592653589793 is a
16-digit integer that does not end with a 0, the quantum exponent can only be −15;
therefore, the biased exponentE will be 398−15 = 383, whose binary representation
is 101111111. The binary representation of the integral significand of x is

10 11001010010100001100001010001001010110110100100001︸ ︷︷ ︸
t = 50 bits (trailing significand)

.

The length of this bit string is 52, which is less than t+ 4 = 54, hence we are not in
the case

jean-michel.muller@ens-lyon.fr

62 Chapter 3. Floating-Point Formats and Environment

“if G0G1 is 11 and G2G3 is 00, 01 or 10, then E is made up of the bits
G2 toGw+3, and the binary encoding of the significand C is obtained by
prefixing 100Gw+4 to T ,”

which means that we are in the case

“ifG0G1 is 00, 01, or 10, then E is made up of the bitsG0 toGw+1, and
the binary encoding of the significand C is obtained by prefixing the last
3 bits of G (i.e., Gw+2Gw+3Gw+4) to T .”

Therefore, G0G1 . . . G9 = 0101111111, G10G11G12 = 010 and T is made up with
the 50 rightmost bits of t, resulting in an encoding of x as

T = 11001010010100001100001010001001010110110100100001.

Example 3.5 (Finding the value of a decimal floating-point number from its
encoding, assuming decimal encoding of the significand). Consider the deci-
mal32 number x whose encoding is

1︸︷︷︸
sign

11101101101︸ ︷︷ ︸
combination field G

01101001101111000011︸ ︷︷ ︸
trailing significand field T

.

• Since the bit sign is 1, we have x ≤ 0;

• since the most significant four bits of G are not all ones, x is not an infinity or
a NaN;

• by looking at the most significant four bits of G, we deduce that we are in the
case

if the most significant five bits G0G1G2G3G4 of G are of the form 110xx

or 1110x, then the leading significand digit C0 is 8 +G4 (which equals 8
or 9), and the leading biased exponent bits are G2G3.

Therefore, the leading significand bit C0 is 8 +G4 = 9, and the leading biased
exponent bits are 10. The least significant bits of the exponent are 101101;
therefore, the biased exponent is 101011012 = 17310. Hence, the (unbiased)
quantum exponent of x is 173− 101 = 72;

• the trailing significand field T is made up of two declets, 0110100110 and
1111000011. According to Table 3.10,

– the first declet encodes the 3-digit chain 326;

– the second declet encodes 743.

• Therefore, x is equal to

−9326743× 1072 = −9.326743× 1078.

jean-michel.muller@ens-lyon.fr

3.1. The IEEE 754-2008 Standard 63

Example 3.6 (Finding the value of a decimal floating-point number from its
encoding, assuming binary encoding of the significand). Consider the deci-
mal32 number x whose encoding is

1︸︷︷︸
sign

11101101101︸ ︷︷ ︸
combination field G

01101001101111000011︸ ︷︷ ︸
trailing significand field T

.

(It is the same bit string as in Example 3.5, but now we consider binary encoding.)

• Since the bit sign is 1, we have x ≤ 0;

• since the most significant four bits of G are not all ones, x is not an infinity or
a NaN;

• since G0G1 = 11 and G2G3 = 10, we are in the case

if G0G1 is 11 and G2G3 is 00, 01, or 10, then E is made up of the
bits G2 to Gw+3, and the binary encoding of the significand C is
obtained by prefixing 100Gw+4 to T .

Therefore, the biased exponent E is 101101102 = 18210, which means that the
quantum exponent of x is 182− 101 = 81, and the integral significand of x is

1001011010011011110000112 = 987027510.

• Therefore, x is equal to

−9870275× 1081 = −9.870275× 1087.

3.1.1.3 Larger formats

The IEEE 754-2008 standard also specifies larger interchange formats for
widths of at least 128 bits that are multiples of 32 bits. Their parameters are
given in Table 3.12, and examples are given in Tables 3.13 and 3.14. This al-
lows one to define “big” (yet, fixed) precisions. A format is fully defined from
its radix (2 or 10) and size: the various parameters (precision, emin, emax, bias,
etc.) are derived from them, using the formulas given in Table 3.12. Hence,
binary1024 or decimal512 will mean the same thing on all platforms.

3.1.1.4 Extended and extendable precisions

Beyond the interchange formats, the IEEE 754-2008 standard partially speci-
fies the parameters of possible extended precision and extendable precision for-
mats. These formats are optional, and their binary encoding is not specified.

jean-michel.muller@ens-lyon.fr

64 Chapter 3. Floating-Point Formats and Environment

Parameter Binaryk format Decimalk format

(k is a multiple of 32)

k ≥ 128 ≥ 32

p k − *4 log2(k)++ 13 9× k
32 − 2

t p− 1 (p− 1)× 10/3

w k − t− 1 k − t− 6

emax 2w−1 − 1 3× 2w−1

emin 1− emax 1− emax

b emax emax + p− 2

Table 3.12: Parameters of the interchange formats. *u+ is u rounded to the nearest
integer, t is the trailing significand width, w is the width of the exponent field for
the binary formats, and the width of the combination field minus 5 for the decimal
formats, and b is the exponent bias [267], (c©IEEE, 2008, with permission).

Format p t w emin emax b

binary256 237 236 19 −262142 +262143 262143
binary1024 997 996 27 −67108862 +67108863 67108863

Table 3.13: Parameters of the binary256 and binary1024 interchange formats deduced
from Table 3.12. Variables p, t, w, emin, emax, and b are the precision, the trailing sig-
nificant field length, the exponent field length, the minimum exponent, the maximum
exponent, and the exponent bias, respectively.

• An extended precision format extends a basic format with a wider preci-
sion and range, and is either language defined or implementation de-
fined. The constraints on these wider precisions and ranges are listed
in Table 3.15. The basic idea behind these formats is that they should
be used to carry out intermediate computations, in order to return a fi-
nal result in the associated basic formats. The wider precision makes it
possible to get a result that will generally be more accurate than that ob-
tained with the basic formats only, and the wider range will drastically
limit the cases of “apparent under/overflow” (that is, cases where there
is an underflow or overflow in an intermediate result, whereas the final
value would have been representable). An example of extended preci-
sion format, still of importance, is the 80-bit “double-extended format”
(radix 2, precision 64, extremal exponents −16382 and 16383) specified
by the IA-32 instruction set.

jean-michel.muller@ens-lyon.fr

3.1. The IEEE 754-2008 Standard 65

Format p t w + 5 emax b

decimal256 70 230 25 +1572864 1572932
decimal512 142 470 41 +103079215104 103079215244

Table 3.14: Parameters of the decimal256 and decimal512 interchange formats de-
duced from Table 3.12. emin (not listed in the table) equals 1 − emax. Variables p,
t, w, emin, emax, and b are the precision, the combination field length, the exponent
field length, the minimum exponent, the maximum exponent, and the exponent bias,
respectively.

Extended formats associated with:
Parameter binary32 binary64 binary128 decimal64 decimal128
p ≥ 32 64 128 22 40
emax ≥ 1023 16383 65535 6144 24576
emin ≤ −1022 −16382 −65534 −6143 −24575

Table 3.15: Extended format parameters in the IEEE 754-2008 standard [267]
(c©IEEE, 2008, with permission).

• An extendable precision format is a format whose precision and range are
defined under user or program control. The standard says that lan-
guage standards supporting extendable precision shall allow users to
specify p and emax (or, possibly, p only with constraints on emax), and
define emin = 1− emax.

3.1.1.5 Little-endian, big-endian

The IEEE 754 standard specifies how floating-point data are encoded, but
only as a sequence of bits. How such a sequence of bits is ordered in the
memory depends on the platform. In general, the bits are grouped into bytes,
and these bytes are ordered according to what is called the endianness of the
platform. On big-endian platforms the most significant byte has the lowest
address. This is the opposite on little-endian platforms.

Some architectures, such as IA-64, ARM, and PowerPC are bi-endian, i.e.,
they may be either little-endian or big-endian depending on their configura-
tion.

For instance, the binary64 number that is closest to−7.0868766365730135
×10−268 is encoded by the sequence of bytes 11 22 33 44 55 66 77 88 on little-
endian platforms and by 88 77 66 55 44 33 22 11 on big-endian platforms.

When a format fits into several words (for instance, a 128-bit format on
a 64-bit processor), the order of the words does not necessarily follow the
endianness of the platform.

jean-michel.muller@ens-lyon.fr

66 Chapter 3. Floating-Point Formats and Environment

Endianness must be taken into account by users who want to exchange
data in binary between different platforms.

3.1.2 Attributes and rounding

The IEEE 754-2008 standard defines attributes as parameters, attached to a
program block, that specify some of its numerical and exception semantics.
The availability of rounding direction attributes is mandatory, whereas the
availability of alternate exception-handling attributes, preferred width attributes,
value-changing optimization attributes, and reproducibility attributes is recom-
mended only. Language standards must provide for constant specification
of the attributes, and should also allow for dynamic-mode specification of
them.

3.1.2.1 Rounding direction attributes

IEEE 754-2008 requires that the following operations and functions (among
others), called “General-computational operations” in [267], be correctly
rounded:

• arithmetic operations: addition, subtraction, multiplication, division,
fused multiply-add (FMA);

• unary functions: square root, conversion from a supported format to
another supported format.

Also, most conversions from a variable in a binary format to a decimal
character sequence (typically for printing), or from a decimal character se-
quence to a binary format, must be correctly rounded: see Section 3.1.5.

Let us now describe the various directed rounding attributes.

• The roundTowardPositive attribute corresponds to what was called the
round-toward +∞ mode in IEEE 754-1985. The rounding function (see
Section 2.2) is RU.

• The roundTowardNegative attribute corresponds to what was called
the round-toward −∞ mode in IEEE 754-1985. The rounding function
is RD.

• The roundTowardZero attribute corresponds to what was called the
round-toward-zero mode in IEEE 754-1985. The rounding function
is RZ.

Concerning rounding to nearest, the situation is somewhat different.
IEEE 754-1985 had one round-to-nearest mode only, named round-to-nearest

jean-michel.muller@ens-lyon.fr

3.1. The IEEE 754-2008 Standard 67

even. The IEEE 754-2008 standard specifies two rounding direction attributes to
nearest, which differ in the way of handling the case when an exact result is
halfway between two consecutive floating-point numbers:

• roundTiesToEven attribute: if the two nearest floating-point numbers
bracketing the exact result are equally near, the one whose least sig-
nificant significand digit is even is delivered. This corresponds to the
round-to-nearest-even mode of IEEE 754-1985 (in binary) and IEEE 854-
19874;

• roundTiesToAway attribute: in the same case as above, the value whose
magnitude is larger is delivered.

For instance, in the decimal64 format (p = 16), if the exact result of some
arithmetic operation is 1.2345678901234565, then the result returned
should be 1.234567890123456 with the roundTiesToEven attribute, and
1.234567890123457 with the roundTiesToAway attribute.

There is another important issue with rounding to nearest: In radix-β,
precision-p arithmetic, a number of absolute value greater than or equal to
βemax(β − 1

2β
−p+1) will be rounded to infinity (with the appropriate sign).

