
Part I: 

Basic Elements

Chapter 3:

Representation of information

2024-2025

Machine Structure Course, 1st year Computer Science Engineer



1. Binary coding

2
Machine Structure Course, 1st year Computer Science Engineer

 BCD is a type of binary code used to represent a given
decimal number in an equivalent binary form.

 The BCD equivalent of a decimal number is written by
replacing each decimal digit in the integer and fractional
parts with its four-bit binary equivalent.

 The BCD code described above is more precisely known as
the 8421 BCD code.

 As an example, the BCD equivalent of (53.16)10 is written as
(0101 0011.0001 0110)BCD

Binary Coded Decimal (BCD)



BCD code

3
Machine Structure Course, 1st year Computer Science Engineer

A given BCD number can be converted into an equivalent
binary number by writing its decimal equivalent and then
converting it into its binary equivalent.

Example: find the binary equivalent of the BCD number
0010 1001.0111 0101

BCD number: 0010 1001.0111 0101.

• Corresponding decimal number: 29.75.

• The binary equivalent of 29.75 is 11101 for the integer 
part and .11 for the fractional/decimal part.

• Therefore, (0010 1001.0111 0101)BCD =(11101.11)2.



BCD code

4
Machine Structure Course, 1st year Computer Science Engineer

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14

15

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111

Decimal Binary BCD

0001 

0001 

0001 

0001 

0001 

0001

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

0000 

0001 

0010 

0011 

0100 

0101

The table illustrates the
difference between straight
binary and BCD. BCD
represents each decimal digit
with a 4-bit code.

Notice that the codes 1010
through 1111 are not used in
BCD.



Binary Coded Decimal (BCD)

5

▪ The BCD code is the 8,4,2,1 code.

▪ 8, 4,  2,  and 1 are weights

▪ This code is the simplest, most intui t ive binary
code for decimal digi ts and uses the same powers of
2 as a binary number, but only encodes the f i rst ten
values from 0 to 9.

▪Example: 12 (1100 in pure binary, 0001 0010 in BCD)

Do NOT mix the conversion of a decimal number to a binary number 
with the coding of a decimal number with a BINARY CODE.

1310 = 11012 (This is conversion)
13   0001|0011 (This is coding)

Machine Structure Course, 1st year Computer Science Engineer



Gray code

6
Machine Structure Course, 1st year Computer Science Engineer

Gray code is an unweighted

code that has a single bit

change between one code

word and the next in a

sequence.

Gray code is used to avoid

problems in systems where

an error can occur if more

than one bit changes at a

time.

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14

15

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111

Decimal Binary Gray code

0000 

0001 

0011 

0010 

0110 

0111 

0101 

0100 

1100 

1101 

1111 

1110 

1010 

1011 

1001 

1000 



Binary–Gray Code Conversion

7
Machine Structure Course, 1st year Computer Science Engineer

1. Begin with the most significant bit (MSB) of the binary number. The

MSB of the Gray code equivalent is the same as the MSB of the

given binary number.

2. The second most significant bit, adjacent to the MSB, in the Gray

code number is obtained by adding the MSB and the second

MSB of the binary number and ignoring the carry, if any. That is,

if the MSB and the bit adjacent to it are both ‘1’, then the

corresponding Gray code bit would be a ‘0’.

3. The third most significant bit, adjacent to the second MSB, in the

Gray code number is obtained by adding the second MSB and the

third MSB in the binary number and ignoring the carry, if any.

4. The process continues until we obtain the LSB of the Gray code

number by the addition of the LSB and the next higher adjacent bit of

the binary number.



Binary–Gray Code Conversion

8
Machine Structure Course, 1st year Computer Science Engineer

The conversion process is further illustrated with 

the help of an example showing step-by-step 

conversion of (1011)2 into its Gray code equivalent:

Binary 1011

Gray code    1- - -

Binary 1011

Gray code   11- -

Binary 1011

Gray code  111-

Binary 1011

Gray code  1110



Gray Code- Binary Conversion

9
Machine Structure Course, 1st year Computer Science Engineer

A given Gray code number can be converted into its binary equivalent by

going through the following steps:

1. Begin with the most significant bit (MSB). The MSB of the binary

number is the same as the MSB of the Gray code number.

