
Part I:

Basic Elements

Chapter 4:

Boolean Algebra

2024-2025

Machine Structure Course, 1st-year Computer Science Engineer

Introduction

2

• Digital machines consist of a set of electronic circuits.

• Each circuit performs a specific logic function (addition,

comparison,).

The function F(A,B) can be: the sum of A and B, or the

result of comparing A and B, or another function.

A
F(A,B)Circuit

B

Machine Structure Course, 1st-year Computer Science Engineer

Introduction (continued)

• To design and build this circuit, we need a
mathematical model of the function
performed by the circuit.

• This model must take into account the binary
system.

• The mathematical model used is that of Boole
(or Boole’s) .

3
Machine Structure Course, 1st-year Computer Science Engineer

Overview
• George Boole was an English mathematician (1815-1864).

• He produced works in which functions (expressions) are made up of

variables that can take the values 'YES' or 'NO'.

• This work has been used to study systems with two mutually exclusive

states:

- The system can only be in two states E1 and E2 such that E1 is the

opposite of E2.

- The system cannot be in state E1 and E2 at the same time.

- This work is well suited to the Binary System (0 and 1).

• Nowadays, Boolean algebra is used in digital electronics for:

- Analysis: a formal tool for describing the operation of digital circuits.

- Design: Starting from the function of a circuit, Boolean algebra enables

us to arrive at a simplified realization (implementation) of this circuit.

4
Machine Structure Course, 1st-year Computer Science Engineer

Example of two-state systems

• A switch is open or not open (closed)

• A lamp is on or off (off)

• A door is open or not open (closed)

Remarque :

The following conventions can be used :

• YES →TRUE

• NO → FALSE

• YES → 1 (High Level)

• NO → 0 (Low Level)

5
Machine Structure Course, 1st-year Computer Science Engineer

Definitions and conventions

• Logic level: When studying a logic system, it's important

to specify the level of the work.

• Example:

▪ Positive logic: Lamp on=1

 Lamp off=0

▪ Negative logic: Lamp on=0

 Lamp off=1

6

Level Positive Logic Negative Logic

H (Hight) 1 0

L (Low) 0 1

Machine Structure Course, 1st-year Computer Science Engineer

Logical variable (Boolean)

• A logical variable (Boolean) is a variable that can take
either the value 0 or 1 .

• Generally, it is expressed by a single alphabetic
character in uppercase (A , B, S , ...).

• Exemple :

▪ A lamp is : On L = 1

 Off L = 0

▪ First switch is Open : I1 =1

 Closed : I1 =0

▪ 2nd switch is Open : I2=1

 Closed : I2=0

7
Machine Structure Course, 1st-year Computer Science Engineer

Logic function

• It's a function that links N logical variables with a set of basic logical

operators.

• In Boolean algebra, there are three basic operators: NOT, AND, and

OR .

• The value of a logic function is equal to 1 or 0, depending on the

values of the logic variables.

• If a logic function has N logic variables 2n combinaisons

the function has 2n values.

• The 2n combinations are represented in a table called the truth table.

• Example : A, B, C are three logic variables

F (A , B) = A .B F (A , B) = A + B

8F (A, B, C) = A.B.C + A.B.C + A.B.C

Example of a logic function

9

• F (A, B, C) = A.B.C + A.B.C + A.B.C + A.B.C

• The function has 3 variables with 23 combinations

• The truth table associated with function F is as follows:

A B C F

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

Machine Structure Course, 1st-year Computer Science Engineer

Basic logical operators

NOT (Negation)

10

NOT: is a unary operator (a single variable) whose role is to invert the

value of a variable.

F(A)= Not A = A = complement of A

• It inverts/complements the value of the variable A

•True becomes false and false becomes true

A

0 1

1 0

Machine Structure Course, 1st-year Computer Science Engineer

AND operator

•The AND is a binary operator (two variables), whose role is to
produce a logical product between two Boolean variables.

•AND is the conjunction between two variables.