This of course is not what one would infer from a naive understanding of
the words round to nearest, but the advantage is clear: when the result of
an arithmetic operation is a normal number (including the largest one, Ω =
βemax(β − β−p+1)), we know that the relative error induced by that operation
is small. If huge numbers were rounded to the floating-point value that is re-
ally closest to them (namely, ±Ω), we would have no bound on the relative
error induced by an arithmetic operation whose result is ±Ω.

The standard requires that an implementation (be it binary or decimal)
provide the roundTiesToEven and the three directed rounding attributes. A
decimal implementation must also provide the roundTiesToAway attribute
(this is not required for binary implementations).

Having roundTiesToEven as the default rounding direction attribute is
mandatory for binary implementations and recommended for decimal im-
plementations. Whereas roundTiesToEven has several advantages (see [342]),
roundTiesToAway is useful for some accounting calculations. This is why
it is required for radix-10 implementations only, the main use of radix 10
being financial calculations. For instance, the European Council Regulation
No. 1103/97 of June 17th 1997 on certain provisions relating to the introduc-
tion of the Euro sets out a number of rounding and conversion rules. Among
them,

4The case where these floating-point numbers both have an odd least significant signif-
icand digit (this can occur in precision 1 only, possibly when converting a number such as
9.5 into a decimal string for instance) has been forgotten in the standard, but for the next
revision, it has been proposed—See http://speleotrove.com/misc/IEEE754-errata.html—to
deliver the one larger in magnitude.

jean-michel.muller@ens-lyon.fr

http://speleotrove.com/misc/IEEE754-errata.html

68 Chapter 3. Floating-Point Formats and Environment

If the application of the conversion rate gives a result which is exactly
half-way, the sum shall be rounded up.

3.1.2.2 Alternate exception-handling attributes

It is recommended (but not required) that language standards define means
for programmers to be able to associate alternate exception-handling at-
tributes with a block. The alternate exception handlers provide lists of ex-
ceptions (invalid operation, division by zero, overflow, underflow, inexact,
all exceptions) and specify what should be done when each of these excep-
tions is signaled. If no alternate exception-handling attribute is associated
with a block, the exceptions are treated as explained in Section 3.1.6 (default
exception handling).

3.1.2.3 Preferred width attributes

Consider an expression of the form

((a+ b)× c+ (d+ e))× f,

where a, b, c, d, e, and f are floating-point numbers, represented in the same
radix, but possibly with different formats. Variables a, b, c, d, e, and f are
explicit, but during the evaluation of that expression, there will also be implicit
variables; for instance, the result r1 of the calculation of a + b, and the result
r2 of the calculation of r1 × c. When more than one format is available on
the system under consideration, an important question arises: In which format
should these intermediate values be represented? That point was not very clear in
IEEE 754-1985. Many choices are possible for the “destination width” of an
implicit variable. For instance:

• one might prefer to always have these implicit variables in the largest
format provided in hardware. This choice will generally lead to more
accurate computations (although it is quite easy to construct counterex-
amples for which this is not the case);

• one might prefer to clearly specify a destination format. This will in-
crease the portability of the program being written;

• one might require the implicit variables to be of the same format as
the operands (and, if the operands are of different formats, to be of the
widest format among the operands). This also will improve the porta-
bility of programs and will ease the use of smart algorithms such as
those presented in Chapters 4, 5, and 11.

The standard recommends (but does not require) that the following pre-
ferredWidthNone and preferredWidthFormat attributes should be defined by
language standards.

jean-michel.muller@ens-lyon.fr

3.1. The IEEE 754-2008 Standard 69

preferredWidthNone attribute: When the user specifies a preferredWidth-
None attribute for a block, the destination width of an operation is the
maximum of the operand widths.

preferredWidthFormat attributes: When the user specifies a preferred-
WidthFormat attribute for a block, the destination width is the max-
imum of the width of the preferredWidthFormat and the operand
widths.

3.1.2.4 Value-changing optimization attributes

Some optimizations (e.g., generation of FMAs, use of distributive and as-
sociative laws) can enhance performance in terms of speed, and yet seri-
ously hinder the portability and reproducibility of results. Therefore, it makes
sense to let the programmer decide whether to allow them or not. The value-
changing optimization attributes are used in this case. The standard recom-
mends that language standards should clearly define what is called the “lit-
eral meaning” of the source code of a program (that is, the order of the oper-
ations and the destination formats of the operations). By default, the imple-
mentations should preserve the literal meaning. Language standards should
define attributes for allowing or disallowing value-changing optimizations
such as:

• applying relations such as x · y + x · z = x · (y + z) (distributivity), or
x+ (y + z) = (x+ y) + z (associativity);

• using FMAs for replacing, e.g., an expression of the form a · b+ c · d by
FMA(a, b, c · d);

• using larger formats for storing intermediate results.

3.1.2.5 Reproducibility attributes

The standard requires that conforming language standards should define
ways of expressing when reproducible results are required. To get repro-
ducible results, the programs must be translated into an unambiguous se-
quence of reproducible operations in reproducible formats. As explained in
the standard [267], when the user requires reproducible results:

• the execution behavior must preserve what the standard calls the literal
meaning of the source code5;

• conversions from and to external character strings must not bound the
value of the maximum precision H (see Section 3.1.5) of these strings;

5This implies that the language standards must specify what that literal meaning is: order
of operations, destination formats of operations, etc.

jean-michel.muller@ens-lyon.fr

70 Chapter 3. Floating-Point Formats and Environment

• when the reproducibility of some operation is not guaranteed, the user
must be warned;

• only default exception handling is allowed.

3.1.3 Operations specified by the standard

3.1.3.1 Arithmetic operations and square root

The IEEE 754-2008 standard requires that addition, subtraction, multiplica-
tion, FMA, division, and square root of operands of any supported format be
provided, with correct rounding (according to the supported rounding direc-
tion attributes) to any of the supported formats with same radix.

In other words, it not only mandates support of these basic operations
with identical input and output formats (homogeneous operations in the stan-
dard’s terminology), but also with different input and output formats (for-
matOf -operations in the standard). The hardware typically supports the ho-
mogeneous case, which is the most common, and heterogeneous operations
can be provided at low cost in software [400].

When the sum or difference of two numbers is exactly zero, the returned
result is zero, with a + sign in the round-to-nearest, round-toward-zero, and
round-toward +∞ modes, and with a − in the round-toward −∞ mode, ex-
cept for x + x and x − (−x) with x being ±0, in which case the result has
the same sign as x. As noticed by Boldo et al. [51], this means that x+ 0 can-
not be blindly replaced by x: when x is −0, assuming round-to-nearest, +0
must be returned. Compiler designers should be aware of such subtleties (see
Section 6.2.3.4).

Concerning square root, the result is defined and has a positive sign
for all input values greater than or equal to zero, with the exception6 that√
−0 = −0.

3.1.3.2 Remainders

The remainder must also be provided, but only in homogeneous variants.
There are several different definitions of remainders [62]; here is the one
chosen for the standard. If x is a finite floating-point number and y is a fi-
nite, nonzero floating-point number, then the remainder r = x REM y is
defined as

1. r = x− y × n, where n is the integer nearest to the exact value x/y;

6This rule (which may help in implementing complex functions [317]) may seem strange,
but the most important point is that any sequence of exact computations on real numbers will
give the correct result, even when

√
−0 is involved. Also let us recall that −0 is regarded as a

null value, not a negative number.

jean-michel.muller@ens-lyon.fr

3.1. The IEEE 754-2008 Standard 71

2. if x/y is an odd multiple of 1/2 (i.e., there are two integers nearest to
x/y), then n is even;

3. if r = 0, its sign is that of x.

A consequence of this definition is that remainders are always exactly rep-
resentable, which implies that the result returned does not depend on the
rounding function.

The result of x REM∞ is x.

3.1.3.3 Preferred exponent for arithmetic operations in the decimal format

Let Q(x) be the quantum exponent of a floating-point number x. Since some
numbers in the decimal format have several possible representations (asmen-
tioned in Section 3.1.1.2, the set of their representations is a cohort), the stan-
dard specifies for each operation which exponent is preferred for represent-
ing the result of a calculation. The rule to be followed is:

• if the result of an operation is inexact, the cohort member of smallest
exponent is used;

• if the result of an operation is exact, then if the result’s cohort includes
a member with the preferred exponent (see below), that member is re-
turned; otherwise, the member with the exponent closest to the pre-
ferred exponent is returned.

The preferred quantum exponents for the most common operations are:

• x+ y and x− y: min(Q(x), Q(y));

• x× y: Q(x) +Q(y);

• x/y: Q(x)−Q(y);

• FMA(x, y, z) (i.e., xy + z using an FMA):min(Q(x) +Q(y), Q(z));

•
√
x: *Q(x)/2,.

3.1.3.4 scaleB and logB

When designing fast software for evaluating elementary functions, or for ef-
ficiently scaling variables (for instance, to write robust code for computing
functions such as

√
x2 + y2), it is sometimes very useful to have functions

x · βn and *logβ |x|,, where β is the radix of the floating-point system, n is an
integer, and x is a floating-point number. This is the purpose of the functions
scaleB and logB:

jean-michel.muller@ens-lyon.fr

72 Chapter 3. Floating-Point Formats and Environment

• scaleB(x, n) is equal to x · βn, correctly rounded7 (following the round-
ing direction attribute);

• when x is finite and nonzero, logB(x) equals *logβ |x|,. When the output
format of logB is a floating-point format, logB(NaN) is NaN, logB(±∞)
is +∞, and logB(±0) is −∞.

3.1.3.5 Miscellaneous

The standard defines many useful operations, see [267]. Some examples are

• nextUp(x), which returns the smallest floating-point number in the for-
mat of x that is greater than x;

• maxNum(x, y), which returns the maximum of x and y (the next re-
vision plans to replace the current minimum/maximum operations to
solve an issue as explained in Section 3.1.7.1);

• class(x), which tells whether x is a signaling NaN, a quiet NaN, −∞,
a negative normal number, a negative subnormal number, −0, +0, a
positive subnormal number, a positive normal number, or +∞.

3.1.4 Comparisons

It must be possible to compare two floating-point numbers, in all formats
specified by the IEEE 754-2008 standard, even if their formats differ, provided
that they have the same radix. This can be done either by means of a condi-
tion code identifying one of the fourmutually exclusive following conditions:
less than, equal, greater than, and unordered; or as a Boolean response to a pred-
icate that gives the desired comparison. The unordered condition arises when
at least one of its operands is a NaN: a NaN compares unordered with every-
thing including itself. A consequence of this is that the test

x #= x

returns truewhen x is a NaN. As pointed out by Kahan [318], this provides a
way of checking if a floating-point datum is a NaN in languages that lack an
instruction for doing that (assuming the test is not optimized out). The other
tests involving a NaN will return false. Hence, the test

x ≤ y

is not always equivalent to the test

not(x > y).

7In most cases, x ·βn is exactly representable so that there is no rounding at all, but requir-
ing correct rounding is the simplest way of defining what should be returned if the result is
outside the normal range.

jean-michel.muller@ens-lyon.fr

3.1. The IEEE 754-2008 Standard 73

If at least one of the two operands is a NaN, the first test will return false
whereas the second one will return true.