2. The bit next to the MSB (the second MSB) in the binary number is

obtained by adding the MSB in the binary number to the second

MSB in the Gray code number and disregarding the carry, if any.

3. The third MSB in the binary number is obtained by adding the

second MSB in the binary number to the third MSB in the Gray code

number. Again, carry, if any, is to be ignored.

4. The process continues until we obtain the LSB of the binary number.



Gray Code- Binary Conversion

10
Machine Structure Course, 1st year Computer Science Engineer

The conversion process is further illustrated with

the help of an example showing step-by-step

conversion of the Gray code number 1110 into its

binary equivalent:

Gray code        1110

Binary 1- - -

Gray code        1110

Binary 10 - -

Gray code        1110

Binary 101

Gray code        1110

Binary 1011



Excess-3 Code

11
Machine Structure Course, 1st year Computer Science Engineer

• The excess-3 code is another important BCD code.

• The excess-3 code for a given decimal number is

determined by adding ‘3’ to each decimal digit in the given

number and then replacing each digit of the newly found

decimal number by its four-bit binary equivalent.

Example: find the excess-3 code for the decimal number

597

Solution:

The addition of ‘3’ to each digit yields the three new

digits/numbers ‘8’, ‘12’ and ‘10’.

• The corresponding four-bit binary equivalents are 1000,

1100 and 1010 respectively.

• The excess-3 code for 597 is therefore given by:

1000 1100 1010=100011001010.



Excess-3 Code table

12
Machine Structure Course, 1st year Computer Science Engineer



2. Characters encoding

13

❑The characters:
Alphabetical (A-Z , a-z), 

Digital (0,1,2,3,4,5,6,7,8,9),

Punctuation( ;. ? ! ….)

Specials (&, $, %,,…)

Character coding is done using a table of

correspondence between characters and binary

numbers.

Machine Structure Course, 1st year Computer Science Engineer



Character encoding: ASCII code

14

➢ ASCII (American Standard Code for Information Interchange)

is a computer standard for character encoding that emerged

in the 1960s.

➢ The basic ASCII code represented 7-bit characters (128

possible characters, from 0 to 127).

o Codes from 48 to 57: numbers in order (0,1,…,9)

o Codes from 65 to 90: capital letters (A….Z)

o Codes from 97 to 122: lowercase letters (a….z).

➢ This code was developed for the English language, so it does not

contain accented characters or language-specific characters.

Machine Structure Course, 1st year Computer Science Engineer



The ASCII code table (1)

15
Machine Structure Course, 1st year Computer Science Engineer



Extended ASCII code

16

❑ The ASCII code has been extended to 8 bits to be able to

encode more characters (0 to 255) => extended ASCII code.

❑ Allows us to code accented characters: à, é, è,…etc.



The ASCII code table (2)

17



Examples of ASCII encoding

18

Binary Hexadecimal Decimal
H = 01001000 = 48 = 72
e = 01100101 = 65 = 101
l = 01101100 = 6C = 108
l = 01101100 = 6C = 108
o = 01101111 = 6F = 111
, = 00101100 = 2C = 44

Espace = 00100000 = 20 = 32
w = 01110111 = 77 = 119
o = 01100111 = 67 = 103
r = 01110010 = 72 = 114
l = 01101100 = 6C = 108
d = 01100100 = 64 = 100



Unicode code

19

➢  Developed in 1991

➢ It uses 16 bits to represent 65,536 characters (0 to

65,535)

➢ Unicode defines tens of thousands of codes, but the

first 128 remain compatible with ASCII.

➢ It codes most alphabets: Arabic, Chinese, Turkish, etc.

➢ We refer to a character by its number written in

hexadecimal preceded by “U+”.

➢ For example, the Latin letter “a” corresponds to
U+0061 (in hexadecimal)

➢ http://www.unicode.org

Computer Architecture 1 Course, 1st year Computer Science Engineer

http://www.unicode.org/


3. Number representation (internal 
data representation)

20

A number N 

Unsigned Integers

Signed Integers

Real (fixed point, floating-

point)

Machine Structure Course, 1st year Computer Science Engineer



Coding of natural (unsigned) integers

-pure binary code-

21

▪ A natura l number is a pos i t i ve or zero in teger.