•AND is defined by : F(A,B)= A . B

• It returns 1 if A and B are 1, otherwise it returns 0

• Both variables must be true together, otherwise the AND is false.

11

A B A . B

0 0 0

0 1 0

1 0 0

1 1 1

Machine Structure Course, 1st-year Computer Science Engineer

OR opearator

• The OR is a binary operator (two variables) whose role is to perform

the logical sum between two logical variables.

• The OR makes the disjunction between two variables.

• The OR is defined by F(A,B)= A + B (not to be confused with the

arithmetic sum).

• It returns 1 if A or B is 1, otherwise returns 0.

• At least one of the two variables is true, otherwise the OR is false.

12

A B A + B

0 0 0

0 1 1

1 0 1

1 1 1

Machine Structure Course, 1st-year Computer Science Engineer

Precedence of operators (operator
priority)

To evaluate a logical expression (logical function) :

▪ first, evaluate the sub-expressions between the parentheses or

brackets.

▪ then the complement (NOT),

▪ then the logical product (AND)

▪ then the logical sum (OR)

• Example:

– F(A, B, C) = (A . B) . (C + B) + A .B .C

– First, we calculate the negation, then the logical product (and)
and finally the logical sum (or).

13
Machine Structure Course, 1st-year Computer Science Engineer

Fundamental laws of Boolean algebra

14

◆ Involution :

◆ Idempotency :

◆ Complementarity :

◆ Neutral elements :

◆ Absorbents :

a=a

a+a=a

a.a=0

a.a=a

a+a=1

a=a.1=1.a=a
a+0=0+a=a

a+1=1 a.0=0

Machine Structure Course, 1st-year Computer Science Engineer

Basic properties

15

➢ Associativite

➢ Distributivite

➢ De Morgan's rules

➢ Optimisations :

: (a.b).c=a.(b.c)
(a+b)+c=a+(b+c)

: a.(b+c)=a.b+a.c
a+(b.c)=(a+b).(a+c)

: a+b=a.b
a.b=a+b

a+ab=a+b

a+bc=(a+b)(a+c)

Machine Structure Course, 1st-year Computer Science Engineer

Summary of the basic properties of Boolean
Algebra

16

Theorem Logic sum format Logic product format

Absorbent element A + 1 = 1 A . 0 = 0

Neutral element A + 0 = A A . 1 = A

Complementation
–

 A+ A= 1
–

A . A = 0

Idempotence A + A = A A . A = A

Associativite (A+B)+C = A+(B+C) = A+B+C (A.B).C = A.(B.C) = A.B.C

Commutativite A+B = B+A A.B = B.A

Distributivite A.(B+C) = A.B + A.C A+(B.C) = (A+B).(A+C)

Absorption A+A.B = A A.(A+B) = A

Simplification A + A
–

B = A + B A.(A
–

+ B) = A.B

Involution
=
A = A

De Morgan‘s rules
–––– – –
A + B = A . B

––– – –
A.B = A + B

Machine Structure Course, 1st-year Computer Science Engineer

Generalization of the DE-MORGANE’s
Theorem to N variables

17

A.B.C...... = A + B + C +

A + B + C + = A.B. C......

• Reminder of De Morgane's theorem:

- The logical complemented sum of two variables is equal to the

product of the complements of the two variables.
–––– – –
A + B = A . B

- The logical product of two variables is equal to the logical sum

of the complements of the two variables.
––– – –
A.B = A + B

• Generalization for N variables:

Machine Structure Course, 1st-year Computer Science Engineer

Other logical operators Exclusive OR (XOR), Not
AND (NAND), and Not OR (NOR)

18

XOR
F (A , B) = A  B = A .B + A .B

NoT AND (NAND)

F(A, B) = A . B

F (A, B) = A  B

Not OR (NOR)
F(A, B) = A + B

F (A, B) = A  B

Machine Structure Course, 1st-year Computer Science Engineer

NAND and NOR: universal operators

•Using NANDs and NORs, you can express any logical expression

(function).

•Simply express the basic operators (NOT, AND, OR) with NAND

and NOR.

