
Introduction to Assembly

Language Programming

Computer Architecture

Riad Bourbia

Computer Sciences department

Guelma University

[Adapted from slides of Dr. A. El-maleh]

Introduction to Assembly Language Programming COE 301 – KFUPM slide 2

Outline

 The MIPS Instruction Set Architecture

 Introduction to Assembly Language

 Defining Data

 Memory Alignment and Byte Ordering

 System Calls

Introduction to Assembly Language Programming COE 301 – KFUPM slide 3

 Critical interface between hardware and software

 An ISA includes the following …

 Instructions and Instruction Formats

 Data Types, Encodings, and Representations

 Addressing Modes: to address Instructions and Data

 Handling Exceptional Conditions (like division by zero)

 Programmable Storage: Registers and Memory

 Examples (Versions) First Introduced in

 Intel (8086, 80386, Pentium, ...) 1978

 MIPS (MIPS I, II, III, IV, V) 1986

 PowerPC (601, 604, …) 1993

Instruction Set Architecture (ISA)

Introduction to Assembly Language Programming COE 301 – KFUPM slide 4

Instructions

 Instructions are the language of the machine

 We will study the MIPS instruction set architecture

 Known as Reduced Instruction Set Computer (RISC)

 Elegant and relatively simple design

 Similar to RISC architectures developed in mid-1980’s and 90’s

 Very popular, used in many products

 Silicon Graphics, ATI, Cisco, Sony, etc.

 Comes next in sales after Intel IA-32 processors

 Almost 100 million MIPS processors sold in 2002 (and increasing)

 Alternative design: Intel IA-32

 Known as Complex Instruction Set Computer (CISC)

Introduction to Assembly Language Programming COE 301 – KFUPM slide 5

Overview of the MIPS Processor

Memory

Up to 232 bytes = 230 words

4 bytes per word

$0

$1

$2

$31

Hi Lo

ALU

F0

F1

F2

F31
FP

Arith

EPC

Cause

BadVaddr

Status

EIU FPU

TMU

Execution &

Integer Unit

(Main proc)

Floating

Point Unit

(Coproc 1)

Trap &

Memory Unit

(Coproc 0)

. . .

. . .

Integer
mul/div

Arithmetic &

Logic Unit

32 General

Purpose

Registers

Integer

Multiplier/Divider

32 Floating-Point

Registers

Floating-Point

Arithmetic Unit

Introduction to Assembly Language Programming COE 301 – KFUPM slide 6

MIPS General-Purpose Registers

 32 General Purpose Registers (GPRs)

 Assembler uses the dollar notation to name registers

 $0 is register 0, $1 is register 1, …, and $31 is register 31

 All registers are 32-bit wide in MIPS32

 Register $0 is always zero

 Any value written to $0 is discarded

 Software conventions

 Software defines names to all registers

 To standardize their use in programs

 Example: $8 - $15 are called $t0 - $t7

 Used for temporary values

$0 = $zero

$1 = $at

$2 = $v0

$3 = $v1

$4 = $a0

$5 = $a1

$6 = $a2

$7 = $a3

$8 = $t0

$9 = $t1

$10 = $t2

$11 = $t3

$12 = $t4

$13 = $t5

$14 = $t6

$15 = $t7

$16 = $s0

$17 = $s1

$18 = $s2

$19 = $s3

$20 = $s4

$21 = $s5

$22 = $s6

$23 = $s7

$24 = $t8

$25 = $t9

$26 = $k0

$27 = $k1

$28 = $gp

$29 = $sp

$30 = $fp

$31 = $ra

Introduction to Assembly Language Programming COE 301 – KFUPM slide 7

MIPS Register Conventions

Name Register Usage

$zero $0 Always 0 (forced by hardware)

$at $1 Reserved for assembler use

$v0 – $v1 $2 – $3 Result values of a function

$a0 – $a3 $4 – $7 Arguments of a function

$t0 – $t7 $8 – $15 Temporary Values

$s0 – $s7 $16 – $23 Saved registers (preserved across call)

$t8 – $t9 $24 – $25 More temporaries

$k0 – $k1 $26 – $27 Reserved for OS kernel

$gp $28 Global pointer (points to global data)

$sp $29 Stack pointer (points to top of stack)

$fp $30 Frame pointer (points to stack frame)

$ra $31 Return address (used by jal for function call)

 Assembler can refer to registers by name or by number

 It is easier for you to remember registers by name

 Assembler converts register name to its corresponding number

Introduction to Assembly Language Programming COE 301 – KFUPM slide 8

Instruction Formats

 All instructions are 32-bit wide. Three instruction formats:

 Register (R-Type)

 Register-to-register instructions

 Op: operation code specifies the format of the instruction

 Immediate (I-Type)

 16-bit immediate constant is part in the instruction

 Jump (J-Type)

 Used by jump instructions

Op6 Rs5 Rt5 Rd5 funct6sa5

Op6 Rs5 Rt5 immediate16

Op6 immediate26

Introduction to Assembly Language Programming COE 301 – KFUPM slide 9

Next . . .