▪ To encode natura l numbers , we use pure b inary code.

▪ The natura l number is represented in base 2 on n b i ts .

▪ The range of numbers on n b i ts is : [0 , 2 n-1 ]

▪ With n b i ts , we can represent 2 n numbers .

Example:

• On a byte, (17)10 is coded in pure binary: 00010001

▪ The number of bits to use depends on the range of
numbers we want to use

▪ Using 1 byte (8 bits): we can code 28 values: [0 ; 255]

▪ Using 2 bytes (16 bits): we can encode 216 values: [0 ; 216-1]

▪ Using (n bits): we can code 2n values: [0 ; 2n-1]



Coding of signed integers

22

• These are numbers with a + or - sign.

Example: -24, +354,…..

• There are at least three techniques allowing the

representation of signed integers:

1. Signed magnitude representation

2. One's complement representation (C1).

3. Two’s complement representation (C2)

Machine Structure Course, 1st year Computer Science Engineer



Signed magnitude representation

The most significant bit is used to represent the sign of the number

• 1: for a negative number  

• 0: for a positive number

• The other (n-1) bits encode the magnitude (the absolute 
value) of the number

• With n bits, we encode all the numbers between -(2n-1-1) and 
(2n-1-1)

• Example :
• On 8 bits, we can encode the numbers -13 and +17 in signed 

magnitude as follows:
-13 is coded by: 1 0 0 0 1 1 0 1
+17 is coded by: 0 0 0 1 0 0 0 1

23
Machine Structure Course, 1st year Computer Science Engineer



Advantages and disadvantages of 
signed magnitude

• Advantages:  Simple

• Disadvantages (limites):

24

▪ Two representations of zero : 

On 8 bits : +0 = 00000000

-0 = 10000000

▪ Multiplication and addition are less obvious

For example, we add -3 and -1 on 4 bits

Machine Structure Course, 1st year Computer Science Engineer



One's complement (C1)

• The first bit is reserved for the sign.

• If the number is positive then the number keeps its format.

• If the number is negative then each bit (of the remaining bits) is

inverted (0 becomes 1 and 1 becomes 0) (by completing on the left

with 0s to obtain an n-bit code).

• The number of possible combinations on n bits is 2n

• With n bits, we encode all the numbers between -(2n-1-1) and (2n-1-1)

• Two combinations for 0

• Examples: 

➢  -5  on 8 bits

 5= (00000101)2

-5= (11111010)C1

➢  +7 on 8 bits

        +7= (00000111)2= (00000111)C1 25



Addition and subtraction in C1
It is based on the following principle:

• If no carry is generated by the sign bit then the result is correct and it is

represented in C1.

• Otherwise, it will be removed and added to the result of the operation, this

is represented in C1.

▪ Example 1:

-14+5 on 5 bits

-14+5=(-1110+0101)2=(11110)SM+(00101)SM= (10001)C1+(00101)C1

         =(10110)C1 no retain, so the result is correct and it is written in C1.

We must transform it into a binary number then decimal:

(10110)C1=(11001)SM= (-1001)2=-9

▪ Exemple 2:

14-6 on 5 bits

14-6=(1110-0110)2=(01110+10110)SVA=(01110+11001)C1=(00111)C1 

with a carry (retained) 1, the latter is added to the result obtained; and we

obtain (01000)C1= 8 since the number is positive
26

Machine Structure Course, 1st year Computer Science Engineer



Two's complement (C2)
T h e re p res en ta t i o n o f a n u mbe r X in a two ' s c omp l emen t o n n b i t s

i s d o n e a s fo l l o ws :

• i f (X>= 0 ) (n u mbe r f r om 0 to (2 n -1- 1 ) ) t h en X i s c o d ed in th e

same way a s i n pu re b i na ry,

• i f (X < 0 ) (n u mb e r f r o m - (2 n -1- 1 ) t o 0 ) t h e n :