• Creating basic operators with NORs

• A = A + A = A  A

• A + B = A + B = A  B = (A  B)  (A  B)

• A.B= A.B= A + B = A  B = (A  A)  (B B)

19
Machine Structure Course, 1st-year Computer Science Engineer

Properties of the NAND and NOR
operators

20

A  0 = 1

A  1 = A

A  B = B  A

(A  B)  C  A  (B  C)

A  0 = A

A  1 = 0

A  B = B  A

(A  B)  C  A  (B  C)

Machine Structure Course, 1st-year Computer Science Engineer

Logic Gates

• A logic gate is an elementary electronic circuit that implements the
function of a basic logic operator.

21

Truth tableSymbol

Non

!



Graphism

A S

Equation

S = !A

S = A

A S

0 1

01

AA

30

Machine Structure Course, 1st-year Computer Science Engineer

AND and OR gates

22

Truth tableSymbol

ou

+





Nor

Graphism

A

B
S

A

B
T

A B S T

0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0

Equation

S = A + B

T = A + B

Truth tableSymbol

And

Nand

Graphism

A

B
S

A

B
T

A B S T

0 0 0 1

0 1 0 1

1 0 0 1

1 1 1 0

Equation

S = A . B

T = A . B

XOR gate

23

Truth tableSymbol

Xor



Graphism

A
B

S

Equation

S = A  B
=A.B + A.B

T = (A = = B)A
B

T

A B S T

0 0 0 1

0 1 1 0

1 0 1 0

1 1 0 1
= =

Machine Structure Course, 1st-year Computer Science Engineer

Logic circuit diagram (Logigram)

24

• This is the translation of the logic function into an electronic

schematic. The principle is to replace each logic operator by its

corresponding logic gate.

• Example 1:

F (A, B,C) = A.B + B.C

Machine Structure Course, 1st-year Computer Science Engineer

Example 2

25

F(A,B, C, D) = (A + B) . (B + C + D) .A

Application exercises

Exercise 1:

Give a flow chart of the following functions :

• F(A, B) = A.B + A.B

• F(A, B, C) = (A + B).(A + C).(B + C)

• F(A, B, C) = (A . B) . (C + B) + A.B.C

26
Machine Structure Course, 1st-year Computer Science Engineer

Application exercises (continued)

Exercise 2:

Give the equation or expression for F?

27
Machine Structure Course, 1st-year Computer Science Engineer

Steps in designing and building a digital
circuit

To design and build a circuit, follow these steps:

1. Understand how the system works.

2. Define the input variables.

3. Define the output variables.

4. Establish the truth table.

5. Write the algebraic output equations (from the truth table).

6. Perform simplifications (algebraic or using the Karnaugh

map).

7. Draw the schematic with a minimum number of logic
gates.

28
Machine Structure Course, 1st-year Computer Science Engineer

Text definition of a logic function

• Generally, the definition of a system's operation is given in text format.

• To design and build such a system, you need to have its mathematical

model (logical function).

• The logical function must therefore be derived from the textual

description.

• Example: textual definition of a system operation

 A security lock opens with three keys. Lock operation is defined as

follows:

• The lock is opened if at least two keys are used.

• The lock remains closed in all other cases.

Question: What is the circuit diagram that controls the opening of the lock?

29
Machine Structure Course, 1st-year Computer Science Engineer

Application exercise (continued)

Let's take the example of the lock:

o The system has three inputs:

▪ Each input represents a key.

▪ Each key is assigned to a logical variable: key 1 to A, key 2 to B, key 3 to C.

✓ If key 1 is used then variable A=1 otherwise A =0

✓ If key 2 is used then variable B=1 otherwise B =0

✓ If key 3 is used then variable C=1 otherwise C =0

The system has a single output corresponding to the lock status (open or
closed).

We will assign a variable S to designate the output:

• S=1 if the lock is open ,

• S=0 if closed

▪ S=F(A,B,C)

▪ F(A,B,C)= 1 if at least two keys are entered

▪ F(A,B,C)=0 if not.

