

Basic Elements

Chapter 2: System number

2024-2025

Machine Structure Course, 1st year Computer Science Engineer

Representation of the information

The computer can process various types of information: Numerical values, Texts, Images, Sound, ...

BUT

All this information is stored in digital form

Coding of information

Whatever its nature (number, text, image, sound, or video), digital information processed by a computer is always represented in binary form (a sequence of 0 and 1). For example: 01111011, 11000000.....

- The smallest unit of information transmitted by a computer is called Bit (BInary digiT) (which can take two values: 0 or 1)
- A unit of information made up of 8 bits is called a "byte"

Some sizes

♣2¹⁰ bits = 1024 bits = 1 Kb (1 Kilo bits) / 2¹⁰ Ø = 1024 Ø = 1 KØ (1 Kilo Ø)

♣2¹⁰ Kb = 1024 Kb = 1 Mb (1 Mega bits) / 2¹⁰ KØ = 1024 KØ = 1 MØ (1 Mega Ø)

♣2¹⁰ Mb = 1024 Mb = 1 Gb (1 Giga bits) / 2¹⁰ MØ = 1024 MØ = 1 GØ (1 Giga Ø)

♣2¹⁰ Gb = 1024 Gb = 1 Tb (1 Tera bits)/ 2¹⁰ GØ = 1024 GØ = 1 TØ (1 Tera Ø)

Definition of Information Coding

The coding of information consists of establishing a correspondence between the (usual) external representation of the information (text, number, image, etc.), and its internal representation in the machine, which is always a series of bits.

Example: the number 22

- Its external representation = 22
- Its internal representation (in binary) = 00010110

How to represent numbers (integers, real, etc.) and characters (letters, mathematical symbols, etc.) in the machine?

Steps in coding information

The coding of information passes by three steps:

- Representation of information by a series of numbers (Digitalization)
- 2. Encoding each number in a binary form
- 3. Represent each binary element by a physical state (electrical signal)

Representation of numbers: Number systems

- Number systems describe how numbers are represented.
- A number system is defined by:
 - Alphabet (A): A set of symbols (numbers): A={a₁, a₂,..., a_n}
 - Rules for writing numbers: Juxtaposition of symbols

 $\Box a_1a_3$: is a word

- In a number system, the number of distinct symbols is called the base of the number system (the cardinal of the set A).
- In computing, the most used bases are binary, octal, and hexadecimal.

Representation of numbers in a base b

- A number $(XXX)_{b}$ indicates the representation of a number XXX in the base b.
- The usual bases that we know and use every day are:
 - **base 10 (decimal system)** to represent different quantities, different figures and numbers, and
 - base 60 to represent time.

How to represent a number in a base b?

If $b \le 10$, we simply use the numbers 0 to b-1

Example: base 8 (octal system): any number will be the combination of digits belonging to the set $\{0, ..., 7\}$

Machine Structure Course, 1st year Computer Science Engineer

Representation of numbers in a base b (continued)

If b > 10, we simply use the numbers 0 to 9 then the letters in alphabetical order.

Example:

Base 16 (hexadecimal system): any number will be the combination of symbols belonging to {0,..., 9, A, B, C, D, E, F} such that: (A=10,, F=15).

A number of n digits (symbols) is a sequence (a_i) , $0 \le i \le n-1$: $a_n - 1 \dots a_1 a_0$ such that: a_0 is the least significant term and a_{n-1} is the most significant term.

Decimal system

- It is the number system that we frequently use in our daily activities.
- Based on 10 symbols {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} === base 10
- It is a **positional system**: Each position has a weight.

Example:

The number 5368 is written as following :

Binary system

- Base (b)=2
- The system used in computers
- It uses two digits {0,1}
- Example: (10111101)₂
- The polynomial form :

 $(10111101)_2 = 2^{0*}1 + 2^{1*}0 + 2^{2*}1 + 2^{3*}1 + 2^{4*}1 + 2^{5*}1 + 2^{6*}0 + 2^{7*}1$ $= (189)_{10}$

Transcoding: Bases change

Transcoding (or bases conversion) is the operation, which allows to go from the representation of a number in one base to its representation in another base.