Also, the test +0 = −0must return true.
Again, users and especially compiler designers should be aware of these

subtleties.
As mentioned above, floating-point data represented in different for-

mats specified by the standard must be comparable, but only if these formats
have the same radix; the standard does not require that comparing a decimal
and a binary number should be possible without a preliminary conversion.
Such mixed-radix comparisons appear extremely rarely in programs written
by good programmers and, at the time the standard was released, it seemed
very tricky to implement them without preliminary conversion. Performing
correct comparisons, however, is presumably easier than what was believed
(see [73, 40]).

3.1.5 Conversions to/from string representations

Concerning conversions between an external decimal or hexadecimal char-
acter sequence and an internal binary or decimal format, the requirements
of IEEE 754-2008 are much stronger than those of IEEE 754-1985. They are
described as follows.

1. Conversions between an external decimal character sequence and a
supported decimal format: Input and output conversions are correctly
rounded (according to the applicable rounding direction).

2. Conversions between an external hexadecimal character sequence and
a supported binary format: Input and output conversions are also cor-
rectly rounded (according to the applicable rounding direction). They
have been specified to allow any binary number to be represented ex-
actly by a finite character sequence.

3. Conversions between an external decimal character sequence and a
supported binary format: first, for each supported binary format, de-
fine a value p10 as the minimum number of decimal digits in the deci-
mal external character sequence that allows for an error-free write-read
cycle, as explained in Section 4.9. Table 3.16, which gives the value of
p10 from the various basic binary formats of the standard, is directly
derived from Table 4.2.

The standard requires that there should be an implementation-defined
value H , preferably unbounded, and in any case larger than or equal
to 3 plus the largest value of p10 for all supported binary formats, such
that the conversions are correctly rounded to and from external decimal
character sequences with any number of significant digits between 1

jean-michel.muller@ens-lyon.fr

74 Chapter 3. Floating-Point Formats and Environment

format binary32 binary64 binary128
p10 9 17 36

Table 3.16: Minimum number of decimal digits in the decimal external character
sequence that allows for an error-free write-read cycle, for the various basic binary
formats of the standard. See Section 4.9 for further explanation.

and H . This implies that these conversions must always be correctly
rounded if H is unbounded.

For output conversions, if the external decimal format has more than
H significant digits, then the binary value is correctly rounded toH dec-
imal digits and trailing zeros are appended to fill the output format. For
input conversions, if the external decimal format has more than H sig-
nificant digits, then the internal binary number is obtained by first cor-
rectly rounding the value to H significant digits (according to the ap-
plicable rounding direction), then by correctly rounding the resulting
decimal value to the target binary format (with the applicable rounding
direction). In the directed rounding directions, these rules allow inter-
vals to be respected (interval arithmetic is dealt with in Chapter 12).

More details are given in the standard [267].

3.1.6 Default exception handling

The IEEE 754-2008 standard supports the five exceptions already listed in
Section 2.5. Let us examine them.

3.1.6.1 Invalid operation

This exception is signaled each time there is no satisfactory way of defining
the numeric result of some operation. The default result of such an operation
is a quiet NaN (see Section 3.1.7.1), and it is recommended that its payload
contains some diagnostic information. The operations that lead to an invalid
operation exception are:

• an operation on a signaling NaN (see Section 3.1.7.1), for most opera-
tions;

• a multiplication of the form 0×∞ or∞× 0;

• an FMA of the form FMA(0,∞, x) (i.e., 0 × ∞ + x) or FMA(∞, 0, x),
unless x is a quiet NaN (in that last case, whether the invalid operation
exception is signaled is implementation defined);

• additions/subtractions of the form (−∞) + (+∞) or (+∞)− (+∞);

jean-michel.muller@ens-lyon.fr

3.1. The IEEE 754-2008 Standard 75

• FMAs that lead to the subtraction of infinities of the same sign (e.g.,
FMA(+∞,−1,+∞);

• divisions of the form 0/0 or∞/∞;

• remainder(x, 0), where x is not a NaN;

• remainder(∞, y), where y is not a NaN;

•
√
x where x < 0;

• conversion of a floating-point number x to an integer, where x is ±∞,
or a NaN, or when the result would lie outside the range of the chosen
integer format;

• comparison using unordered-signaling predicates (called in the
standard compareSignalingEqual, compareSignalingGreater, compare-
SignalingGreaterEqual, compareSignalingLess, compareSignalingLess-
Equal, compareSignalingNotEqual, compareSignalingNotGreater,
compareSignalingLessUnordered, compareSignalingNotLess, and
compareSignalingGreaterUnordered), when the operands are
unordered;

• logB(x) where x is NaN or∞;

• logB(0)when the output format of logB is an integer format (when it is
a floating-point format, the value to be returned is −∞).

3.1.6.2 Division by zero

The words “division by zero” are misleading, since this exception is sig-
naled whenever an exact infinite result is obtained from an operation on finite
operands. The most frequent case, of course, is the case of a division by zero,
but this can also appear, e.g., when computing the logarithm of zero or the
arctanh of 1. An important case is logB(0) when the output format of logB is
a floating-point format. The result returned is infinity, with the correct sign.

3.1.6.3 Overflow

Let us call an intermediate result what would have been the rounded result
if the exponent range were unbounded. The overflow exception is signaled
when the absolute value of the intermediate result is finite and strictly larger
than the largest finite number Ω = (β − β1−p) · βemax , or equivalently, when it
would have an exponent strictly larger than emax. When an overflow occurs,
the result returned depends on the rounding direction attribute:

jean-michel.muller@ens-lyon.fr

76 Chapter 3. Floating-Point Formats and Environment

• it will be ±∞ with the two “round-to-nearest” attributes, namely
roundTiesToEven and roundTiesToAway, with the sign of the inter-
mediate result;

• it will be ±Ω with the roundTowardZero attribute, with the sign of the
intermediate result;

• it will be +Ω for a positive intermediate result and −∞ for a negative
one with the roundTowardNegative attribute;

• it will be −Ω for a negative intermediate result and +∞ for a positive
one with the roundTowardPositive attribute.

Furthermore, the overflow flag is raised and the inexact exception is signaled.
It is important to understand three consequences of these rules:

• as we have already seen, with the two “round-to-nearest” attributes, if
the absolute value of the exact result of an operation is greater than or
equal to

βemax ·
(
β − 1

2
β1−p

)
= Ω+

1

2
ulp(Ω),

then an infinite result is returned, which is not what one could expect
from a naive interpretation of the words “round to nearest”;

• “overflow” is not equivalent to “infinite result returned”;

• with the roundTowardZero attribute, “overflow” is not equivalent to
“±Ω is returned”: if the absolute value of the exact result of some oper-
ation is larger than or equal to Ω, and strictly less than βemax , then ±Ω
is returned, and yet there is no overflow.

3.1.6.4 Underflow

The underflow exception is signaled when a nonzero result whose absolute
value is strictly less than βemin is computed.

• For binary formats, unfortunately, there is some ambiguity in the stan-
dard.8 See Section 2.1.3 for more explanation. The underflow can be
signaled either before rounding, that is, when the absolute value of the
exact result is nonzero and strictly less than 2emin , or after rounding, that
is, when the absolute value of a nonzero result computed as if the expo-
nent range were unbounded is strictly less than 2emin . In rare cases, this
can make a difference, for instance, when computing

FMA
(
−2emin , 2−p−1, 2emin

)

8This problem was already there in the 1985 version of the standard. The choice of not
giving a clearer specification in IEEE 754-2008 probably results from the desire to keep existing
implementations conforming to the standard.

jean-michel.muller@ens-lyon.fr

3.1. The IEEE 754-2008 Standard 77

in rounding to nearest, an underflow will be signaled if this is done
before rounding, but not if it is done after rounding.

• For decimal formats, there is no ambiguity and the underflow result is
signaled before rounding, i.e., when the absolute value of the exact result
is nonzero and strictly less than 10emin .

The result is always correctly rounded: the choice (in the binary case) of how
the underflow is detected (that is, before or after rounding) has no influence
on the result delivered.

In case of underflow, if the result is inexact, then the underflow flag is
raised and the inexact exception is signaled. If the result is exact, then the un-
derflow flag is not raised. This might sound strange, but this was an adroit
choice of the IEEE working group: the major use of the underflow flag is
for warning that the result of some operation might not be very accurate—
in terms of relative error. Thus, raising it when the operation is exact would
be a needless warning. This should not be thought of as an extremely rare event:
indeed, Theorem 4.2 shows that with any of the two round-to-nearest round-
ing direction attributes, whenever an addition or subtraction underflows, it
is performed exactly.

3.1.6.5 Inexact

If the result of an operation differs from the exact result, then the inexact
exception is signaled. The correctly rounded result is returned.

3.1.7 Special values

3.1.7.1 NaN: Not a Number

The standard defines two types of NaNs:

• signaling NaNs (sNaNs) do not appear, in default mode, as the result of
arithmetic operations. Except for the sign-bit operations (such as copy,
negate, and absolute value), decimal re-encoding operations, and some
conversions, they signal the invalid operation exception whenever they
appear as operands. For instance, they can be used for uninitialized
variables;

• quiet NaNs (qNaNs) propagate through almost all operations9 without
signaling exceptions. They can be used for debugging and diagnostic
purposes. As stated above, for operations that deliver a floating-point
result, the default exception handling is that a quiet NaN is returned

9There are a few exceptions to this rule (but not with the basic arithmetic operations): for
instance it is recommended that pow(+1, y) should be 1 even if y is a quiet NaN (this partial
function being constant).

jean-michel.muller@ens-lyon.fr

78 Chapter 3. Floating-Point Formats and Environment

whenever an invalid operation exception occurs; this rule is valid for
all operations of IEEE 754-2008, but the new revision plans to introduce
new operations that will not follow it, as explained below.

For example, qNaN× 8, sNaN+ 5, and
√
−2 all give qNaN.

An issue with the various rules on NaNs is that from a signaling NaN,
one may get a non-NaN result. Thus users who wish to detect the use of
uninitialized variables via signaling NaNs should test the invalid operation
exception instead of the result. Moreover, these rules make the current oper-
ations that return the minimum or maximum of two data10 non-associative,
which is an issue in some contexts, such as parallel processing; for instance:

• minNum(1,minNum(1, sNaN)) → minNum(1,qNaN) → 1;

• minNum(minNum(1, 1), sNaN) → minNum(1, sNaN) → qNaN.

The next revision plans to replace these operations by ones that will be asso-
ciative, thus with specific rules.11

We have seen in Section 3.1.1 that in the binary interchange formats, the
least significant p− 2 bits of a NaN are not defined, and in the decimal inter-
change formats, the trailing significand bits of a NaN are not defined. These
bits can be used for encoding the payload of the NaN, i.e., some information
that can be transmitted through the arithmetic operation for diagnostic pur-
poses. To preserve this diagnostic information, for an operation with quiet
NaN inputs and a quiet NaN result, the returned result should be one of
these input NaNs.