30

A
B
C

FCircuit

Machine Structure Course, 1st-year Computer Science Engineer

Application exercise: Truth table

31

NB: It's also important to specify the logic level you're working with

(positive or negative logic).

A B C S

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

F=A+B+C Maxterm

F=A+B+C Maxterm

F=A+B+C Maxterm

F=A+B+C Maxterm

F=A B C Minterm

F=A B C Minterm

F=A B C Minterm

F=A B C Minterm

Machine Structure Course, 1st-year Computer Science Engineer

Extracting the logic function from the
truth table

• F = Addition or Sum of the minterms

F (A, B, C) = A . B . C + A . B . C + A . B . C + A . B . C

• F = Multiplication of the maxterms

F(A, B, C) = (A + B + C) (A + B + C)(A + B + C) (A + B + C)

32
Machine Structure Course, 1st-year Computer Science Engineer

Canonical forms of a function

33

➢ For a logic function with x variables:

▪ A minterm: a group of x variables (which can be

complemented) linked by ANDs.

▪ A maxterm: a group of x variables (that can be

complemented) linked by ORs.

➢ Canonical form of a logic function:

▪ First form: union (OR) of minterms.

▪ Second form: intersection (AND) of maxterms.

➢ There is only one expression of a canonical form of each

type for a given function.

Computer Architecture 1 Course, 1st year Computer Science Engineer

First canonical form

34

For a 3-variables function a, b and c, we have :

◆ Minterms : a b c , a b c , a b c , a b c , . . .

◆ Maxterms :

• a+b+c,a+b+c,a+b+c,a+b+c,...

First canonical form (disjunctive form):

– This is the sum of the minterms.

– A disjunction of conjunctions.

Example :

• F(A, B,C) = A. B. C + A . B. C + A . B. C + A . B. C

– This is the most commonly used form.

Computr Architecture 1 Course, 1st year Computer Science EngineerMachine Structure Course, 1st-year Computer Science Engineer

Second canonical form

• Second canonical form (conjunctive): product of sums.

• The product of maxterms.

• Conjunction of disjunctions.

Example :

• F(A,B,C)= (A+B+C) (A+B+C)(A+B+C)(A+B+C)

• The first and second canonical forms are equivalent.

35
Machine Structure Course, 1st-year Computer Science Engineer

Important note

• Any logical function can always be reduced to one of the

canonical forms.

• This means adding the missing variables to the terms that

don't contain all the variables (the non-canonical terms).

• This can be done using the rules of Boolean algebra:

✓ Multiply a term with an expression equals to 1.

✓ Add to a term with an expression equals to 0.

✓ Then, perform the distribution.

36
Machine Structure Course, 1st-year Computer Science Engineer

Transition to canonical forms

37

◆ Start with the function and transform it to create complete

minterms/maxterms.

◆ For the transformation:

▪ We rely on the properties of Boolean algebra, in particular

the invariant :

◆

◆

x + x = 1

It can be used to add missing variables to terms.

Machine Structure Course, 1st-year Computer Science Engineer

Example of transition to the first canonical form

38

◆ Let f(a,b,c)=ab+bc+ac

- First minterm ab

 - The variable c is missing

- Transform ab into ab(c+c)because c+c=1

◆ Same thing for the other 2 minterms

◆ Hence:

f(a ,b,c)=ab(c+c)+b c(a+a)+a c(b+b)

=abc+abc+abc+abc+abc
Machine Structure Course, 1st-year Computer Science Engineer

Example of transition to the second canonical
form

39

◆ Let f(a,b,c)=ab+bc+ac

◆ We use the involution x = x

◆ After development:

f(a,b,c)=ab+abc+ac+abc

◆ All that remains is to transform the 2-variable

minterms : ab+ac=ab(c+c)+ac(b+b)

◆ At final f(a,b,c)=abc+abc+abc

◆Hence: f(a,b,c)=(a+b+c)(a+b+c)(a+b+c)