 The MIPS Instruction Set Architecture

 Introduction to Assembly Language

 Defining Data

 Memory Alignment and Byte Ordering

 System Calls

Introduction to Assembly Language Programming COE 301 – KFUPM slide 10

Assembly Language Statements

 Three types of statements in assembly language

 Typically, one statement should appear on a line

1. Executable Instructions

 Generate machine code for the processor to execute at runtime

 Instructions tell the processor what to do

2. Pseudo-Instructions and Macros

 Translated by the assembler into real instructions

 Simplify the programmer task

3. Assembler Directives

 Provide information to the assembler while translating a program

 Used to define segments, allocate memory variables, etc.

 Non-executable: directives are not part of the instruction set

Introduction to Assembly Language Programming COE 301 – KFUPM slide 11

Instructions

 Assembly language instructions have the format:

[label:] mnemonic [operands] [#comment]

 Label: (optional)

 Marks the address of a memory location, must have a colon

 Typically appear in data and text segments

 Mnemonic

 Identifies the operation (e.g. add, sub, etc.)

 Operands

 Specify the data required by the operation

 Operands can be registers, memory variables, or constants

 Most instructions have three operands

L1: addiu $t0, $t0, 1 #increment $t0

Introduction to Assembly Language Programming COE 301 – KFUPM slide 12

Comments

 Comments are very important!

 Explain the program's purpose

 When it was written, revised, and by whom

 Explain data used in the program, input, and output

 Explain instruction sequences and algorithms used

 Comments are also required at the beginning of every procedure

 Indicate input parameters and results of a procedure

 Describe what the procedure does

 Single-line comment

 Begins with a hash symbol # and terminates at end of line

Introduction to Assembly Language Programming COE 301 – KFUPM slide 13

Program Template
Title: Filename:

Author: Date:

Description:

Input:

Output:

################# Data segment #####################

.data

. . .

################# Code segment #####################

.text

.globl main

main: # main program entry

. . .

li $v0, 10 # Exit program

syscall

Introduction to Assembly Language Programming COE 301 – KFUPM slide 14

.DATA, .TEXT, & .GLOBL Directives

 .DATA directive

 Defines the data segment of a program containing data

 The program's variables should be defined under this directive

 Assembler will allocate and initialize the storage of variables

 .TEXT directive

 Defines the code segment of a program containing instructions

 .GLOBL directive

 Declares a symbol as global

 Global symbols can be referenced from other files

 We use this directive to declare main procedure of a program

Introduction to Assembly Language Programming COE 301 – KFUPM slide 15

Layout of a Program in Memory

Stack Segment
0x7FFFFFFF

Dynamic Area

Static Area

Text Segment

Reserved

0x04000000

0x10000000

0

Data Segment

Memory

Addresses

in Hex

Stack Grows

Downwards

Introduction to Assembly Language Programming COE 301 – KFUPM slide 16

Next . . .

 The MIPS Instruction Set Architecture

 Introduction to Assembly Language

 Defining Data

 Memory Alignment and Byte Ordering

 System Calls

Introduction to Assembly Language Programming COE 301 – KFUPM slide 17

Data Definition Statement

 Sets aside storage in memory for a variable

 May optionally assign a name (label) to the data

 Syntax:

[name:] directive initializer [, initializer] . . .

var1: .WORD 10

 All initializers become binary data in memory

Introduction to Assembly Language Programming COE 301 – KFUPM slide 18

Data Directives

 .BYTE Directive

 Stores the list of values as 8-bit bytes

 .HALF Directive

 Stores the list as 16-bit values aligned on half-word boundary

 .WORD Directive

 Stores the list as 32-bit values aligned on a word boundary

 .WORD w:n Directive

 Stores the 32-bit value w into n consecutive words aligned on a

word boundary.

Introduction to Assembly Language Programming COE 301 – KFUPM slide 19

Data Directives

 .HALF w:n Directive

 Stores the 16-bit value w into n consecutive half-words aligned

on a half-word boundary .

 .BYTE w:n Directive

 Stores the 8-bit value w into n consecutive bytes.