3.1.7.2 Arithmetic of infinities and zeros

The arithmetic of infinities and zeros follows the intuitive rules. For instance,
−1/(−0) = +∞, −5/(+∞) = −0,

√
+∞ = +∞ (the only somewhat counter

intuitive property is
√
−0 = −0). This very frequently allows one to get sen-

sible results even when an underflow or an overflow has occurred. And yet,
one should be cautious. Consider for instance, assuming round-to-nearest
(with any choice in case of a tie), the computation of

f(x) =
x√

1 + x2
,

for
√
Ω < x ≤ Ω, where Ω is the largest finite floating-point number. The

computation of x2 will return an infinite result; hence, the computed value of√
1 + x2 will be +∞. Since x is finite, by dividing it by an infinite value we

10These operations regard qNaN as missing data, but not sNaN.
11This means that in the case where a NaN is not regarded as missing data, qNaN must

propagate even when the partial function is constant. For instance, the minimum function on
(qNaN,−∞) will return qNaN instead of −∞.

jean-michel.muller@ens-lyon.fr

3.2. On the Possible Hidden Use of a Higher Internal Precision 79

will get +0. Therefore, the computed value of f(x), for x large enough, will
be+0, whereas the exact value of f(x) is extremely close to 1. This shows, for
critical applications, the need either to prove in advance that an overflow/un-
derflow cannot happen, or to check, by testing the appropriate flags, that an
overflow/underflow has not happened.

3.1.8 Recommended functions

The standard recommends (but does not require) that the following functions
should be correctly rounded: ex, ex − 1, 2x, 2x − 1, 10x, 10x − 1, ln(x), log2(x),
log10(x), ln(1+x), log2(1+x), log10(1+x),

√
x2 + y2, 1/

√
x, (1+x)n, xn, x1/n

(n is an integer), sin(πx), cos(πx), arctan(x)/π, arctan(y/x)/π, sin(x), cos(x),
tan(x), arcsin(x), arccos(x), arctan(x), arctan(y/x), sinh(x), cosh(x), tanh(x),
sinh−1(x), cosh−1(x), tanh−1(x) (note that the power function xy is not in this
list). This was not the case with the previous version (754-1985) of the stan-
dard.

See Section 10.5 for an introduction to the various issues linked with the
correct rounding of transcendental functions.

3.2 On the Possible Hidden Use of a Higher Internal
Precision

The processor being used may offer an internal precision that is wider than
the precision of the variables of a program (a typical example is the double-
extended format available on Intel platforms whenwe use the x87 instruction
set, when the variables of the program are binary32 or binary64 floating-point
numbers). This may sometimes have strange side effects, as wewill see in this
section.

Consider the C program (Program 3.1).

#include <stdio.h>

int main(void)
{

double a = 1848874847.0;
double b = 19954562207.0;
double c;
c = a * b;
printf("c = %20.19e\n", c);
return 0;

}

Program 3.1: A C program that might induce a double rounding.

Table 3.17 gives some results returned by this program, depending

jean-michel.muller@ens-lyon.fr

80 Chapter 3. Floating-Point Formats and Environment

on the compilation options. In order to really test the arithmetic of the
machine, it is important that the compiler does not optimize the multi-
plication by performing it at compile time (one controls even less what
occurs at compile time); by default, GCC does not do such an optimiza-
tion. Note that the double-precision number closest to the exact product is
3.6893488147419111424e+19.

Switches on the
GCC command line Output

no switch (default) c = 3.6893488147419111424e+19
-mfpmath=387 c = 3.6893488147419103232e+19

Table 3.17: Results returned by Program 3.1 on a Linux/Debian 64-bit Intel Xeon
CPU platform, with GCC 7.2.0, depending on the compilation options. On a 64-bit
platform, the default is to use the SSE registers.

What happened? The exact value of a*b is 36893488147419107329, whose
binary representation is

64 bits︷ ︸︸ ︷
100︸ ︷︷ ︸

53 bits

10000000000 01

On the processor used, with the -mfpmath=387 switch, the product is first
rounded to the precision of the x87 registers (namely, “double-extended” pre-
cision), which gives (in binary)

64 bits︷ ︸︸ ︷
100︸ ︷︷ ︸

53 bits

10000000000×4

Then, that intermediate value is rounded to the binary64 destination for-
mat, which gives (using the round-to-nearest-even rounding mode)

100︸ ︷︷ ︸
53 bits

× 213

= 3689348814741910323210,

whereas the product a*b correctly rounded to the nearest binary64 number is

10001︸ ︷︷ ︸
53 bits

× 213

= 3689348814741911142410.

jean-michel.muller@ens-lyon.fr

3.2. On the Possible Hidden Use of a Higher Internal Precision 81

In general, by default,12 the product is directly stored in the 64-bit Stream-
ing SIMD Extension (SSE) registers. In that case, it is directly rounded to bi-
nary64, so that we get the expected result.

The problem we have faced here is called “double rounding.” In this
example, it appears during a multiplication, but it may also appear during
another arithmetic operation. Another example (still with binary64 input val-
ues) is the addition of

9223372036854775808.0 = 263

and
1024.25.

Such examples are not so rare that they can be neglected. Assuming bi-
nary64 variables and an Intel “double-extended” internal format, if the cho-
sen compilation switches (or the default mode) do not prevent the problem
from occurring, the double rounding problem occurs when the binary expan-
sion of the exact result of some operation is of the form

2k ×
53 bits︷ ︸︸ ︷

1.xxxxx · · ·xx0
11 bits︷ ︸︸ ︷

10000000000 0
at least one 1 somewhere︷ ︸︸ ︷

xxxxxxxxxxxxxxxxxxxxxx · · ·

or

2k ×
53 bits︷ ︸︸ ︷

1.xxxxx · · ·xx1
11 bits︷ ︸︸ ︷

01111111111 1
at least one 0 somewhere︷ ︸︸ ︷

xxxxxxxxxxxxxxxxxxxxxx · · · .

Assuming equal probabilities of occurrence for the zeros and ones in the
binary expansion of the result of an arithmetic operation,13 the probability
of a double rounding is 2−12 = 1/4096, which means that without care with
the compilation options, double roundings will occur in any computation of
significant size. Wemust emphasize that this might be a problemwith certain
very specific algorithms (such as those presented in Chapter 4, see [409] for a
discussion on that topic), but with most calculations, it will be unnoticed.

The possible, sometimes hidden, use of a larger internal precision may
also lead to a management of overflow and underflow that is sometimes dif-
ficult to predict. Consider Program 3.2, due to Monniaux [423].

Compiled with GCC 4.9.2 under Linux on an Intel(R) Xeon(R) CPU E5-
2695 v2 processor, the program returns +∞. If we add the -mfpmath=387
command line option, we get 1e+308. What happened? Although in binary64
arithmetic, with the round-to-nearest ties-to-even (i.e., the default) rounding
function, the multiplication v * v should return +∞, in the program com-
piled with the -mfpmath=387 option, the implicit variable representing this

12But it is the default on recent systems only.
13Which is not very realistic but suffices to get a rough estimate of the frequency of occur-

rences of double roundings.

jean-michel.muller@ens-lyon.fr

82 Chapter 3. Floating-Point Formats and Environment

#include <stdio.h>
int main(void)
{

double v = 1E308;
double x = (v * v) / v;
printf("%g\n",x);
return 0;

}

Program 3.2: This example is due to David Monniaux [423]. Compiled with GCC
under Linux, we get 1e+308 with the command line option -mfpmath=387 and +∞
without it.

product was actually stored in a “double-extended” precision register of the
x87 instruction set of the processor. And since the product v * v is much be-
low the overflow threshold in double-extended precision, the stored value
was not +∞, but the double-extended number closest to the exact product.

It is important to note that, in this case, the result obtained is very accu-
rate, which is not so surprising: in most cases, using a larger internal precision
for intermediate calculations leads to better calculations.Whatmatters then is
not to forbid the behavior, but to allow programmers to decide if theywant all
intermediate calculations to be performed in the format of the operands or in
a format they clearly specify (which enhances portability and provability), or
if they prefer these intermediate calculations to be performed in a wider for-
mat whenever available (typically, the largest format available in hardware,
which in general improves the accuracy of the results). A tradeoff is to be
found between portability, accuracy, and (frequently) speed. Choosing which
among these criteria is the most important should be the programmer’s task,
not the compiler’s. This is a reason for the introduction of the preferred width
attributes in IEEE 754-2008 (see Section 3.1.2.3).

3.3 Revision of the IEEE 754-2008 Standard

At the time we are writing this book, the IEEE 754-2008 standard is under
revision. The next version should be released in 2018. The goal of the revision
committee is mainly to deal with the errata and improve clarity; hence the
standard will be almost unchanged. Since the next version is not yet adopted,
we cannot be definite about its contents. However, the main changes are ex-
pected to be:

• the replacement of the current Min/Max operations by new ones (see
Section 3.1.7.1);

• recommended “augmented” addition and multiplication operations,
which would more or less return the same results as the 2Sum and

jean-michel.muller@ens-lyon.fr

3.4. Floating-Point Hardware in Current Processors 83

Fast2Sum algorithms (described in Chapter 4): the sum or product x of
two floating-point numbers would be expressed as a “double word,”
that is, a pair of floating-point numbers xh and x" such that xh = RN(x)
and x = xh + x". It is likely that in these operations, the RN function
will be round to nearest ties-to-zero.

3.4 Floating-Point Hardware in Current Processors

Virtually all recent computers are able to support the IEEE 754 standard ef-
ficiently through a combination of hardware and software. This section re-
views the hardware that can be found in mainstream systems. It should be
understood that the line between hardware and software support is drawn
by hardware vendors depending on the demand of the target market. To take
just a few examples,

• IBM supports decimal floating-point in hardware [184, 548] (with the
decimal encoding), while Intel provides well-tuned software imple-
mentations [117] (with the binary encoding). These encodings are pre-
sented in Section 3.1.1.2.

• Elementary functions are usually implemented in software, but some
GPUs offer a limited set of hardware implementations [470].

• For the basic operations, the standard mandates rounding to any sup-
ported format, from any combination of operand formats. However, hard-
ware usually only supports homogeneous operations, i.e., operations that
have the same input and output format. The mixed-format operations
are considered rare enough to be implemented in software only [400].

• One notable exception to the previous statement is the mixed-format
FMA of the Kalray processors, where the addend and the result
are binary64 while the two multiplicands are binary32 [83, 84]. Bi-
nary16/binary32 mixed-format operations are also appearing in GPUs.
These are discussed in more detail in Section 7.8.2.

3.4.1 The common hardware denominator

Current processors for desktop computers offer hardware binary64 operators
for floating-point addition, subtraction, and multiplication, and at least hard-
ware assistance for division and square root. Peak performance is typically
between 2 and 8 binary64 floating-point operations per clock cycle for +, −,
and ×, with much slower division and square root [469, 271].

However, most processors go beyond this common denominator and
offer larger precision and/or faster operators. The following sections detail
these extensions.

jean-michel.muller@ens-lyon.fr

84 Chapter 3. Floating-Point Formats and Environment

3.4.2 Fused multiply-add

The fused multiply-add (FMA) instruction evaluates an expression of the form
a × b + c with one rounding only, that is, if ◦ is the rounding function,
the returned result is ◦(a × b + c) (see Section 2.4). The FMA has been the
main floating-point operation in the most recent instruction sets (IBM POW-
ER/PowerPC, HP/Intel IA-64, KalrayMPPA). It has also been added to older
instruction sets:

• Intel IA-32 with AMD’s SSE5 and Intel’s AVX extensions, as detailed
below;

• ARM since ARMv7;

• SPARC with HAL/Fujitsu SPARC64 VI14;

• MIPS with the Loongson processor family.