Machine Structure Course, 1st-year Computer Science Engineer

Switching from the logic function to the truth table

40

0 0 0 | 1 | 1 | 0 | 0 | 0 | 0

0 0 1 | 1 | 0 | 0 | 1 | 0 | 1

0 1 0 | 0 | 1 | 0 | 0 | 0 | 0

0 1 1 | 0 | 0 | 0 | 0 | 0 | 0

1 0 0 | 1 | 1 | 0 | 0 | 1 | 1

1 0 1 | 1 | 0 | 0 | 1 | 0 | 1

1 1 0 | 0 | 1 | 1 | 0 | 1 | 1

1 1 1 | 0 | 0 | 1 | 0 | 0 | 1

◆ For each combination of possible values for the variables,

we determine the Boolean value of f(X)(X = set of variables)

◆ Example : f(a,b,c)=ab+bc+ac

a b c | b | c | ab | bc | ac | f(a,b,c)

-------+---+---+----+----+----+---------

Transition from the truth table to the logic
function

41

◆ From the truth table: function in the first canonical form

◆ For each value of f(X) equals to 1

We define a minterm of all variables such that If a variable

Xi = 1 we note Xi, otherwise we note Xi

◆ The first canonical form of f(X) is the OR of these

minterms.

Machine Structure Course, 1st-year Computer Science Engineer

Transition from the truth table to the logic
function

42

◆ From the truth table: the function is in the

second canonical form

◆ For every value of f(X) equals to 0

We define the mintermes of all the variables: If a

variable Xi = 1 we note Xi, otherwise we note Xi

◆ The OR of these minterms = f(Xi)

◆ After calculating f(Xi), we obtain the second

canonical form.

Machine Structure Course, 1st-year Computer Science Engineer

Example of logic function calculation in first
canonical form

43

◆ From the truth table of the previous example

◆ f(a,b,c) = 1 when :

▪ a = 0, b = 0 and c = 1 hence the minterm a b c

▪a = 1, b = 0 and c = 0 hence the minterm a b c

▪ a = 1, b = 0 and c = 1 hence the minterm a b c

▪ a = 1, b = 1 and c = 0 hence the minterm a b c

▪ a = 1, b = 1 and c = 1 hence the minterm a b c

◆ We make the OR of these minterms

◆ f(a,b,c)=abc+abc+abc+abc+abc
Machine Structure Course, 1st-year Computer Science Engineer

Example of calculation of the logic function in
the second form

44

◆ From the truth table of the previous example

◆ f(a,b,c) = 0 when :

▪a = 0, b = 0 and c = 0 hence the minterm

▪a = 0, b = 1 and c = 0 hence the minterm

▪a = 0, b = 1 and c = 1 hence the minterm

abc

abc

abc

◆ We make the OR of these minterms

 f(a,b,c)=abc+abc+abc
◆ Finally:
f(a,b,c)=(a+b+c)(a+b+c)(a+b+c)

Simplification of logic functions

45
Machine Structure Course, 1st-year Computer Science Engineer

The aim of simplifying logic functions

The aim of simplifying logic functions is to :

• reduce the number of terms in a function, and

• reduce the number of variables in a term.

The main aim of all these actions is to reduce the number
of logic gates used to reduce the cost of the circuit.

Several methods exist for simplification:

• The algebraic method

• Graphical methods (e.g. Karnaugh map)

46
Machine Structure Course, 1st-year Computer Science Engineer

Algebraic method

• The principle is to apply the rules of Boolean algebra to eliminate

variables or terms.

• But there's no specific approach.

• Here are some of the most commonly used rules:

➢ A . B + A . B = B

➢ A + A . B = A

➢ A + A . B = A + B

➢ (A + B) (A + B) = A

➢ A . (A + B) = A

➢ A . (A + B) = A B

47
Machine Structure Course, 1st-year Computer Science Engineer

Simplification rules

• Rule 1:

Group terms using the previous rules.

 Example: ABC + AB C = AB(C+C)=AB

• Rule 2 : Add an existing term to an expression.