➢ Co d e | X | i n b in a r y b y c o mp l e t i n g o n th e le f t w i t h 0 to o b ta in a n

n -b i t c o d e

➢ I n ve r t a l l b i t s o f t he b i na ry rep resen ta t i on (one ' s comp l emen t ) ;

➢ A d d 1 t o th e re s u l t ( two ' s c o mp l e me n t o r C 2 )

➢ T h e n u mb e r o f p o s s i b l e c o mb i n a t i o ns o n n b i t s i s 2 n

➢ Wi th n b i t s , we e n c o d e a l l t he numbe rs be tween  -(2n-1) and (2n-1-1)

Examples:

➢-5  on 8 bits

 -5= (00000101)2 = (11111010)C1 = (11111011)C2 

➢  +7 on 8 bits

        +7= (00000111)2= (00000111)C1 = (00000111)C2 

27
Machine Structure Course, 1st year Computer Science Engineer



Representation of some numbers on 4 bits
C2 MS Decimal

0000 0000 0

0001 0001 +1

0010 0010 +2

0011 0011 +3

0100 0100 +4

0101 0101 +5

0110 0110 +6

0111 0111 +7

1000 -8

1001 1111 -7

1010 1110 -6

1011 1101 -5

1100 1100 -4

1101 1011 -3

1110 1010 -2

1111 1001 -1
28

Machine Structure Course, 1st year Computer Science Engineer



Addition and subtraction in C2
It is based on the following principle:

• If there is a carry generated by the sign bit, it is ignored and the result is in C2

• Otherwise the result is correct and in C2

Example 1:

-14+5 on 5 bits

-14+5=(-1110+0101)2=(11110)SM+(00101)SM= (10001)C1+(00101)C1

         = (10010)C2+(00101)C2 =(10111)C2 no carry, so the result is correct and it is

written in C2

We must transform it into a binary number then decimal

(10111)C2= (10110)C1 =(11001)SM= (-1001)2=-9

Example 2:

14-6 on 5 bits

14-6=(1110-0110)2=(01110+10110)SM=(01110+11001)C1=(01110+11010)C2=(01000)C2 

with a carry 1, the latter is ignored and we obtain

(01000)C2= (00110)C1=(00110)SM=8 since the number is positive

29
Machine Structure Course, 1st year Computer Science Engineer



Representation of real numbers

• Example: +15,23, -234,01……

• Two questions arise:

1. How to represent the comma in a machine?

The designers did not take the comma (or the point) into 

account, but they offered a place in the representation 

of numbers.

2. How to tell the machine the position of the decimal

point?

➢ Fixed point

➢ Floating point

30
Machine Structure Course, 1st year Computer Science Engineer



Fixed point

• A real number = the integer part + the decimal

part .

• The integer part is coded on “p” bits by

performing successive div is ions by 2.

• The decimal part is encoded on “q” bits by

performing successive mult ip l icat ions by 2 unt i l

the decimal part is zero or the number of bi ts q is
reached.

31

Example : 12,625=(?)2 fixed point format 

Integer part :    12 = (00001100)2

Decimal part : 0,625 = (?)2

(12,625)10=(001100,101)2

0,625*2=1,25
0,25*2=0,5
0,5*2=1,0



Floating point (IEEE 754 standard)

32

• In computing, the IEEE 754 standard has become
establ ished for the coding of f loat ing numbers.

• In the IEEE 754 standard, a f loat ing point number is
always represented by a tr iple

(S; E ;M)
▪ S: the sign is coded on 1 most significant bit

(1: negative; and 0 positive)

▪ E: the exponent

▪ M: the mantissa

The sign The exponent The Mantissa

P bits q bits1 bit

Machine Structure Course, 1st year Computer Science Engineer



The IEEE 754 standard 

(single precision)

33

• Single precision on 32 bits

➢ 1 bit of the sign

➢ 8 bits for the exponent

➢ 23 bits for the mantissa

The sign The exponent The Mantissa

8 bits 23 bits1 bit

Machine Structure Course, 1st year Computer Science Engineer



IEEE 754 standard (double 

precision)

34

• Double precision on 64 bits :