These operations are all compatible with the FMA defined by IEEE 754-2008.
As far as this operator is concerned, IEEE 754-2008 standardized already ex-
isting practice.

In terms of instruction set, the FMA comes in two variants:

• an FMA4 instruction specifies 4 registers a, b, c, and d, and stores in d
the result ◦(a · b+ c).

• an FMA3 instruction specifies only 3 registers: the destination d has to
be one of the input registers, which is thus overwritten.

In each instruction set, there is actually a family of instructions that in-
cludes useful variations such as fused multiply-subtract.

FMA latency. In general, the FMA is pipelined and has a latency slightly
larger than that of a floating-point addition or multiplication alone. For illus-
tration, the FMA latency was 4 cycles in Itanium2 and 7 cycles on Power6. In
a recent ARM implementation [399], the 7-cycle FMA is replaced with an 8-
cycle one, built by connecting an adder and a multiplier (suitably modified).
This enables additions and multiplications in 4 cycles instead of 7.

The chaotic introduction of the FMA in the IA-32-compatible processors.
In 2007, AMD was the first to announce FMA support with its SSE5 exten-
sion [2]. Intel followed in 2008 by announcing an FMA4. Later this year,
it switched to FMA3 with a different extension: AVX. Meanwhile, AMD

14Warning! The instructions called FMADDs and so on from SPARC64 V, which share the
same name and the same encoding with SPARC64 VI, are not real FMA instructions as they
perform two roundings. [208, page 56].

jean-michel.muller@ens-lyon.fr

3.4. Floating-Point Hardware in Current Processors 85

switched to an FMA4 compatible with Intel’s first announce, and its first
Bulldozer processors in 2005 supported this FMA4. Later processors intro-
duced FMA3 instructions compatible with Intel’s. Intel’s Haswell was its first
processor supporting an FMA3.

As of 2017, the situation has settled, and processors from both vendors
support the same FMA3 instructions in the AVX instruction set extension.

3.4.3 Extended precision and 128-bit formats

As we have already seen in Sections 3.1.1 and 3.2, the legacy x87 instruc-
tions of the IA-32 instruction set can operate on a double-extended precision
format with 64 bits of significand and 15 bits of exponent. The correspond-
ing floating-point operators can be instructed to round to single, double, or
double-extended precision.

The IA-64 instruction set also defines several double-extended formats,
including a 80-bit format compatible with IA-32 and a 82-bit format with a
64-bit significand and a 17-bit exponent. The two additional exponent bits
are designed to avoid intermediate “spurious” overflows in certain compu-
tations on 80-bit operands (a typical example is the evaluation of

√
a2 + b2).

Some instruction sets (SPARC, POWER, z/Architecture) have instruc-
tions operating on binary128 data. As far as we know, however, the internal
data-paths are still optimized for 64-bit operations, and these instructions re-
quire several passes over 64-bit operators.

3.4.4 Rounding and precision control

Traditionally, the rounding precision (e.g., binary32, binary64, double-
extended if available) and the rounding direction attributes used to be spec-
ified via a global status/control register. In IA-32, this was called FPSR for
Floating-Point Status Register, or MXCSR for SSE/AVX extensions. Such a global
register defines the behavior of the floating-point instructions.

However, recent processors are designed to execute, at a given time,
many floating-point instructions launched out of order from several hard-
ware threads. Keeping track of changes to the control/status word would be
very costly in this context. Therefore, the prevailing choice in the recent years
has been to ensure that all the instructions in flight share the same value of the
status/control word. To achieve this, any instruction that changes the value
of the control word must first wait until all in-flight instructions have com-
pleted execution.

In other words, before launching any new floating-point instructionwith
a new value of the control register, all current floating-point instructions have
to terminate with the previous value. This can stall the processor for tens of
cycles.

jean-michel.muller@ens-lyon.fr

86 Chapter 3. Floating-Point Formats and Environment

Unfortunately, some applications, such as interval arithmetic (see [428]
and also Section 12.3.2), need frequent rounding direction changes. This per-
formance issue could not be anticipated in 1985, when processor architectures
were not yet pipelined. It also affects most processor instruction sets designed
in the 1980s and 1990s.

To address this performance issue, more recent instruction sets make it
possible to change the rounding direction attribute on a per-instruction ba-
sis without any performance penalty. Technically, the rounding direction at-
tribute is defined in the instruction word, not in a global control register. This
feature was for instance introduced in the HP/Intel IA-64 [118] instruction set
and the SunMicrosystems’ VIS extension to the SPARC instructions set [579].
It was introduced in the IA-32 instruction set by theAVX-512 extension15 [272,
Sec. 15.6.4]. Note that in all these cases, it is still possible to read the round-
ing precision and rounding direction from a global control/status register.
In highly parallel processors such as Graphics Processing Units, rounding is
also typically defined on a per-instruction basis.

The rounding direction specification in the IEEE 754-1985 standard (and
hence in the language standards that were later on adapted to implement it)
reflected the notion of a global status word. This meant in practice that per-
instruction rounding specification could not be accessed from current high-
level languages in a standard, portable way.

The IEEE 754-2008 standard corrected this, but the change will take time
to percolate in programming languages and compilers. This issue will be ad-
dressed in more detail in Chapter 6, Languages and Compilers.

3.4.5 SIMD instructions

Most recent instruction sets also offer single instruction, multiple data (SIMD)
instructions. An SIMD instruction applies the same operation to a vector of
data, producing a vector of results. These vectors are kept in wide registers,
for instance 128- to 512-bit registers in the IA-32 instruction set extensions,
and up to 2048 bits for the ARM Scalable Vector Extension (SVE).

Such wide registers can store vectors of 8-bit, 16-bit, 32-bit, or 64-bit in-
tegers. SIMD instructions operating on vectors of small integers are often re-
ferred to as multimedia instructions. Indeed, in image processing, the color of
a pixel may be defined by three 8-bit integers giving the intensity of the red,
green, and blue components; in audio processing, sound samples are com-
monly digitized on 16 bits.

A wide register can also be considered as a vector of 16-bit, 32-bit, or
64-bit floating-point numbers.

15These instructions also suppress (“silent”) exceptions, which induce similar problems
in case of out-of-order execution (although their correct management in hardware must be
implemented anyway).

jean-michel.muller@ens-lyon.fr

3.4. Floating-Point Hardware in Current Processors 87

Examples of vector instruction sets includeAltiVec for the POWER/Pow-
erPC family, and for the IA-32 instruction set, 3DNow!/MMX (64-bit vector),
then SSE to SSE5 (128-bit vector), then AVX/AVX2 (256-bit vector) and AVX-
512 (512-bit vector).

Each of these extensions comes with too many new instructions to be
detailed here: not only arithmetic operations, but also data movement inside
a vector, and complex operations such as scalar products, or sums of absolute
values of differences.

At the time of writing this book, all new IA-32-compatible processors
for workstation and personal computers implement the AVX extension (some
low-power chips such as Intel’s Atom are still limited to SSE3). AVX defines
sixteen 256-bit registers, each of which can be considered either as a vector
of eight binary32 numbers, or as a vector of four binary64 numbers. AVX
instructions include the FMA and are fully IEEE 754-2008 compliant.16

3.4.6 Binary16 (half-precision) support

The 16-bit formats were introduced for graphics and gaming; the binary16
format of IEEE 754-2008 actually standardized existing practice. Although
it was not considered as a basic format by the IEEE 754-2008 standard, bi-
nary16 is increasingly being used for computing. This is true in graphics, but
also in the field of machine learning. In particular, it has been shown that cer-
tain convolution neural networks (CNN) can work with precisions as low as
8 bits. This justifies the use of the binary16 format, which provides a 11-bit
significand.

This is leading to extensive binary16 arithmetic support in newer in-
struction sets such as ARMv8, Kalray Coolidge, and NVIDIA Volta.

3.4.7 Decimal arithmetic

At the time of writing this book, only high-end processors from IBM (POWER
and zSeries) include hardware decimal support, using the binary encoding.

The latency of decimal operations is much larger than that of binary op-
erations. Moreover, it depends on the operand values [184, 548], as illustrated
by Table 3.18. This is due to several factors. The encoding itself is more com-
plex (see Section 3.1.1.2). Since numbers are not necessarily normalized, sig-
nificand alignment and rounding rules are also much more complex than in
the binary case (see for instance the preferred exponent rules Section 3.1.3.3).
Finally, the core of decimal units in current IBM processors is a pipelined 36-
digit adder [548], and multiplication and division must iterate over it.

16The performance of AVX instructions can be degraded on some computations involving
subnormals.

jean-michel.muller@ens-lyon.fr

88 Chapter 3. Floating-Point Formats and Environment

Cycles decimal64 operands decimal128 operands
addition/subtraction 12 to 28 16 to 31

multiplication 16 to 55 17 to 104
division 16 to 119 17 to 193

Table 3.18: Execution times in cycles of decimal operations on the IBM z10, from
[548].

3.4.8 The legacy x87 processor

The Intel 8087 co-processor was a remarkable achievement when it was con-
ceived. More than thirty years later, the floating-point instructions it defined
are still available in IA-32. However, they are showing their age.

• There are only 8 floating-point registers, and their organization as a
stack leads to data movement inefficiencies.

• The hidden use of extended precision entails a risk of double rounding
(see Section 3.2).

• The dynamic rounding precision can introduce bugs in modern soft-
ware, which is almost always made up of several components (dy-
namic libraries, plug-ins). For instance, the following bug in Mozilla’s
Javascript engine was discovered in 2006: if the rounding precision was
reduced to single precision by a plug-in, then the js_dtoa function
(double-to-string conversion) could overwrite memory, making the ap-
plication behave erratically, e.g., crash. The cause was the loop exit con-
dition being always false due to an unexpected floating-point error.17

• The x87 FPSR register defines the rounding precision (the significand
size) but not the exponent size, which is always 15 bits. Even when in-
structed to round to single precision, the floating-point unit will signal
overflows or underflows only for numbers out of the double-extended ex-
ponent range. True binary32 or binary64 overflow/underflow detection
is performed only when writing the content of a floating-point register
to memory. This two-step overflow/underflow detection can lead to
subtle software problems, just like double rounding. It may be avoided
only by writing all the results to memory, unless the compiler can prove
in advance that there will be no overflows.

The SSE and AVX instructions were designed more recently. As they do
not offer extended precision, they may result in less accurate results than the
legacy x87 instructions. However, in addition to their obvious performance

17CVE-2006-6499 / https://bugzilla.mozilla.org/show_bug.cgi?id=358569.

jean-michel.muller@ens-lyon.fr

https://bugzilla.mozilla.org/show_bug.cgi?id=358569

3.5. Floating-Point Hardware in Recent Graphics Processing Units 89

advantage due to SIMD execution, they are fully IEEE 754-1985 (SSE) and
IEEE 754-2008 (AVX) compliant. They permit better reproducibility (thanks
to the static rounding precision) and portability with other platforms.

All these reasons push towards deprecating the use of the venerable x87
instructions. For instance, GCC uses SSE2 instructions by default on all 64-
bit variants of GNU/Linux (since 64-bit capable processors all offer the SSE2
extension). The legacy x87 unit is still available to provide higher precision for
platform-specific kernels that may require it, for instance some elementary
function implementations.