 Example: A B C + ABC + A BC + ABC =

 ABC + ABC + ABC + A BC + ABC + ABC =

 BC + AC +AB

• Rule 3 : it is possible to delete a superfluous term (an
extra term), i.e. one already included in the combination
of other terms.

48
Machine Structure Course, 1st-year Computer Science Engineer

Application exercises

1. Demonstrate the following proposition :

A.B + B.C + A.C + A. B. C + A. B. C + A. B. C = A + B + C

2. Give the simplified form of the following function :

F (A, B, C, D) = A B C D + A B C D + A B C D + A B C D + ABCD

49
Machine Structure Course, 1st-year Computer Science Engineer

Simplification using the
Karnaugh map

50
Machine Structure Course, 1st-year Computer Science Engineer

Adjacent terms

• Let's consider the following expression :

 A . B + A . B

• Both terms have the same variables. The only difference

is the state of variable B, which changes.

• If we apply the simplification rules, we get :

 AB + AB = A (B + B) = A

• These terms are adjacents.

51
Machine Structure Course, 1st-year Computer Science Engineer

Example of adjacents termes

• These terms are adjacent
1. A.B + A. B = B
2. A.B.C + A. B. C = A.C

3. A.B.C.D + A.B.C. D = A.B.D

• These terms are not adjacent

1. A.B + A. B
2. A.B.C + A. B. C
3. A.B.C.D + A. B. C. D

52
Machine Structure Course, 1st-year Computer Science Engineer

Description of the Karnaugh map

• Karnaugh's method is based on the previous rule.

• The method consists in graphically highlighting all

adjacent terms (which differ only in the state of a

single variable).

• The method can be applied to logic functions of 2, 3,

4, 5 and 6 variables.

• A Karnaugh map has 2n cells (n is the number of
variables).

53
Machine Structure Course, 1st-year Computer Science Engineer

Karnaugh maps with 2, 3 and 4
variables

54
Machine Structure Course, 1st-year Computer Science Engineer

Description of the Karnaugh map
(with 5 variables)

55

01

11

10

00 01 11 10

AB

CD

 00

01

11

10

00 01 11 10
AB

CD

00

U = 0 U= 1

Machine Structure Course, 1st-year Computer Science Engineer

Examples of adjacent cells

56

0

1

00 01 11 10

AB

C

The three blue cells

are adjacent to the

red cell.

01

11

00

10

00 01 11 10

AB

CD

Machine Structure Course, 1st-year Computer Science Engineer

Transition from the truth table to the
Karnaugh map

• For each combination that represents a minterm, a cell in

the map must be set to 1.

• For each combination that represents a maxterm, a cell

in the map must be set to 0.

• When filling in the table, you must: either take the

minterms or the maxterms.

57
Machine Structure Course, 1st-year Computer Science Engineer

Example

58

10

1 1 1 1

00 01 11 10

AB
C

Machine Structure Course, 1st-year Computer Science Engineer

Change from the canonical form

to the Karnaugh map

• If the logic function is given in the first

canonical form (disjunctive), then its

representation is direct: for each term, it has a

single square/cell that must be set to 1.

• If the logic function is given in the second

canonical form (conjunctive), then its

representation is direct: for each term, it has a

single square/cell that must be set to 0 .

59
Machine Structure Course, 1st-year Computer Science Engineer

Examples

60

y

x
0 1

0 1 0

1 0 1

ƒ (𝑥, 𝑦) = 𝑥. 𝑦 + 𝑥. 𝑦

ƒ (𝑥, 𝑦) = (𝑥 +𝑦) (𝑥+ 𝑦)

y

x
0 1

0 1
1

1 0 1

ƒ (𝑥, 𝑦) = 𝑥. 𝑦 + 𝑥. 𝑦 + 𝑥. 𝑦

ƒ (𝑥, 𝑦) = 𝑥 + 𝑦

Machine Structure Course, 1st-year Computer Science Engineer

Simplification method: Example with
3 variables

• The basic idea is to try to group (make groupings/clusters) adjacent

cells that contain 1 (group of adjacent terms).

• Try to group as many cells as possible (16, 8, 4 or 2).

