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Special Matrices

Zero Matrix

A matrix with all zero entries is called a zero matrix and is denoted by 0. That is,

A= _
0 0 0

Also, A is called the null matrix.
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Special Matrices
Digonal Matrix

A square matrix A = (ajj) is diagonal if a;j = 0 for i # j. In this case, we write
D = diag {A1, Az, ..., An}. So, A diagonal matrix is given by:

A1 0O -~ 0
0 Ap --- O
D= S :
0 0 - Aq

@ Every computations on diagonal matrices are quite easy. For example, v/ D,
Dk, D_l, eD, cosD, In D, ...can be easily computed.
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Special Matrices
The Identity Matrix

The unit matrix or the identity matrix:

10 --- 0

01 --- 0
I =

o0 --- 1

This is a diagonal matrix; but, all the diagonal elements are equal to 1.

For any A€ M, (R) we have

Aly=1-A=A.

@ We always write [ instead of I,. So A- 1 =1-A=A.

Dj. Bellaouar (University 08 Mai 1945 Guelma) Special Matrices

October 2024



Special Matrices
Upper Triangular Matrix

Definition
A square matrix is upper triangular if all entries below the main diagonal are
zero. The general form of an upper triangular matrix is given by

a1 d12 - alp
0 axp - ap

U= , . }
0 0 dnn
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Special Matrices

Lower Triangular Matrix

Definition
A square matrix is lower triangular if all entries above the main diagonal are 0.
The general form of a lower triangular matrix is given by

all 0 0

a1 ax 0
L =

dnl  an2 ann

@ The eigenvalues of any triangular matrix are its diagonal entries.
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Special Matrices
Strictly Triangular Matrices

Strictly triangular matrices are of the form:

0 a2 ain 0 0 0

0 0 Bl a; 0 0
or }

0 O 0 anl  an2 0
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Special Matrices

Symmetric Matrices

Properties of transpose:
o (A = A
o (A+B)' = At + Bt
e For scalar &, (aA)" = aAf.
o (AB)' = BIAT.

For the matrix

A= € M35 (R),

1l W =
(o)~ S}

we have
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Special Matrices

Symmetric Matrices

Let A€ My (R). Then A and A' have the same eigenvalues.

Proof.

Let x € IR. We have

pa(x) = det(A—xl)=det ((A - Xl)t) (since det B = det BY)
= det (A" —x/)
= pat(x).
Thus, A and its transpose have the same characteristic polynomial. O

Definition

| A

Let A= (aij)1<ij<n be a square matrix. A is said to be symmetric if A" = A.

That is, a;j = aj; for each i,j € 1,n. So, an n x n matrix A is called symmetric if

it is equal to its transpose.
Dj. Bellaouar (University 08 Mai 1945 Guelma) Special Matrices October 2024




Special Matrices

Symmetric Matrices

The matrix

>

Il
[V ST
oo N
— oW

is symmetric; since At = A

For every matrix A € M, (R), A'A and AAt are always symmetric.

It is clear that

(ATA)" = Af (A = ATA
That is, for each A € M, (R), A'A is symmetric. O
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Special Matrices

Symmetric Matrices

Proposition

The eigenvalues of a real symmetric matrix are real numbers.

See Theorem 26. O] \

Let A€ M, (R) be a symmetric matrix and let ag, a1, ...,am € R with m > 1.
The matrix

aol + 1A+ ... +amA”
is also symmetric.

(Easy).
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Special Matrices

Skew-symmetric Matrices

Definition

Let A= (aij)lgi,jgn be a square matrix. A isiid to be skew-symmetric if
At = —A. Thatis, aj = —ajj for each i,j € 1, n.

For example, the matrix

is skew-symmetric since Al = —A.