 .FLOAT Directive

 Stores the listed values as single-precision floating point

 .DOUBLE Directive

 Stores the listed values as double-precision floating point

Introduction to Assembly Language Programming COE 301 – KFUPM slide 20

String Directives

 .ASCII Directive

 Allocates a sequence of bytes for an ASCII string

 .ASCIIZ Directive

 Same as .ASCII directive, but adds a NULL char at end of string

 Strings are null-terminated, as in the C programming language

 .SPACE n Directive

 Allocates space of n uninitialized bytes in the data segment

 Special characters in strings follow C convention

 Newline: \n Tab:\t Quote: \”

Introduction to Assembly Language Programming COE 301 – KFUPM slide 21

Examples of Data Definitions

.DATA

var1: .BYTE 'A', 'E', 127, -1, '\n'

var2: .HALF -10, 0xffff

var3: .WORD 0x12345678

Var4: .WORD 0:10

var5: .FLOAT 12.3, -0.1

var6: .DOUBLE 1.5e-10

str1: .ASCII "A String\n"

str2: .ASCIIZ "NULL Terminated String"

array: .SPACE 100

Introduction to Assembly Language Programming COE 301 – KFUPM slide 22

Next . . .

 The MIPS Instruction Set Architecture

 Introduction to Assembly Language

 Defining Data

 Memory Alignment and Byte Ordering

 System Calls

Introduction to Assembly Language Programming COE 301 – KFUPM slide 23

 Memory is viewed as an array of bytes with addresses

 Byte Addressing: address points to a byte in memory

 Words occupy 4 consecutive bytes in memory

 MIPS instructions and integers occupy 4 bytes

 Alignment: address is a multiple of size

 Word address should be a multiple of 4

 Least significant 2 bits of address should be 00

 Halfword address should be a multiple of 2

 .ALIGN n directive

 Aligns the next data definition on a 2n byte boundary

Memory Alignment

0

4

8

12

a
d

d
re

s
s

not aligned

. . .

aligned word

not aligned

Memory

Introduction to Assembly Language Programming COE 301 – KFUPM slide 24

 .align 0 turns off automatic alignment

of .half, .word, .float, and .double directives until the

next .data or .kdata directive.

 Example: If the address of X is 0x10010000, then

Address of Y is 0x10010002

 Alignment has to satisfy both the automatic boundary

and the boundary given in the align directive

 Example: If the address of X is 0x10010000, then

Address of Y is 0x10010004

Memory Alignment

.align 0

X: .byte 1,2

Y: .word 10

x: .byte 1

.align 1

y: .word 1

Introduction to Assembly Language Programming COE 301 – KFUPM slide 25

 Assembler builds a symbol table for labels (variables)

 Assembler computes the address of each label in data segment

 Example Symbol Table

.DATA

var1: .BYTE 1, 2,'Z'

str1: .ASCIIZ "My String\n"

var2: .WORD 0x12345678

.ALIGN 3

var3: .HALF 1000

Symbol Table

Label

var1

str1

var2

var3

Address

0x10010000

0x10010003

0x10010010

0x10010018

0 0 0 0 0 0

var1

1 2 'Z'0x10010000

str1

'M' 'y' ' ' 'S' 't' 'r' 'i' 'n' 'g' '\n' 0

0x123456780x10010010

var2 (aligned)

1000

var3 (address is multiple of 8)

0 0 Unused

0 00 0

Unused

Introduction to Assembly Language Programming COE 301 – KFUPM slide 26

 Processors can order bytes within a word in two ways

 Little Endian Byte Ordering

 Memory address = Address of least significant byte

 Example: Intel IA-32, Alpha

 Big Endian Byte Ordering

 Memory address = Address of most significant byte

 Example: SPARC, PA-RISC

 MIPS can operate with both byte orderings

Byte Ordering and Endianness

Byte 0Byte 1Byte 2Byte 3

32-bit Register

MSB LSB

.Byte 0Byte 1Byte 2Byte 3

a a+3a+2a+1

Memory

address

Byte 3Byte 0Byte 1Byte 2Byte 3

32-bit Register

MSB LSB

.Byte 0 Byte 1 Byte 2

a a+3a+2a+1

Memory

address

Introduction to Assembly Language Programming COE 301 – KFUPM slide 27

Next . . .

 The MIPS Instruction Set Architecture

 Introduction to Assembly Language

 Defining Data

 Memory Alignment and Byte Ordering

 System Calls

Introduction to Assembly Language Programming COE 301 – KFUPM slide 28

System Calls

 Programs do input/output through system calls

 MIPS provides a special syscall instruction

 To obtain services from the operating system

 Many services are provided in the SPIM and MARS simulators

 Using the syscall system services

 Load the service number in register $v0

 Load argument values, if any, in registers $a0, $a1, etc.