• In the following example, you can only group 2 cells together..

61

0

1

00 01 11 10

1

1 1 1

C

ABC + ABC =AB

AB

Machine Structure Course, 1st-year Computer Science Engineer

Simplification method: Example with
3 variables (continued)

• Since there are still cells outside a grouping, we repeat the same

procedure: forming groupings.

• A cell can belong to more than one grouping.

62

0

1

00 01 11 10

1

1 1 1

C

ABC + ABC =AB

AB

ABC + ABC = AC

Machine Structure Course, 1st-year Computer Science Engineer

Simplification method: Example with
3 variables (continued)

• We stop when there are no more 1's outside the groupings.

•The final function is equal to the sum of the simplified terms.

63

0

1

00 01 11 10

 1

 1 1 1

C

ABC + ABC = AC

ABC + ABC = BC

ABC + ABC = AB

F (A, B, C) = AB + AC + BC

AB

Machine Structure Course, 1st-year Computer Science Engineer

Simplification steps with the
Karnaugh map

So, to simplify a function using the Karnaugh map, follow these
steps:

1. Fill in the map using the truth table or the canonical form.

2. Make groupings: groupings of 16,8,4,2,1 cells (the same terms
can take part in several groupings).

3. In a grouping :

▪ Containing a single term: no variables can be eliminated.

▪ Contains two terms: one variable (the one that changes state)
can be eliminated.

▪ Containing 4 terms: 2 variables can be eliminated. Containing
8 terms: 3 variables can be eliminated.

▪ Containing 16 terms: 4 variables can be eliminated.

4. The final logical expression is the union (sum) of the groupings
after simplification and elimination of variables that change
state.

64
Machine Structure Course, 1st-year Computer Science Engineer

Examples: 3 variables

65

ƒ(𝑥, 𝑦, 𝑧) = 𝑥. 𝑦. 𝑧 + 𝑥. 𝑦. 𝑧 + 𝑥. 𝑦. 𝑧 + 𝑥. 𝑦. 𝑧

ƒ (𝑥, 𝑦, 𝑧) = 𝑥. 𝑧 + 𝑥. 𝑦 + 𝑦. 𝑧

AB

C 00 01 11 10

0 1

1 1 1 1 1

C

F (A, B, C) = C + AB

Machine Structure Course, 1st-year Computer Science Engineer

Examples of simplification

66Machine Structure Course, 1st-year Computer Science Engineer

Example: Map with 5 variables

67

AB AB

U = 0 U= 1

F(A, B, C, D, U) = A B + A.B.D. U + A.C.D.U + A.B.D.U

C

Machine Structure Course, 1st-year Computer Science Engineer

Other examples

68

Y a b

00 01 11 10

00 1 0 0 1

01 1 0 0 1

cd

11 1 0 0 1

10 1 0 0 1

Y a b

00 01 11 10

00 1 0 0 1

01 0 0 0 0

cd

11 0 0 0 0

10 1 0 0 1

Y = 𝑏̅

𝑌 = 𝑏̅𝑑̅

Machine Structure Course, 1st-year Computer Science Engineer

The case of a function not totally

defined

Consider the following example:

• A security lock is opened by four keys A, B, C and D.

• The operation of the lock is defined as follows: S(A,B,C,D)= 1 if at
least two keys are used; S(A,B,C,D)= 0 otherwise

• Keys A and D cannot be used at the same time.

• Note that if keys A and D are used at the same time, the state of the
system is not determined.

• These cases are called impossible or forbidden cases. So, the question
is how to represent these cases in the truth table?

Answer:

• For impossible or forbidden cases, put an X in the Truth Table.

• Impossible cases are also represented by Xs in the Karnaugh map.

69
Machine Structure Course, 1st-year Computer Science Engineer

Truth table+ Karnaugh map
• Let's give the associated truth table and Karnaugh map:

70

A B C D S

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 0

1 0 0 1 X

1 0 1 0 1

1 0 1 1 X

1 1 0 0 1

1 1 0 1 X

1 1 1 0 1

1 1 1 1 X

01

11

00

10

00 01 11 10

AB

CD

Machine Structure Course, 1st-year Computer Science Engineer

Simplification using the Karnaugh
map (indeterminate cells)

• Xs can be used in groupings:

▪ Either take them as 1s

▪ Or as 0s

• You must not form groupings containing only Xs.