3.5 Floating-Point Hardware in Recent Graphics
Processing Units

Graphics processing units (GPUs), initially highly specialized for integer
computations, quickly evolved towards more and more programmability
and increasingly powerful arithmetic capabilities.

Binary floating-point units appeared in 2002-2003 in the GPUs of the two
main vendors, ATI (with a 24-bit format in the R300 series) andNVIDIA (with
a 32-bit format in the NV30 series). In both implementations, addition and
multiplication were incorrectly rounded: according to a study by Collange et
al. [109], instead of rounding the exact sum or product, these implementa-
tions typically rounded a p+ 2-bit result to the output precision of p bits.

Still, these units fueled interest in GPUs for general-purpose comput-
ing (GPGPU), as the theoretical floating-point performance of a GPU is up
to two orders of magnitude times that of a conventional processor (at least
in binary32 arithmetic). At the same time, programmability was also im-
proved, notably to follow the evolution to version 10 of Microsoft’s DirectX
application programming interface. Specific development environments also
appeared: first NVIDIA’s C-based CUDA, soon followed by the Khronos
Group’s OpenCL.

Between 2007 and 2009, both ATI (now AMD) and NVIDIA introduced
new GPU architectures with, among other things, improved floating-point
support.

Currently, most GPUs support the binary32 and binary64 formats, with
correct rounding in the four legacy rounding modes for basic operations and
FMA, with subnormals [631]. It is worth mentioning that they also include
hardware acceleration of some elementary functions [470]. The latest notable
evolution of floating-point in GPUs has been the introduction of half preci-
sion (binary16) arithmetic to accelerate machine learning applications. Sub-
normals are fully supported in binary16.

The remaining differences with mainstream microprocessors, in terms
of floating-point arithmetic, are mostly due to the highly parallel execution
model of GPUs.

jean-michel.muller@ens-lyon.fr

90 Chapter 3. Floating-Point Formats and Environment

• Current GPUs do not raise floating-point exceptions, and there are no
internal status flags to check for them.

• The rounding mode is part of the instruction opcode (thus statically de-
termined at compile time) rather than stored in a global status register.

3.6 IEEE Support in Programming Languages

The IEEE 754-1985 standard was targeted mainly at processor vendors and
did not focus on programming languages. In particular, it did not define
bindings (i.e., how the IEEE 754 standard is to be implemented in the lan-
guage), such as the mapping between native types of the language and the
formats of IEEE 754 and the mapping between operators/functions of the
language and the operations defined by IEEE 754. The IEEE 754-1985 stan-
dard did not even deal with what a language should specify or what a com-
piler is allowed to do. This has led to many misinterpretations, with users of-
ten thinking that the processor will do exactly what they have written in the
programming language. Chapter 6 will survey in more detail floating-point
issues in mainstream programming languages.

For instance, it is commonly believed that the double type of the ISO
C language must correspond everywhere to the binary64 binary format of
the IEEE 754 standard, but this property is “implementation-defined,” and
behaving differently is not a bug. Indeed the destination (as defined by the
IEEE 754 standard) does not necessarily correspond to the C floating-point
type associated with the value. This is the reason why an implementation
using double-extended is valid.

The consequences are that one can get different results on different plat-
forms. But even when dealing with a single platform, one can also get unin-
tuitive results, as shown in Goldberg’s article with the appendix Differences
Among IEEE 754 Implementations [214] or in Chapter 6 of this book.

The bottom line is that the reader should be aware that a language will
not necessarily follow standards as he or she might expect. Implementing the
algorithms given in this book may require special care in some environments
(languages, compilers, platforms, and so on). This book (in Chapter 6) will
give some examples, but with no claim of exhaustiveness.

The IEEE 754-2008 standard clearly improves the situation, mainly in its
clauses 10 (Expression evaluation) and 11 (Reproducible floating-point results) –
see Section 3.1.2.5. For instance, it deals with the double-rounding problem
(observed on x87, described in Section 3.4.8): “Language standards should
disallow, or provide warnings for, mixed-format operations that would cause
implicit conversion that might change operand values.” However, it may take
time until these improvements percolate from the IEEE 754-2008 standard
into languages and their compilers.

jean-michel.muller@ens-lyon.fr

3.7. Checking the Environment 91

3.7 Checking the Environment

Checking a floating-point environment (for instance, to make sure that a com-
piler optimization option is compliant with one of the IEEE standards) may
be important for critical applications. Circuit or software manufacturers fre-
quently use formal proofs to ensure that their arithmetic algorithms are cor-
rect [426, 534, 535, 536, 241, 242, 117, 6]. Also, when the algorithms used by
some environment are known, it is possible to design test vectors that allow
one to explore every possible branching. Typical examples are methods for
making sure that every element of the table of a digit-recurrence division
or square root algorithm [186] is checked. For some functions, one can find
“hardest-to-round” values that may constitute good input values for tests.
This can be done using Hensel lifting for multiplication, division and square
root [484], or using some techniques briefly presented in Chapter 10 for the
transcendental functions.

Checking the environment is more difficult for the end user, who gener-
ally does not have any access to the algorithms that have been used.Whenwe
check some environment as a “black box” (that is, without knowing the code,
or the algorithms used in the circuits) there is no way of being absolutely
sure that the environment will always follow the standards. Just imagine a
buggy multiplier that always returns the right result but for one pair of input
operands. The only way of detecting this would be to check all possible in-
puts, which would be extremely expensive in the binary32 format, and totally
impossible in the binary64, decimal64, binary128 or decimal128 formats. This
is not pure speculation: in binary32/single precision arithmetic, the divider
of the first version of the Pentium circuit would produce an incorrect quotient
with probability around 2.5× 10−11 [108, 437, 183], assuming random inputs.

Since the early 1980s, various programs have been designed for deter-
mining the basic parameters of a floating-point environment and assessing its
quality. We present some of them below. Most of these programs are merely
of historical importance: thanks to the standardization of floating-point arith-
metic, the parameters of the various widely available floating-point environ-
ments are not so different.

3.7.1 MACHAR

MACHAR was a program, written in FORTRAN by W. Cody [106], whose
purpose was to determine the main parameters of a floating-point format
(radix, “machine epsilon,” etc.). This was done using algorithms similar to
the one we give in Section 4.1.1 for finding the radix β of the system. Today,
it is interesting for historical purposes only.

jean-michel.muller@ens-lyon.fr

92 Chapter 3. Floating-Point Formats and Environment

In their book on elementary functions, Cody and Waite [107] also gave
methods for estimating the quality of an elementary function library. Their
methods were based on mathematical identities such as

sin(3x) = 3 sin(x)− 4 sin3(x). (3.2)

These methods were useful at the time they were published. And yet, they
can no longer be used with current libraries. Recent libraries are either cor-
rectly rounded or have a maximal error very close to 1

2 ulp. Hence, they are far
more accurate than the methods that are supposed to check them.

3.7.2 Paranoia

Paranoia [329] is a program originally written in Basic by Kahan, and trans-
lated to Pascal by B.A. Wichmann and to C by Sumner and Gay in the 1980s,
to check the behavior of floating-point systems. It finds the main properties
of a floating-point system (such as its precision and its exponent range), and
checks if underflow is gradual, if the arithmetic operations are properly im-
plemented, etc. It can be obtained at http://www.netlib.org/paranoia/.

Today, Paranoia is essentially of historical importance. It can be useful
as a debugging tool for someone who develops his or her own floating-point
environment.

3.7.3 UCBTest

UCBTest can be obtained at http://www.netlib.org/fp/ucbtest.tgz. It is a col-
lection of programs whose purpose is to test certain difficult cases of the
IEEE floating-point arithmetic. Paranoia is included in UCBTest. The “dif-
ficult cases” for multiplication, division, and square root (i.e., almost hardest-
to-round cases: input values for which the result of the operation is very
near a breakpoint of the rounding mode) are constructed using algorithms
designed by Kahan, such as those presented in [484].

3.7.4 TestFloat

J. Hauser designed an excellent software implementation of the IEEE 754
floating-point arithmetic. The package is named SoftFloat and can be down-
loaded at http://www.jhauser.us/arithmetic/SoftFloat.html (at the time of
writing these lines, the most recent version was released in August 2017).
He also designed a program, TestFloat, aimed at testing whether a system
conforms to IEEE 754. TestFloat compares results returned by the system to
results returned by SoftFloat. It is accessible from the SoftFloat page.

jean-michel.muller@ens-lyon.fr

http://www.netlib.org/paranoia/
http://www.netlib.org/fp/ucbtest.tgz
http://www.jhauser.us/arithmetic/SoftFloat.html

3.7. Checking the Environment 93

3.7.5 Miscellaneous

SRTEST is a FORTRAN programwritten by Kahan for checking implementa-
tion of SRT [186, 187] division algorithms. It can be accessed on Kahan’s web
page, at https://people.eecs.berkeley.edu/~wkahan/srtest/. Some useful
software, written by Beebe, can be found at http://www.math.utah.edu/
~beebe/software/ieee/. MPCHECK is a programwritten by Revol, Pélissier,
and Zimmermann. It checks mathematical function libraries (for correct
rounding, monotonicity, symmetry, and output range). It can be downloaded
at https://members.loria.fr/PZimmermann/mpcheck/.

jean-michel.muller@ens-lyon.fr

https://people.eecs.berkeley.edu/~wkahan/srtest/
http://www.math.utah.edu/~beebe/software/ieee/
http://www.math.utah.edu/~beebe/software/ieee/
https://members.loria.fr/PZimmermann/mpcheck/

	Contents
	List of Figures
	List of Tables
	Preface
	I Introduction, Basic Definitions, and Standards
	1 Introduction
	1.1 Some History
	1.2 Desirable Properties
	1.3 Some Strange Behaviors
	1.3.1 Some famous bugs
	1.3.2 Difficult problems
	1.3.2.1 A sequence that seems to converge to a wrong limit
	1.3.2.2 The Chaotic Bank Society
	1.3.2.3 Rump's example

	2 Definitions and Basic Notions
	2.1 Floating-Point Numbers
	2.1.1 Main definitions
	2.1.2 Normalized representations, normal and subnormal numbers
	2.1.3 A note on underflow
	2.1.4 Special floating-point data

	2.2 Rounding
	2.2.1 Rounding functions
	2.2.2 Useful properties

	2.3 Tools for Manipulating Floating-Point Errors
	2.3.1 Relative error due to rounding
	2.3.2 The ulp function
	2.3.3 Link between errors in ulps and relative errors
	2.3.3.1 Converting from errors in ulps to relative errors
	2.3.3.2 Converting from relative errors to errors in ulps
	2.3.3.3 Loss of information during these conversions

	2.3.4 An example: iterated products

	2.4 The Fused Multiply-Add (FMA) Instruction
	2.5 Exceptions
	2.6 Lost and Preserved Properties of Real Arithmetic
	2.7 Note on the Choice of the Radix
	2.7.1 Representation errors
	2.7.2 A case for radix 10

	2.8 Reproducibility

	3 Floating-Point Formats and Environment
	3.1 The IEEE 754-2008 Standard
	3.1.1 Formats
	3.1.1.1 Binary interchange format encodings
	3.1.1.2 Decimal interchange format encodings
	3.1.1.3 Larger formats
	3.1.1.4 Extended and extendable precisions
	3.1.1.5 Little-endian, big-endian