Decimal Base b

Number N= integer part, decimal part (example: 15, 23)

Integer part: The successive division method

Divide the number by B

Then the quotient by B

and so on until obtaining a zero quotient

take the remainders of successive divisions on the base X in the opposite direction.

 $(N)_{10} = (R_n ... R_3 R_2 R_1)_B$

Machine Structure Course, 1st year Computer Science Engineer

Decimal base to base b

Integer part:

Successive multiplications until having a zero result or obtaining a given precision

Example:

 $(115,23)_{10} = (?)_2$

With a precision of 6 places after the decimal point.

We treat each part separately

Integral part:

```
115÷2=57 remainder 1
```

```
57÷2= 28 remainder 1
```

```
28÷2= 14 remaider 0
```

```
14÷2= 7 remainder 0
```

```
7÷2= 3 remainder 1
```

```
3÷2=1 remainder 1
```

```
1÷2=0 remainder 1 (quotient=0 stop)
```

```
Hence: (115)<sub>10</sub>= (1110011)<sub>2</sub>
```

$(0,23)_{10}=(?)_{2}$

- Now let's move on to the decimal part :
 - $(0,23)_{10}=(?)_2$ 0,23x2= **0**,46 integer number is 0
 - 0,46x2= <u>0</u>,92 integer number is 0
 - 0,92x2= <u>1</u>,84 integer number is 1
 - 0,84x2= <u>1</u>,68 integer number is 1
 - 0,68x2= <u>1</u>,36 integer number is 1

0,36x2= <u>0</u>,72 integer number is 0

- Hence: (0,23)₁₀=(0,001110)2
- Final result: (115,23)₁₀= (**1110011, 001110**)₂

Decimal Base to the Octal and Hexadecimal base

Decimal \rightarrow Octal

Decimal \rightarrow hexadecimal

Conversion from base b to the decimal base

Use polynomial expansion

 $X = (a_{n..}a_2a_1a_0)_{b}$

```
=b^{0}a_{0}+b^{1}a_{1+...}b^{n}a_{n}=(\sum a_{i}b^{i})_{10}
```

Examples:

• $(11011101,1)_2 = 2^{-1} + 2^{0} + 2^{1} + 2^{1} + 2^{2} + 2^{3} + 2^{4} + 2^{5} + 2^{6} + 2^{6} + 1 + 2^{7} + 1 = (221,5)_{10}$

•
$$(175,26)_8 = \frac{8^{-1} + 2 + 8^{-2}$$

- $(14)_{16} = \frac{160}{4} + \frac{161}{1} = (20)_{10}$
- $(1011)_2 = (1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0)_{10} = (1 \times 8 + 0 \times 4 + 1 \times 2 + 1 \times 1)_{10} = (11)_{10}$
- $(16257)_8 = 1 \times 8^4 + 6 \times 8^3 + 2 \times 8^2 + 5 \times 8^1 + 7 \times 8^0 = 1 \times 4096 + 6 \times 512 + 2 \times 64 + 5 \times 8 + 7$

= 4096 + 3072 + 128+ 40 + 7 = 7343

• $(F53)_{16} = 15 \times 16^2 + 5 \times 16^1 + 3 \times 16^0 = 15 \times 256 + 5 \times 16 + 3 = 3840 + 80 + 3 = 3923$

Machine Structure Course, 1st year Computer Science Engineer

Conversion from binary base to the octal base

- > Making 3-bits groups starting from the least significant one.
- > Replace each group with the corresponding octal value.
- \succ 3 binary digits \Rightarrow one octal digit

Conversion from the octal base to the binary base

Replace each symbol in the octal base with its 3-bit binary value

Example: (213)₈

Arithmetic operations in Binary system: The addition

Arithmetic operations : The subtraction

In binary

Arithmetic operations : The multiplication

In binary

The multiplication

Arithmetic operations : The Division

In binary

The division

Application exercises

Perform the following operations and transform the result to decimal each time:

- $(1111,101)_2 + (10,1)_2 = (?)_2$
- $(45)_8 + (75)_8 = (?)_8$
- $(AB4)_{16} + (253)_{16} = (?)_{16}$