Every square matrix M € M, (R) can be written as A+ B, where A is
skew-symmetric and B is symmetric.
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Special Matrices

Skew-symmetric Matrices

It is clear that for each M € M, (R) we have

Yoo mny ot t
/\/1_2(/\// M)—|—2(M—|—M).

skew-symmetric symmetric
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Special Matrices

Skew-symmetric Matrices

Theorem (18)

Let B be a skew-symmetric matrix; i.e., Bt = —B. Then the matrix A= 1 — B is
invertible.

Note that a matrix A is invertible if and only if (Ax =0 = x = 0).
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Special Matrices

Skew-symmetric Matrices

[Proof of Theorem 17]
It suffices to prove that Ax = 0 implies x = 0. In fact, if Ax =0, it follows that
Bx = x. Therefore,

(x,x) = (x, Bx) .
On the other hand, we have
xtx = x'Bx

= x'x=x"B'x (since (xtx)t = x"x and (xth)t = x'Bx)
= x'x=x"(—=B)x (since B is skew-symmetric)
= x'x=—x'"Bx
= x'x=—x'x
= x'x=0.
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Special Matrices

Skew-symmetric Matrices

[Proof of Theorem 17]

Setting x = ( X1 X2 ... Xp )t, we find

X1
X2
xX'x=(x x ... xp) . =X12—|-X22—|—...+X,%=0.

Xn

Thus, x; = 0 for each i € 1, n, and so x = 0.
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Special Matrices

Problems

1. Let
0o -2 3
A= 2 0 4
-3 -4 0

Verify that A is skew-symmetric.

2. Prove that M, (R) = S, (R) ® A, (R), where S, (R) is the subspace of
all symmetric matrices and A, (R) is the subspace of all skew-symmetric
matrices.

Dj. Bellaouar (University 08 Mai 1945 Guelma) Special Matrices October 2024



Special Matrices

Orthogonal Matrices

Definition

A matrix A € M, (R) is called orthogonal if A = A~1 (or if A’/A = AAf = /).

Example

The matrix
A ( cosf —sinf

sin@  cos® >; HER

is orthogonal, since

t _ t [ cos@ —sinf cosf® sinf
A A _<sin9 cos 6 )(—sin@ cos 6
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Special Matrices

Orthogonal Matrices

An orthogonal matrix has the following properties:

1. its column vectors (rows) are orthonormal,
2. ATA = AAt = |,

3. A=A
4. For every x € R" : ||Ax|| = ||x]|,
5. For every x,y € R": (Ax, Ay) = (x,y) .

Corollary

Let A€ M, (R) be an orthogonal matrix. Then det (A) = +£1.

Proof.
Since At = A~1 then AtA = I,. It follows that

| \

det (A'A) = det (A*) det (A) = (det (A))? = det () = 1

Hence det (A) = +1. O
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Special Matrices

Orthogonal Matrices

Let A€ M, (R) be an orthogonal matrix. The following properties are
equivalent.

1) A is orthogonal.
2) Forevery x € R": ||Ax|| = ||x]| .
3) Forevery x,y € R": (Ax, Ay) = (x,y) .

1)=-2). Assume that A is orthogonal. Let x € R”, we have

|Ax||? = (Ax, Ax) = (x, APAX) = (x, lx) = (x,x) = ||x]|*.
Therefore, ||Ax| = ||x]| .
2)=-3). Assume that V¥ x € R" : ||Ax|| = ||x]| . Let x,y € R", we have

2 2
A+ )" = lIx+yI°;
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Special Matrices

Orthogonal Matrices

That is, (Ax + Ay, Ax+ Ay) = (x+y,x+y), and so

(Ax, Ax) + (Ay, Ay) + 2 (Ax, Ay) = (x,x) + {y.y) +2(x, y)

Thus, (Ax, Ay) = (x,y).
3)=1). Assume that V x,y € R" : (Ax, Ay) = (x,y) . It follows that

(x,A'Ay) = (x,y)
i.e., (x, AtAy —y) = 0. In particular, for x = x* Ay — y, we obtain
|atAy - y|* =0.