	3.1.2 Attributes and rounding
	3.1.2.1 Rounding direction attributes
	3.1.2.2 Alternate exception-handling attributes
	3.1.2.3 Preferred width attributes
	3.1.2.4 Value-changing optimization attributes
	3.1.2.5 Reproducibility attributes

	3.1.3 Operations specified by the standard
	3.1.3.1 Arithmetic operations and square root
	3.1.3.2 Remainders
	3.1.3.3 Preferred exponent for arithmetic operations in the decimal format
	3.1.3.4 scaleB and logB
	3.1.3.5 Miscellaneous

	3.1.4 Comparisons
	3.1.5 Conversions to/from string representations
	3.1.6 Default exception handling
	3.1.6.1 Invalid operation
	3.1.6.2 Division by zero
	3.1.6.3 Overflow
	3.1.6.4 Underflow
	3.1.6.5 Inexact

	3.1.7 Special values
	3.1.7.1 NaN: Not a Number
	3.1.7.2 Arithmetic of infinities and zeros

	3.1.8 Recommended functions

	3.2 On the Possible Hidden Use of a Higher Internal Precision
	3.3 Revision of the IEEE 754-2008 Standard
	3.4 Floating-Point Hardware in Current Processors
	3.4.1 The common hardware denominator
	3.4.2 Fused multiply-add
	3.4.3 Extended precision and 128-bit formats
	3.4.4 Rounding and precision control
	3.4.5 SIMD instructions
	3.4.6 Binary16 (half-precision) support
	3.4.7 Decimal arithmetic
	3.4.8 The legacy x87 processor

	3.5 Floating-Point Hardware in Recent Graphics Processing Units
	3.6 IEEE Support in Programming Languages
	3.7 Checking the Environment
	3.7.1 MACHAR
	3.7.2 Paranoia
	3.7.3 UCBTest
	3.7.4 TestFloat
	3.7.5 Miscellaneous

	II Cleverly Using Floating-Point Arithmetic
	4 Basic Properties and Algorithms
	4.1 Testing the Computational Environment
	4.1.1 Computing the radix
	4.1.2 Computing the precision

	4.2 Exact Operations
	4.2.1 Exact addition
	4.2.2 Exact multiplications and divisions

	4.3 Accurate Computation of the Sum of Two Numbers
	4.3.1 The Fast2Sum algorithm
	4.3.2 The 2Sum algorithm
	4.3.3 If we do not use rounding to nearest

	4.4 Accurate Computation of the Product of Two Numbers
	4.4.1 The 2MultFMA Algorithm
	4.4.2 If no FMA instruction is available: Veltkamp splitting and Dekker product
	4.4.2.1 Veltkamp splitting
	4.4.2.2 Dekker's multiplication algorithm

	4.5 Computation of Residuals of Division and Square Root with an FMA
	4.6 Another splitting technique: splitting around apower of 2
	4.7 Newton–Raphson-Based Division with an FMA
	4.7.1 Variants of the Newton–Raphson iteration
	4.7.2 Using the Newton–Raphson iteration for correctly rounded division with an FMA
	4.7.3 Possible double roundings in division algorithms

	4.8 Newton–Raphson-Based Square Root with an FMA
	4.8.1 The basic iterations
	4.8.2 Using the Newton–Raphson iteration for correctly rounded square roots

	4.9 Radix Conversion
	4.9.1 Conditions on the formats
	4.9.2 Conversion algorithms
	4.9.2.1 Output conversion: from radix 2 to radix 10
	4.9.2.2 Input conversion: from radix 10 to radix 2

	4.10 Conversion Between Integers and Floating-Point Numbers
	4.10.1 From 32-bit integers to floating-point numbers
	4.10.2 From 64-bit integers to floating-point numbers
	4.10.3 From floating-point numbers to integers

	4.11 Multiplication by an Arbitrary-Precision Constant with an FMA
	4.12 Evaluation of the Error of an FMA

	5 Enhanced Floating-Point Sums, Dot Products,and Polynomial Values
	5.1 Preliminaries
	5.1.1 Floating-point arithmetic models
	5.1.2 Notation for error analysis and classical error estimates
	5.1.3 Some refined error estimates
	5.1.4 Properties for deriving validated running error bounds

	5.2 Computing Validated Running Error Bounds
	5.3 Computing Sums More Accurately
	5.3.1 Reordering the operands, and a bit more
	5.3.2 Compensated sums
	5.3.3 Summation algorithms that somehow imitate a fixed-point arithmetic
	5.3.3.1 Rump, Ogita, and Oishi's faithful summation
	5.3.3.2 Demmel, Ahrens, and Nguyen's reproducible summation
	5.3.3.3 Towards accurate summation hardware?

	5.3.4 On the sum of three floating-point numbers

	5.4 Compensated Dot Products
	5.5 Compensated Polynomial Evaluation

	6 Languages and Compilers
	6.1 A Play with Many Actors
	6.1.1 Floating-point evaluation in programming languages
	6.1.1.1 Expression evaluation order
	6.1.1.2 Precision of intermediate computations
	6.1.1.3 Antagonistic answers

	6.1.2 Processors, compilers, and operating systems
	6.1.3 Standardization processes
	6.1.3.1 Standard bodies
	6.1.3.2 Floating-point standards
	6.1.3.3 C language standards
	6.1.3.4 Implementations

	6.1.4 In the hands of the programmer

	6.2 Floating Point in the C Language
	6.2.1 Standard C11 headers and IEEE 754-1985 support
	6.2.2 Types
	6.2.2.1 Infinities, NaNs, and signed zeros

	6.2.3 Expression evaluation
	6.2.3.1 Operators and functions
	6.2.3.2 Contracted expressions
	6.2.3.3 Constant expressions, initialization, and exceptions
	6.2.3.4 Special values of mathematical functions

	6.2.4 Code transformations
	6.2.5 Enabling unsafe optimizations
	6.2.5.1 Complex arithmetic in C11
	6.2.5.2 Range reduction for trigonometric functions
	6.2.5.3 Compiler-specific optimizations

	6.2.6 Summary: a few horror stories
	6.2.6.1 Printing out a variable changes its value
	6.2.6.2 A possible infinite loop in a sort function

	6.2.7 The CompCert C compiler

	6.3 Floating-Point Arithmetic in the C++ Language
	6.3.1 Semantics
	6.3.2 Numeric limits
	6.3.3 Overloaded functions

	6.4 FORTRAN Floating Point in a Nutshell
	6.4.1 Philosophy
	6.4.2 IEEE 754 support in FORTRAN

	6.5 Java Floating Point in a Nutshell
	6.5.1 Philosophy
	6.5.2 Types and classes
	6.5.2.1 In the virtual machine
	6.5.2.2 In the Java language

	6.5.3 Infinities, NaNs, and signed zeros
	6.5.4 Missing features
	6.5.5 Reproducibility
	6.5.6 The BigDecimal package

	6.6 Conclusion

	III Implementing Floating-Point Operators
	7 Algorithms for the Basic Operations
	7.1 Overview of Basic Operation Implementation
	7.2 Implementing IEEE 754-2008 Rounding
	7.2.1 Rounding a nonzero finite value with unbounded exponent range
	7.2.1.1 Computing the successor in a binary interchange format
	7.2.1.2 Choosing between |xp| and its successor Succ(|xp|)

	7.2.2 Overflow
	7.2.3 Underflow and subnormal results
	7.2.4 The inexact exception
	7.2.5 Rounding for actual operations
	7.2.5.1 Decimal rounding using the binary encoding

	7.3 Floating-Point Addition and Subtraction
	7.3.1 Decimal addition
	7.3.2 Decimal addition using binary encoding
	7.3.3 Subnormal inputs and outputs in binary addition

	7.4 Floating-Point Multiplication
	7.4.1 Normal case
	7.4.2 Handling subnormal numbers in binary multiplication
	7.4.3 Decimal specifics

	7.5 Floating-Point Fused Multiply-Add
	7.5.1 Case analysis for normal inputs
	7.5.1.1 Product-anchored case
	7.5.1.2 Addend-anchored case
	7.5.1.3 Cancellation

	7.5.2 Handling subnormal inputs
	7.5.3 Handling decimal cohorts
	7.5.4 Overview of a binary FMA implementation

	7.6 Floating-Point Division
	7.6.1 Overview and special cases
	7.6.2 Computing the significand quotient
	7.6.3 Managing subnormal numbers
	7.6.4 The inexact exception
	7.6.5 Decimal specifics

	7.7 Floating-Point Square Root
	7.7.1 Overview and special cases
	7.7.2 Computing the significand square root
	7.7.3 Managing subnormal numbers
	7.7.4 The inexact exception
	7.7.5 Decimal specifics

	7.8 Nonhomogeneous Operators
	7.8.1 A software algorithm around double rounding
	7.8.1.1 Problem statement
	7.8.1.2 The easy cases
	7.8.1.3 Implementing the format-reducing operation

	7.8.2 The mixed-precision fused multiply-and-add
	7.8.3 Motivation
	7.8.4 Implementation issues

	8 Hardware Implementation of Floating-Point Arithmetic
	8.1 Introduction and Context
	8.1.1 Processor internal formats
	8.1.2 Hardware handling of subnormal numbers
	8.1.3 Full-custom VLSI versus reconfigurable circuits (FPGAs)
	8.1.4 Hardware decimal arithmetic
	8.1.5 Pipelining

	8.2 The Primitives and Their Cost
	8.2.1 Integer adders
	8.2.1.1 Carry-ripple adders
	8.2.1.2 Parallel adders
	8.2.1.3 Fast adders
	8.2.1.4 Fast addition in FPGAs

	8.2.2 Digit-by-integer multiplication in hardware
	8.2.3 Using nonstandard representations of numbers
	8.2.4 Binary integer multiplication
	8.2.5 Decimal integer multiplication
	8.2.6 Shifters
	8.2.7 Leading-zero counters
	8.2.7.1 Tree-based leading-zero counter
	8.2.7.2 Leading-zero counting by monotonic string conversion
	8.2.7.3 Combined leading-zero counting and shifting for FPGAs

	8.2.8 Tables and table-based methods for fixed-point function approximation
	8.2.8.1 Plain tables
	8.2.8.2 Table-based methods
	8.2.8.3 Conclusion

	8.3 Binary Floating-Point Addition
	8.3.1 Overview
	8.3.2 A first dual-path architecture
	8.3.3 Leading-zero anticipation
	8.3.3.1 Subnormal handling in addition

	8.3.4 Probing further on floating-point adders

	8.4 Binary Floating-Point Multiplication
	8.4.1 Basic architecture
	8.4.2 FPGA implementation
	8.4.3 VLSI implementation optimized for delay
	8.4.4 Managing subnormals

	8.5 Binary Fused Multiply-Add
	8.5.1 Classic architecture
	8.5.2 To probe further

	8.6 Division and Square Root
	8.6.1 Digit-recurrence division
	8.6.2 Decimal division

	8.7 Beyond the Classical Floating-Point Unit
	8.7.1 More fused operators
	8.7.2 Exact accumulation and dot product
	8.7.3 Hardware-accelerated compensated algorithms