71

F= AB + CD + BD + AC + BC

1

00

01

11

X

X

1

1

1

110

1011

1

X

X

1

0100

AB
CD

Machine Structure Course, 1st-year Computer Science Engineer

Application exercise

Find the simplified logic function from the following Karnaugh map :

72

01

11

10

00 01 11 10

AB

CD

00

Machine Structure Course, 1st-year Computer Science Engineer

	Slide 1
	Slide 2: Introduction
	Slide 3: Introduction (continued)
	Slide 4: Overview
	Slide 5: Example of two-state systems
	Slide 6: Definitions and conventions
	Slide 7: Logical variable (Boolean)
	Slide 8: Logic function
	Slide 9: Example of a logic function
	Slide 10: Basic logical operators NOT (Negation)
	Slide 11: AND operator
	Slide 12: OR opearator
	Slide 13: Precedence of operators (operator priority)
	Slide 14: Fundamental laws of Boolean algebra
	Slide 15: Basic properties
	Slide 16: Summary of the basic properties of Boolean Algebra
	Slide 17: Generalization of the DE-MORGANE’s Theorem to N variables
	Slide 18: Other logical operators Exclusive OR (XOR), Not AND (NAND), and Not OR (NOR)
	Slide 19: NAND and NOR: universal operators
	Slide 20: Properties of the NAND and NOR operators
	Slide 21: Logic Gates
	Slide 22: AND and OR gates
	Slide 23: XOR gate
	Slide 24: Logic circuit diagram (Logigram)
	Slide 25: Example 2
	Slide 26: Application exercises
	Slide 27: Application exercises (continued)
	Slide 28: Steps in designing and building a digital circuit
	Slide 29: Text definition of a logic function
	Slide 30: Application exercise (continued)
	Slide 31: Application exercise: Truth table
	Slide 32: Extracting the logic function from the truth table
	Slide 33: Canonical forms of a function
	Slide 34: First canonical form
	Slide 35: Second canonical form
	Slide 36: Important note
	Slide 37: Transition to canonical forms
	Slide 38: Example of transition to the first canonical form
	Slide 39: Example of transition to the second canonical form
	Slide 40: Switching from the logic function to the truth table
	Slide 41: Transition from the truth table to the logic function
	Slide 42: Transition from the truth table to the logic function
	Slide 43: Example of logic function calculation in first canonical form
	Slide 44: Example of calculation of the logic function in the second form
	Slide 45: Simplification of logic functions
	Slide 46: The aim of simplifying logic functions
	Slide 47: Algebraic method
	Slide 48: Simplification rules
	Slide 49: Application exercises
	Slide 50
	Slide 51: Adjacent terms
	Slide 52: Example of adjacents termes
	Slide 53: Description of the Karnaugh map
	Slide 54: Karnaugh maps with 2, 3 and 4 variables
	Slide 55: Description of the Karnaugh map (with 5 variables)
	Slide 56: Examples of adjacent cells
	Slide 57: Transition from the truth table to the Karnaugh map
	Slide 58: Example
	Slide 59: Change from the canonical form to the Karnaugh map
	Slide 60: Examples
	Slide 61: Simplification method: Example with 3 variables
	Slide 62: Simplification method: Example with 3 variables (continued)
	Slide 63: Simplification method: Example with 3 variables (continued)
	Slide 64: Simplification steps with the Karnaugh map
	Slide 65: Examples: 3 variables
	Slide 66: Examples of simplification
	Slide 67: Example: Map with 5 variables
	Slide 68: Other examples
	Slide 69: The case of a function not totally defined
	Slide 70: Truth table+ Karnaugh map
	Slide 71: Simplification using the Karnaugh map (indeterminate cells)
	Slide 72: Application exercise