 Issue the syscall instruction

 Retrieve return values, if any, from result registers

Introduction to Assembly Language Programming COE 301 – KFUPM slide 29

Syscall Services

Service $v0 Arguments / Result

Print Integer 1 $a0 = integer value to print

Print Float 2 $f12 = float value to print

Print Double 3 $f12 = double value to print

Print String 4 $a0 = address of null-terminated string

Read Integer 5 Return integer value in $v0

Read Float 6 Return float value in $f0

Read Double 7 Return double value in $f0

Read String 8
$a0 = address of input buffer

$a1 = maximum number of characters to read

Allocate Heap

memory
9

$a0 = number of bytes to allocate

Return address of allocated memory in $v0

Exit Program 10

Introduction to Assembly Language Programming COE 301 – KFUPM slide 30

Syscall Services – Cont’d

Print Char 11 $a0 = character to print

Read Char 12 Return character read in $v0

Open File 13

$a0 = address of null-terminated filename string

$a1 = flags (0=read, 1=write, 9=append)

$a2 = mode (ignored)

Return file descriptor in $v0 (negative if error)

Read

from File
14

$a0 = File descriptor

$a1 = address of input buffer

$a2 = maximum number of characters to read

Return number of characters read in $v0

Write to File 15

$a0 = File descriptor

$a1 = address of buffer

$a2 = number of characters to write

Return number of characters written in $v0

Close File 16 $a0 = File descriptor

Introduction to Assembly Language Programming COE 301 – KFUPM slide 31

Reading and Printing an Integer

################# Code segment #####################

.text

.globl main

main: # main program entry

li $v0, 5 # Read integer

syscall # $v0 = value read

move $a0, $v0 # $a0 = value to print

li $v0, 1 # Print integer

syscall

li $v0, 10 # Exit program

syscall

Introduction to Assembly Language Programming COE 301 – KFUPM slide 32

Reading and Printing a String
################# Data segment #####################

.data

str: .space 10 # array of 10 bytes

################# Code segment #####################

.text

.globl main

main: # main program entry

la $a0, str # $a0 = address of str

li $a1, 10 # $a1 = max string length

li $v0, 8 # read string

syscall

li $v0, 4 # Print string str

syscall

li $v0, 10 # Exit program

syscall

Introduction to Assembly Language Programming COE 301 – KFUPM slide 33

Program 1: Sum of Three Integers
Sum of three integers

#

Objective: Computes the sum of three integers.

Input: Requests three numbers.

Output: Outputs the sum.

################### Data segment ###################

.data

prompt: .asciiz "Please enter three numbers: \n"

sum_msg: .asciiz "The sum is: "

################### Code segment ###################

.text

.globl main

main:

la $a0,prompt # display prompt string

li $v0,4

syscall

li $v0,5 # read 1st integer into $t0

syscall

move $t0,$v0

Introduction to Assembly Language Programming COE 301 – KFUPM slide 34

Sum of Three Integers – Slide 2 of 2
li $v0,5 # read 2nd integer into $t1

syscall

move $t1,$v0

li $v0,5 # read 3rd integer into $t2

syscall

move $t2,$v0

addu $t0,$t0,$t1 # accumulate the sum

addu $t0,$t0,$t2

la $a0,sum_msg # write sum message

li $v0,4

syscall

move $a0,$t0 # output sum

li $v0,1

syscall

li $v0,10 # exit

syscall

Introduction to Assembly Language Programming COE 301 – KFUPM slide 35

Program 2: Case Conversion
Objective: Convert lowercase letters to uppercase

Input: Requests a character string from the user.

Output: Prints the input string in uppercase.

################### Data segment #####################

.data

name_prompt: .asciiz "Please type your name: "

out_msg: .asciiz "Your name in capitals is: "

in_name: .space 31 # space for input string

################### Code segment #####################

.text

.globl main

main:

la $a0,name_prompt # print prompt string

li $v0,4

syscall

la $a0,in_name # read the input string

li $a1,31 # at most 30 chars + 1 null char

li $v0,8

syscall

Introduction to Assembly Language Programming COE 301 – KFUPM slide 36

Case Conversion – Slide 2 of 2
la $a0,out_msg # write output message

li $v0,4

syscall

la $t0,in_name

loop:
lb $t1,($t0)

beqz $t1,exit_loop # if NULL, we are done

blt $t1,'a',no_change

bgt $t1,'z',no_change

addiu $t1,$t1,-32 # convert to uppercase: 'A'-'a'=-32

sb $t1,($t0)

no_change:

addiu $t0,$t0,1 # increment pointer

j loop

exit_loop:

la $a0,in_name # output converted string

li $v0,4

syscall

li $v0,10 # exit

syscall