	8.8 Floating-Point for FPGAs
	8.8.1 Optimization in context of standard operators
	8.8.2 Operations with a constant operand
	8.8.3 Computing large floating-point sums
	8.8.3.1 Application-specific accurate accumulator
	8.8.3.2 Parallel summations

	8.8.4 Block floating point
	8.8.5 Algebraic operators
	8.8.6 Elementary and compound functions

	8.9 Probing Further

	9 Software Implementation of Floating-Point Arithmetic
	9.1 Implementation Context
	9.1.1 Standard encoding of binary floating-point data
	9.1.2 Available integer operators
	9.1.3 First examples
	9.1.3.1 Extracting the exponent field
	9.1.3.2 Computing the ``is normal'' bit
	9.1.3.3 Computing the number of leading zeros of a significand

	9.1.4 Design choices and optimizations

	9.2 Binary Floating-Point Addition
	9.2.1 Handling special values
	9.2.1.1 Detecting that a special value must be returned
	9.2.1.2 Returning special values as recommended or required by IEEE 754-2008

	9.2.2 Computing the sign of the result
	9.2.3 Swapping the operands and computing the alignment shift
	9.2.3.1 Operand swap
	9.2.3.2 Alignment shift

	9.2.4 Getting the correctly rounded result
	9.2.4.1 A first easy case: x = -y =0
	9.2.4.2 A second easy case: both x and y are subnormal numbers
	9.2.4.3 Implementation of the general case

	9.3 Binary Floating-Point Multiplication
	9.3.1 Handling special values
	9.3.1.1 Detecting that a special value must be returned
	9.3.1.2 Returning special values as recommended or required by IEEE 754-2008

	9.3.2 Sign and exponent computation
	9.3.2.1 Computing the nonnegative integer D-1

	9.3.3 Overflow detection
	9.3.3.1 Overflow before rounding
	9.3.3.2 Overflow after rounding

	9.3.4 Getting the correctly rounded result
	9.3.4.1 Computing the normalized significands mx' and my'
	9.3.4.2 Computing the product mx'my' exactly
	9.3.4.3 Computing the guard and sticky bits needed for rounding correctly
	9.3.4.4 Rounding the significand and packing the result

	9.4 Binary Floating-Point Division
	9.4.1 Handling special values
	9.4.1.1 Detecting that a special value must be returned
	9.4.1.2 Returning special values as recommended or required by IEEE 754-2008

	9.4.2 Sign and exponent computation
	9.4.2.1 Computing the nonnegative integer D-1

	9.4.3 Overflow detection
	9.4.4 Getting the correctly rounded result
	9.4.4.1 First example: restoring division
	9.4.4.2 Second example: division by polynomial evaluation

	9.5 Binary Floating-Point Square Root
	9.5.1 Handling special values
	9.5.1.1 Detecting that a special value must be returned
	9.5.1.2 Returning special values as recommended or required by IEEE 754-2008

	9.5.2 Exponent computation
	9.5.2.1 Formula for the exponent of the result
	9.5.2.2 Implementation for the binary32 format

	9.5.3 Getting the correctly rounded result
	9.5.3.1 Computation of the shift value c
	9.5.3.2 First example: restoring square root
	9.5.3.3 Second example: square root by polynomial evaluation

	9.6 Custom Operators

	10 Evaluating Floating-Point Elementary Functions
	10.1 Introduction
	10.1.1 Which accuracy?
	10.1.2 The various steps of function evaluation
	10.1.2.1 Range reduction
	10.1.2.2 Function approximation

	10.2 Range Reduction
	10.2.1 Basic range reduction algorithms
	10.2.1.1 Cody and Waite's reduction algorithm
	10.2.1.2 Payne and Hanek's algorithm

	10.2.2 Bounding the relative error of range reduction
	10.2.3 More sophisticated range reduction algorithms
	10.2.4 Examples
	10.2.4.1 An example of range reduction for the exponential function
	10.2.4.2 An example of range reduction for the logarithm

	10.3 Polynomial Approximations
	10.3.1 L2 case
	10.3.2 L∞, or minimax, case
	10.3.3 ``Truncated'' approximations
	10.3.4 In practice: using the Sollya tool to compute constrained approximations and certified error bounds

	10.4 Evaluating Polynomials
	10.4.1 Evaluation strategies
	10.4.2 Evaluation error

	10.5 The Table Maker's Dilemma
	10.5.1 When there is no need to solve the TMD
	10.5.2 On breakpoints
	10.5.2.1 Breakpoints of some algebraic functions
	10.5.2.2 Breakpoints of transcendental functions

	10.5.3 Finding the hardest-to-round points
	10.5.3.1 Hardest-to-round points of transcendental functions in binary32 arithmetic
	10.5.3.2 Hardest-to-round points of transcendental functions in binary64 arithmetic
	10.5.3.3 Beyond binary64?

	10.6 Some Implementation Tricks Used in the CRlibm Library
	10.6.1 Rounding test
	10.6.2 Accurate second step
	10.6.3 Error analysis and the accuracy/performance tradeoff
	10.6.4 The point with efficient code
	10.6.4.1 Example: a double-binary64 polynomial evaluation

	IV Extensions
	11 Complex Numbers
	11.1 Introduction
	11.2 Componentwise and Normwise Errors
	11.3 Computing ad bc with an FMA
	11.4 Complex Multiplication
	11.4.1 Complex multiplication without an FMA instruction
	11.4.2 Complex multiplication with an FMA instruction

	11.5 Complex Division
	11.5.1 Error bounds for complex division
	11.5.2 Scaling methods for avoiding over-/underflow in complex division

	11.6 Complex Absolute Value
	11.6.1 Error bounds for complex absolute value
	11.6.2 Scaling for the computation of complex absolute value

	11.7 Complex Square Root
	11.7.1 Error bounds for complex square root
	11.7.2 Scaling techniques for complex square root

	11.8 An Alternative Solution: Exception Handling

	12 Interval Arithmetic
	12.1 Introduction to Interval Arithmetic
	12.1.1 Definitions and the inclusion property
	12.1.2 Loss of algebraic properties

	12.2 The IEEE 1788-2015 Standard for Interval Arithmetic
	12.2.1 Structuration into levels
	12.2.2 Flavors
	12.2.2.1 Common intervals and operations
	12.2.2.2 Set-based flavor

	12.2.3 Decorations
	12.2.4 Level 2: discretization issues
	12.2.5 Exact dot product
	12.2.6 Levels 3 and 4: implementation issues
	12.2.7 Libraries implementing IEEE 1788–2015

	12.3 Intervals with Floating-Point Bounds
	12.3.1 Implementation using floating-point arithmetic
	12.3.2 Difficulties
	12.3.3 Optimized rounding

	12.4 Interval Arithmetic and Roundoff Error Analysis
	12.4.1 Influence of the computing precision
	12.4.2 A more efficient approach: the mid-rad representation
	12.4.2.1 Why is the mid-rad representation of intervals interesting?
	12.4.2.2 Influence of roundoff errors

	12.4.3 Variants: affine arithmetic, Taylor models
	12.4.3.1 Affine arithmetic
	12.4.3.2 Polynomial models, Taylor models

	12.5 Further Readings

	13 Verifying Floating-Point Algorithms
	13.1 Formalizing Floating-Point Arithmetic
	13.1.1 Defining floating-point numbers
	13.1.1.1 Structural definition
	13.1.1.2 Binary representation
	13.1.1.3 Semantic interpretation

	13.1.2 Simplifying the definition
	13.1.3 Defining rounding operators
	13.1.3.1 Range and precision
	13.1.3.2 Relational and functional definitions
	13.1.3.3 Monotonicity

	13.1.4 Extending the set of numbers

	13.2 Formalisms for Verifying Algorithms
	13.2.1 Hardware units
	13.2.2 Floating-point algorithms
	13.2.3 Automating proofs

	13.3 Roundoff Errors and the Gappa Tool
	13.3.1 Computing on bounds
	13.3.1.1 Exceptional behaviors
	13.3.1.2 Quantifying the errors

	13.3.2 Counting digits
	13.3.2.1 Fixed-point arithmetic
	13.3.2.2 Floating-point arithmetic
	13.3.2.3 Application

	13.3.3 Manipulating expressions
	13.3.3.1 Errors between structurally similar expressions
	13.3.3.2 Using intermediate expressions
	13.3.3.3 Cases of user hints

	13.3.4 Handling the relative error
	13.3.4.1 Always-bounded relative errors
	13.3.4.2 Propagation of relative errors

	13.3.5 Example: toy implementation of sine
	13.3.6 Example: integer division on Itanium

	14 Extending the Precision
	14.1 Double-Words, Triple-Words…
	14.1.1 Double-word arithmetic
	14.1.1.1 Addition of double-word numbers
	14.1.1.2 Multiplication of double-word numbers
	14.1.1.3 Division of a double-word number by a floating-point number

	14.1.2 Static triple-word arithmetic

	14.2 Floating-Point Expansions
	14.2.1 Renormalization of floating-point expansions
	14.2.1.1 The VecSumErrBranch algorithm
	14.2.1.2 The renormalization algorithm
	14.2.1.3 Renormalization of arbitrary numbers

	14.2.2 Addition of floating-point expansions
	14.2.2.1 Accurate addition algorithm
	14.2.2.2 QD-like addition algorithm

	14.2.3 Multiplication of floating-point expansions
	14.2.3.1 QD-like multiplication algorithm
	14.2.3.2 Accurate multiplication algorithm

	14.2.4 Division of floating-point expansions
	14.2.4.1 Newton-Raphson based reciprocal algorithm
	14.2.4.2 Newton-Raphson based division algorithm

	14.3 Floating-Point Numbers with Batched Additional Exponent
	14.4 Large Precision Based on a High-Radix Representation
	14.4.1 Specifications
	14.4.2 Using arbitrary-precision integer arithmetic for arbitrary-precision floating-point arithmetic
	14.4.3 A brief introduction to arbitrary-precision integer arithmetic
	14.4.4 GNU MPFR
	14.4.4.1 MPFR data
	14.4.4.2 Rounding modes
	14.4.4.3 Exceptions
	14.4.4.4 The ternary value
	14.4.4.5 Types and calling convention
	14.4.4.6 Memory handling
	14.4.4.7 Implemented functions
	14.4.4.8 An example of how to use MPFR
	14.4.4.9 Caveats
	14.4.4.10 Beyond GNU MPFR

	Appendix A. Number Theory Tools for Floating-Point Arithmetic
	A.1 Continued Fractions
	A.2 Euclidean Lattices

	Appendix B. Previous Floating-Point Standards
	B.1 The IEEE 754-1985 Standard
	B.1.1 Formats specified by IEEE 754-1985
	B.1.2 Rounding modes specified by IEEE 754-1985
	B.1.3 Operations specified by IEEE 754-1985
	B.1.3.1 Arithmetic operations and square root
	B.1.3.2 Conversions to and from decimal strings

	B.1.4 Exceptions specified by IEEE 754-1985

	B.2 The IEEE 854-1987 Standard
	B.2.1 Constraints internal to a format
	B.2.2 Various formats and the constraints between them
	B.2.3 Rounding
	B.2.4 Operations
	B.2.5 Comparisons
	B.2.6 Exceptions

	B.3 The Need for a Revision
	B.4 The IEEE 754-2008 Revision

	Bibliography
	Index