➢1 bit of the sign

➢11 bits for the exponent

➢ 52 bits for the mantissa

The sign The exponent The Mantissa

11 bits 52 bits1 bit

Machine Structure Course, 1st year Computer Science Engineer



The IEEE 754 standard

35

IEEE 754 Coding Steps:

1.The representation of the number X in 

floating point format : X= ± 1,M . 2dec

• Example:

      (24,5)10=(11000,1)2 (fixe point)

= + 1,10001 * 24 (floating point)

Machine Structure Course, 1st year Computer Science Engineer



IEEE 754 Coding Steps

36

Exponent (E biased) = dec + 2p-1 – 1

▪ Single precision (32 bits, p=8) : E = dec +127

▪ Double precision (64 bits, p=11) : E= dec +1023

2.Calculation of the exponent E (biased/shifted or

normalized)

Machine Structure Course, 1st year Computer Science Engineer



Application exercise

37

• Question:  

 Convert the decimal number (12,25)10 in the floating
point format according to the IEEE 754 single
precision standard

• Solution:

Converting the number 12.25 to binary

(12,25)10=(1100,01)2

=1,10001*23

Hence
power

• 12,25=1,10001*23

The mantissa (M)
Machine Structure Course, 1st year Computer Science Engineer



Application exercise 

(continued)

38

• Estimation of the elements of the number

➢The sign (S) =0 (positive number)

➢The 8-bit exponent : E=dec+127=3+127=130=> (10000010)2

➢ The mantissa M on 23 bits => 10001000000000000000000

0 10000010 10001000000000000000000

8 bits1 bit 23 bits

So, the number (12,25)10 in floating point according to the IEEE 754

single precision standard is :

01000001010001000000000000000000

or more readably in hexadecimal representation (41440000)16



Converting IEEE 754 to Decimal

39

Convert ing a number X from IEEE 754 to decimal
means decomposing this number into its elements:
S,E;M then est imat ing its representat ion in f loat ing
point format (X= ± 1,M . 2dec )

Example:

• X=(010000010110100000000000000000000)

• X= 0 10000010 110100000000000000000000

S E
M

S=0 => positive number

E=(10000010)2=130 ; E= dec+ 127 => dec=130-127=3

X= + 1,M * 23 = 1,11010000000000000000000 * 23 (dec=3)

X=+ (1110,10) 2 = (14,5)10


	Slide 1
	Slide 2: 1. Binary coding
	Slide 3: BCD code
	Slide 4: BCD code
	Slide 5: Binary Coded Decimal (BCD)
	Slide 6: Gray code
	Slide 7: Binary–Gray Code Conversion
	Slide 8: Binary–Gray Code Conversion
	Slide 9: Gray Code- Binary Conversion
	Slide 10: Gray Code- Binary Conversion
	Slide 11: Excess-3 Code
	Slide 12: Excess-3 Code table
	Slide 13: 2. Characters encoding
	Slide 14: Character encoding: ASCII code
	Slide 15: The ASCII code table (1)
	Slide 16: Extended ASCII code
	Slide 17: The ASCII code table (2)
	Slide 18: Examples of ASCII encoding
	Slide 19: Unicode code
	Slide 20: 3. Number representation (internal data representation)
	Slide 21: Coding of natural (unsigned) integers  -pure binary code-
	Slide 22: Coding of signed integers
	Slide 23: Signed magnitude representation
	Slide 24: Advantages and disadvantages of signed magnitude
	Slide 25: One's complement (C1)
	Slide 26: Addition and subtraction in C1
	Slide 27: Two's complement (C2)
	Slide 28: Representation of some numbers on 4 bits
	Slide 29: Addition and subtraction in C2
	Slide 30: Representation of real numbers
	Slide 31: Fixed point
	Slide 32: Floating point (IEEE 754 standard)
	Slide 33: The IEEE 754 standard (single precision)
	Slide 34: IEEE 754 standard (double precision)
	Slide 35: The IEEE 754 standard
	Slide 36: IEEE 754 Coding Steps
	Slide 37: Application exercise
	Slide 38: Application exercise (continued)
	Slide 39: Converting IEEE 754 to Decimal

