System of linear differential equations. Part II By

Bellaouar Djamel

University 8 Mai 1945 Guelma

October 2024

System of linear differential equations. Part II

Consider the system of differential equations:

$$\begin{cases} x'_{1} = a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} \\ x'_{2} = a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} \\ \vdots \\ x'_{n} = a_{n1}x_{1} + a_{n2}x_{2} + \dots + a_{nn}x_{n}, \end{cases}$$
(1)

which is written by the following equivalent vector-matrix system:

$$X' = A \cdot X$$

where the matrix A is **non-diagonalizable**. In this case, the general solution of (1) can be given by:

$$X(t) = e^{tA}c$$

where $c = \begin{pmatrix} c_1 & c_2 & \dots & c_n \end{pmatrix}^t$ is a constant.

In this Algebra III, we only consider certain cases. For example, $A \in \mathcal{M}_n(\mathbb{R})$ but has a unique eigenvalue or when $A \in \mathcal{M}_n(\mathbb{R})$ with $n \leq 4$. The situation is particularly simple whenever $A \in \mathcal{M}_2(\mathbb{R})$.

Corollary

Let $A \in \mathcal{M}_n(\mathbb{R})$ be a square matrix having a unique eigenvalue, say λ . Then

$$e^{tA} = e^{\lambda t} \sum_{k=0}^{n-1} (A - \lambda I_n)^k \frac{t^k}{k!}.$$

We first have $p_A(x) = (x - \lambda)^n$ since A has a unique eigenvalue λ . We have

$$e^{tA} = e^{\lambda t I_n + t(A - \lambda I_n)}$$

$$= e^{\lambda t I_n} e^{t(A - \lambda I_n)}$$
 (because $\lambda t I_n$ and $t(A - \lambda I_n)$ commute)
$$= e^{\lambda t} e^{t(A - \lambda I_n)}$$
 (because $e^{\alpha I_n} B = e^{\alpha} B$ for any $B \in \mathcal{M}_n(\mathbb{R})$ and $\alpha \in \mathbb{R}$)
$$= e^{\lambda t} \sum_{k=0}^{+\infty} (A - \lambda I_n)^k \frac{t^k}{k!}$$

$$= e^{\lambda t} \sum_{k=0}^{n-1} (A - \lambda I_n)^k \frac{t^k}{k!},$$
(3)

where $\sum\limits_{k=n}^{+\infty} \left(A-\lambda I_n
ight)^k=$ 0; this is obtained by Cayley-Hamilton theorem since

$$p_A(A) = (A - \lambda I_n)^n = 0.$$

Remark. In particular, by Corollary 1, if $A \in \mathcal{M}_2(\mathbb{R})$ with $Sp(A) = \{\lambda\}$ then

$$e^{tA} = e^{\lambda t} \{ I_2 + (A - \lambda I_2) t \}.$$
 (4)

If $A \in \mathcal{M}_3(\mathbb{R})$ with $Sp(A) = \{\lambda\}$ then

$$e^{tA} = e^{\lambda t} \left\{ I_3 + (A - \lambda I_3) t + \frac{1}{2} (A - \lambda I_3)^2 t^2 \right\}.$$
 (5)

Example

Solve the system of différentiel equations

$$\begin{cases} x' = 2x + y \\ y' = 2y \end{cases} \tag{6}$$

Solution. Let A be the matrix of (6), i.e.,

$$A = \left(\begin{array}{cc} 2 & 1 \\ 0 & 2 \end{array}\right).$$

From (4), we have

$$e^{tA} = e^{2t} \{ I_2 + (A - 2I_2) t \}$$

$$= e^{2t} \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \left(\begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} - 2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right) t \right\}$$

$$= \begin{pmatrix} e^{2t} & te^{2t} \\ 0 & e^{2t} \end{pmatrix}.$$

Thus, the solution of (6) is given by

$$X(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} e^{2t} & te^{2t} \\ 0 & e^{2t} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} c_1 e^{2t} + tc_2 e^{2t} \\ c_2 e^{2t} \end{pmatrix},$$

where c_1 , c_2 are constant.

Example

Solve the system of differential equations:

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} -4 & 1 & 1 \\ 1 & -1 & -2 \\ -2 & 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

Solution: The characteristic polynomil of A is given by

$$p_A(x)=(x+2)^3.$$

This means that A has a unique eigenvalu, $\lambda = -2$. From (5), we obtain

$$e^{tA} = e^{-2t} \left\{ I_3 + (A + 2I_3) t + \frac{1}{2} (A + 2I_3)^2 t^2 \right\},$$

where

$$A + 2I_3 = \begin{pmatrix} -2 & 1 & 1 \\ 1 & 1 & -2 \\ -2 & 1 & 1 \end{pmatrix} \text{ and } A + 2I_3 = \begin{pmatrix} 3 & 0 & -3 \\ 3 & 0 & -3 \\ 3 & 0 & -3 \end{pmatrix}.$$

Then

$$e^{tA} = e^{-2t} \left\{ I_3 + (A + 2I_3) t + \frac{1}{2} (A + 2I_3)^2 t^2 \right\}$$

$$= e^{-2t} \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} -2 & 1 & 1 \\ 1 & 1 & -2 \\ -2 & 1 & 1 \end{pmatrix} t + \frac{1}{2} \begin{pmatrix} 3 & 0 & -3 \\ 3 & 0 & -3 \\ 3 & 0 & -3 \end{pmatrix} t^2 \right\}$$

$$= e^{-2t} \begin{pmatrix} \frac{3}{2}t^2 - 2t + 1 & t & t - \frac{3}{2}t^2 \\ \frac{3}{2}t^2 + t & t + 1 & -\frac{3}{2}t^2 - 2t \\ \frac{3}{2}t^2 - 2t & t & -\frac{3}{2}t^2 + t + 1 \end{pmatrix}.$$

Problem

Solve the system of differential equations

$$X' = A \cdot X$$
, where $A = \begin{pmatrix} 3 & -18 \\ 2 & -9 \end{pmatrix}$.

