Matrix Norms and Scalar Product By

Bellaouar Djamel

University 08 Mai 1945 Guelma

October 2024

Definition

Let E be a vector space over \mathbb{K} (\mathbb{R} or \mathbb{C}). The norm over E, denoted by $\|.\|$, is a mapping

$$\|.\|$$
 : $E \to \mathbb{R}_+$
 $x \mapsto \|x\|$ (we say: the norm of x)

satisfying the following properties:

- For all $x \in E : ||x|| \ge 0$ and $||x|| = 0 \Leftrightarrow x = 0_E$;
- **②** For all $x \in E$ and scalar $\alpha \in \mathbb{K} : \|\alpha x\| = |\alpha| \cdot \|x\|$;
- **3** For all $x, y \in E : ||x + y|| \le ||x|| + ||y||$.

In this case, the couple $(E, \|.\|)$ is called **normed vector space** or **normed space**. So, a normed space E is a vector space with a norm defined on it.

Example

In this lesson, we only use the two vector spaces, \mathbb{K}^n and $\mathcal{M}_n\left(\mathbb{K}\right)$ with $\mathbb{K}=\mathbb{R}$ or \mathbb{C} .

① Define over \mathbb{K}^n the following norms:

$$||x||_1 = \sum_{i=1}^n |x_i|, ||x||_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{\frac{1}{2}},$$

 $||x||_{\infty} = \max_{1 \le i \le n} (|x_i|).$

Example

2. Define over $\mathcal{M}_n(\mathbb{K})$ the following norms:

$$\begin{split} \|A\|_1 &= & \max_{j} \sum_{i=1}^{n} \left| a_{ij} \right| \text{ and } \|A\|_{\infty} = \max_{i} \sum_{j=1}^{n} \left| a_{ij} \right| \\ \|A\|_2 &= & \left(\sum_{i,j}^{n} \left| a_{ij} \right|^2 \right)^{\frac{1}{2}}. \end{split}$$

Examples

As an application, for
$$x = \begin{pmatrix} -1 & 1 & -2 \end{pmatrix}^t$$
, we have

$$\|x\|_1 = 4$$
, $\|x\|_2 = \sqrt{6}$ and $\|x\|_{\infty} = 2$.

and for
$$A=\left(\begin{array}{cc} -1 & -2 \\ 7 & 3 \end{array}\right)\in\mathcal{M}_n\left(\mathbb{R}\right)$$
, we also have

$$\|A\|_1 = \max(8,5) = 8$$
, $\|A\|_2 = 3\sqrt{7}$ and $\|A\|_{\infty} = \max(3,10) = 10$.

Lemma

For each matrix $A \in \mathcal{M}_n(\mathbb{K})$ and for each $x \in \mathbb{K}^n$, we have the following inequality:

$$||Ax|| \leq ||A|| \, ||x||.$$



Inner Product or Scalar Product

Definition

Let E be real vectot space. The inner product over E is a function $\langle .,. \rangle$ defined by

$$\langle ., . \rangle$$
 : $E \times E \to \mathbb{R}$
 $(x, y) \mapsto \langle x, y \rangle$

satisfying the following properties:

- For all $x \in E : \langle x, x \rangle \ge 0$ and $\langle x, x \rangle = 0 \Leftrightarrow x = 0$.
- **o** For all $x \in E$ and scalar $\alpha \in \mathbb{R} : \langle \lambda x, y \rangle = \lambda \langle x, y \rangle$
- For all $x, y, z \in E : \langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$.

Scalar Product (Inner product)

Scalar Product over a complex vector space

Definition

Let E be complex vectot space (a vector space over \mathbb{C}). The inner product over E is a function $\langle .,. \rangle$ defined by

$$\langle .,. \rangle$$
 : $E \times E \to \mathbb{C}$
 $(x,y) \mapsto \langle x,y \rangle$

satisfying the following properties:

- For all $x \in E : \langle x, x \rangle \ge 0$ and $\langle x, x \rangle = 0 \Leftrightarrow x = 0$.
- **o** For all $x \in E$ and scalar $\alpha \in \mathbb{R} : \langle \lambda x, y \rangle = \lambda \langle x, y \rangle$
- For all $x, y, z \in E : \langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$.

Define on the vector space \mathbb{R}^n the inner product $\langle .,. \rangle$ by

$$\forall x = (x_1 x_2 \dots x_n)^t$$
, $y = (y_1 y_2 \dots y_n)^t \in \mathbb{R}^n$

we have

$$\langle x, y \rangle = \sum_{i=1}^n x_i y_i.$$

Define on the vector space \mathbb{R}^n the inner product $\langle ., . \rangle$ by

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i \overline{y_i},$$

where $\overline{y_i}$ is the conjugate of y_i .

Remark

For each $(x, y) \in \mathbb{R}^n \times \mathbb{R}^n$, we have

$$\langle x, y \rangle = x^t y.$$

Also, the inner product over \mathbb{C}^n is given by

$$\langle x, y \rangle = x^t \overline{y}, \tag{1}$$

where \overline{y} is the conjugate of y.

Example

Let $A \in \mathcal{M}_n(\mathbb{R})$. Find a symmetric matrix $B \in \mathcal{S}_n(\mathbb{R})$ such that

$$x^t A x = x^t B x$$
 for every $x \in \mathbb{R}^n$.

In fact, for every $x \in \mathbb{R}^n$, we have

$$x^{t}Ax = (x^{t}Ax)^{t}$$
 (since $x^{t}Ax = a \in \mathbb{R}$)
= $x^{t}A^{t}x$,

It follows that

$$x^t A x = \frac{1}{2} x^t A x + \frac{1}{2} x^t A^t x = x^t \left(\frac{A + A^t}{2} \right) x.$$

So, $B = \frac{A + A^t}{2}$ which is symmetric.

Scalar Product

Examples

Also, define over the vector space C([a, b]) the inner product

$$\forall f,g \in C([a,b]): \langle f,g \rangle = \int_a^b f(x)g(x) dx.$$

Proposition

Let A be a symmetric matrix and let $(\alpha, x), (\beta, y)$ be two eigenpairs of A with $\alpha \neq \beta$. Then x and y are orthogonal, i.e., $x \perp y$. Or, equivalently, $\langle x, y \rangle = 0$.

Proof.

Indeed, we have

$$\alpha \langle x, y \rangle = \langle \alpha x, y \rangle = \langle Ax, y \rangle = \langle x, A^t y \rangle = \langle x, Ay \rangle = \langle x, \beta y \rangle = \beta \langle x, y \rangle,$$

and since $\alpha \neq \beta$, it follows that $\langle x, y \rangle = 0$.

x 01. Consider the equation

$$ax^2 + 2hxy + by^2 = 0.$$
 (2)

Write (2) in the form $X^tAX = 0$, where $A \in \mathcal{M}_2(\mathbb{R})$ and $X = \begin{pmatrix} x \\ y \end{pmatrix}$.

Ans.
$$A = \begin{pmatrix} a & h \\ h & b \end{pmatrix}$$
.

Ex 02. Write the equation $\lambda_1 x_1^2 + \lambda_2 x_2^2 = 0$ in the form $X^t A X = 0$, where $A \in \mathcal{M}_2(\mathbb{R})$ and $X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$.

- **Ex 03.** Let $A \in \mathcal{M}_n(\mathbb{R})$. We ask if $x^t A x = 0$; $\forall x \in \mathbb{R}^n \stackrel{\mathsf{implies}}{\Rightarrow} A = 0$?
 - **Ans.** No, take the matrix $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.