Hence A'Ay = y, and therefore A'A = I,. O
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Special Matrices

Orthogonal Matrices

Exercise

Consider the matrix
A— 0 -1
“\1 0

For each 6 € IR, prove that ebA s orthogonal?.

ISee the chapter of exponential of square matrices.

o

Exercise

Let A be an orthogonal matrix. Prove the following properties:
@ Al is orthogonal.
@ Forevery A € Sp(A) = |A| =1

@ If A1 and Ay are two orthogonal matrices, then A1 Ay is also orthogonal.

\,
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Special Matrices

Hermitian Matrices

Definition

Let A= (aij)1<ij<n € M, (C). Thatis ajj is a complex number for

1 <i,j < n. The matrix (a_fj)l<ij<n is called conjugate of A, denoted by A.
The transpose conjugate matrix of A is called the adjoint of A, denoted by A*.
Note that A* = AT = (A)".

Definition

A matrix A € M, (C) is called Hermitian? if A* = A. Thta is, if At = A

20n the other hand, a matrix A is said to be skew-Hermitian if A* = —A.
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Special Matrices

Hermitian Matrices

Example

The matrix
1 1+7 243/
A= 11— -2 —i
2—3i i 0

is Hermitian; because A* = A.

Proposition

The diagonal coefficients of a Hermitian matrix are real.

Proof.

From Definition 22, the result is obvious since a;; = 3;; for 1 < i < n.

| A

Let A€ M, (C). We can easily prove that A+ A*, AA* and A*A are Hermitian.
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Special Matrices

Hermitian Matrices

The eigenvalues of a Hermitian matrix are real.

Proof. Let (A, x) be an eigenpair of a Hermitian matrix A (note that x # 0). We
can write

Apox) = (Axx)
= (Ax,x) = (Ax)'x = x'Alx
= (@) 5 (since (A) =)
= x'Ax = x"Ax = (x, Ax) = (x, Ax) = A (x,x) .

That is, A = A.
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Special Matrices

Unitary Matrices, Normal Matrices

Definition

A matrix U € M, (C) is said to be unitary if U~1 = U*. In other words, a
square matrix U with complex coefficients is said to be unitary if it satisfies the
equalities:

Uru = UU* = I,.

@ The unitary matrices with real coefficients are the orthogonal matrices.

@ Note that a complex square matrix A is normal if it commutes with its
conjugate transpose A*. That is, A*A = AA*. Thus, unitary, Hermitian and
skew-Hermitian matrices are normal.

Dj. Bellaouar (University 08 Mai 1945 Guelma) Special Matrices October 2024 26 / 30



Special Matrices

Unitary Matrices

The matrix

is unitary; since

e n [0 =i 0 —i\ (1
wemn=(33) (2 5) =3
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Special Matrices

Unitary Matrices

Any unitary matrix U satisfies the following properties:

a. its determinant has modulus 1;
b. its eigenvectors are orthogonal;

c. U is diagonalizable, i.e.,
U = VDV*,

where V is a unitary matrix and D is a unitary diagonal matrix.

d. U can be written as an exponential of a matrix:
U=el

where / is the imaginary unit and H is a Hermitian matrix.

Dj. Bellaouar (University 08 Mai 1945 Guelma) Special Matrices October 2024



Special Matrices

Unitary Matrices

Proposition

Let U be a square matrix of size n with complex coefficients; the following five
propositions are equivalent:

Q@ U is unitary;

Q@ U™ is unitary;

@ U is invertible and its inverse is U*;

@ the columns of U form an orthonormal basis for the canonical Hermitian
product over C";

@ U is normal and its eigenvalues have modulus 1.
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Special Matrices

Idempotent matrices

Definition

Let A€ M, (K). Then A is called idempotent if A> = A.

Examples of 2 X 2 idempotent matrices are:

10 3 —6
0 1)'\1 =2
If A is idempotent, then A is diagonalizable. l

Since A2 = A, it follows that mu (x) = x (x — 1) which has simple roots, and
hence A is diagonalizable. O
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