Problem

Solve the system of differential equations

$$\begin{pmatrix} x'_{1}(t) \\ x'_{2}(t) \\ x'_{3}(t) \\ x'_{4}(t) \end{pmatrix} = \begin{pmatrix} 1 & 2 & 1 & 3 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_{1}(t) \\ x_{2}(t) \\ x_{3}(t) \\ x_{4}(t) \end{pmatrix}.$$

Theorem

Let $A \in \mathcal{M}_3(\mathbb{R})$. If A has two distinct eigenvalues λ and μ (where λ has multiplicity 2), then

$$e^{tA} = e^{\lambda t} \left(I + t \left(A - \lambda I \right) \right) + \frac{e^{\mu t} - e^{\lambda t}}{\left(\mu - \lambda \right)^2} \left(A - \lambda I \right)^2 - \frac{t e^{\lambda t}}{\mu - \lambda} \left(A - \lambda I \right)^2. \tag{7}$$

From (2) and (3), we have

$$e^{tA} = e^{\lambda t} \sum_{k=0}^{+\infty} (A - \lambda I)^{k} \frac{t^{k}}{k!}$$

$$= e^{\lambda t} (I + (A - \lambda I)) + e^{\lambda t} \sum_{k=2}^{+\infty} (A - \lambda I)^{k} \frac{t^{k}}{k!}$$

$$= e^{\lambda t} (I + (A - \lambda I)) + e^{\lambda t} \sum_{r=0}^{+\infty} (A - \lambda I)^{2+r} \frac{t^{2+r}}{(2+r)!}$$
(8)

Now, let $p_A(x) = (x - \lambda)^2 (x - \mu)$ be the characteristic polynomial of A. First, we note that

$$A - \mu I = (A - \lambda I_n) - (\mu - \lambda) I.$$

By Cayley-Hamilton theorem, we get

$$0 = (A - \lambda I)^{2} (A - \mu I) = (A - \lambda I)^{3} - (\mu - \lambda) (A - \lambda I)^{2},$$

from which is follows that

$$(A - \lambda I)^3 = (\mu - \lambda) (A - \lambda I)^2.$$

By induction, for every $r \geq 1$,

$$(A - \lambda I)^{2+r} = (\mu - \lambda)^r (A - \lambda I)^2.$$

It follows from (8) that

$$\sum_{r=0}^{+\infty} (A - \lambda I)^{2+r} \frac{t^{2+r}}{(2+r)!} = \sum_{r=0}^{+\infty} (\mu - \lambda)^r \frac{t^{2+r}}{(2+r)!} (A - \lambda I)^2$$
$$= \frac{1}{(\mu - \lambda)^2} \sum_{r=0}^{+\infty} \frac{t^k}{k!} (\mu - \lambda)^k (A - \lambda I)^2.$$

Finally, we obtain

$$\begin{split} e^{tA} &= e^{\lambda t} \left(I + (A - \lambda I) \right) + \frac{e^{\lambda t}}{\left(\mu - \lambda \right)^2} \left\{ e^{(\mu - \lambda)t} - 1 - (\mu - \lambda) t \right\} \left(A - \lambda I \right)^2 \\ &= e^{\lambda t} \left(I + t \left(A - \lambda I \right) \right) + \frac{e^{\mu t} - e^{\lambda t}}{\left(\mu - \lambda \right)^2} \left(A - \lambda I \right)^2 - \frac{t e^{\lambda t}}{\mu - \lambda} \left(A - \lambda I \right)^2. \end{split}$$

This completes the proof.

Example

Solve the system of differential equations

$$\begin{pmatrix} x'_{1}(t) \\ x'_{2}(t) \\ x'_{3}(t) \end{pmatrix} = \begin{pmatrix} 2 & -1 & 2 \\ 10 & -5 & 7 \\ 4 & -2 & 2 \end{pmatrix} \begin{pmatrix} x_{1}(t) \\ x_{2}(t) \\ x_{3}(t) \end{pmatrix}.$$

Solution. We first find the characteristic polynomial of A. By computation, $p_A(x) = x^2(x+1)$. This means that A has two eigenvalues $\lambda = 0$ (with multiplicity 2) and $\mu = -1$ (simple). It follows from (7) that

$$e^{At} = I_3 + tA + (t + e^{-t} - 1) A^2.$$

Simple computation we obtain

$$e^{At} = \left(egin{array}{cccc} 4t + rac{2}{e^t} - 1 & 1 - rac{1}{e^t} - 2t & 3t + rac{1}{e^t} - 1 \ 8t - rac{2}{e^t} + 2 & rac{1}{e^t} - 4t & 6t - rac{1}{e^t} + 1 \ 4 - rac{4}{e^t} & rac{2}{e^t} - 2 & 3 - rac{2}{e^t} \ \end{array}
ight).$$