Similar Matrices By

Bellaouar Djamel

University 08 Mai 1945 Guelma

October 2024

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

We will now introduce the notion of similarity. This is a relation between two matrices. In fact, **similarity is an equivalence relation.**

Definition

Let A and B be two *n*-by-*n* matrices. We say that A is **similar to** B if there exists an invertible matrix P such that

$$A = PBP^{-1}.$$

In linear algebra, two *n*-by-*n* matrices *A* and *B* are called **similar** if $A = PBP^{-1}$ for some invertible matrix *P*.

Notation. The notation $A \sim B$ means that the matrix A is similar to the matrix B. Also, $A \approx B$ means that A is not similar to B.

< ロ > < 同 > < 三 > < 三

Next, we give an example.

Example

Let A and B be two matrices given by
$$A = \begin{pmatrix} 2 & 1 \\ 2 & 3 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 2 \\ -2 & 5 \end{pmatrix}$.
Then A is similar to B because for the matrix $P = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$, we have after few computation

$$PBP^{-1} = \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ -2 & 5 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 2 & 3 \end{pmatrix} = A.$$

But, the question we ask here: How to find the invertible matrix P so that $A = PBP^{-1}$? Moreover, for any two matrices A and B, does always such matrix P exist for which $A = PBP^{-1}$?

イロト イヨト イヨト イヨト

Problem (Homework)

Let A and B be two matrices given by

$$A = \left(\begin{array}{cc} -4 & 7 \\ 3 & 0 \end{array}\right), B = \left(\begin{array}{cc} 13 & -8 \\ 25 & -17 \end{array}\right).$$

Show that A is similar to B.

• When you read the next courses, you find this problem trivial.

イロン イロン イヨン イ

We will see later that in general two *n* by *n* matrices *A* and *B* are not similar to each other. That is, for some matrices we cannot find an invertible matrix *P* suct that $A = PBP^{-1}$.

Let us start with the following properties:

Theorem

Let A and B be two n-by-n similar matrices; i.e., there exists an invertible matrix P such that $A = PBP^{-1}$. Then

1. For each positive integer k, $A^k = PB^kP^{-1}$.

2. $p_A(x) = p_B(x)$, that is A and B have the same characteristic polynomial.

(日) (同) (日) (日)

Proof.

We prove the theorem as follows:

Sume that A and B are two similar matrices, and let P be an invertible matrix such that A = PBP⁻¹. For each integer k ≥ 0 we have

$$A^{k} = \underbrace{\left(PBP^{-1}\right)\left(PBP^{-1}\right)...\left(PBP^{-1}\right)}_{k-\text{times}}$$
$$= P\underbrace{BB...B}_{k-\text{times}}P^{-1}$$
$$= PB^{k}P^{-1}.$$

We prove the following implication

$$A \sim B \Rightarrow p_A(x) = p_B(x)$$

(1)

Proof.

That is, if the matrices A and B are similar to each other, then A and B have the same characteristic equation, and hence have the same eigenvalues. In fact, we have

$$p_{A}(x) = \det (A - xI)$$

$$= \det (PBP^{-1} - xPP^{-1}), \text{ since } PP^{-1} = I$$

$$= \det (P (B - xI) P^{-1}), \text{ since } x \in \mathbb{R}$$

$$= \det (P) \det (B - xI) \det (P^{-1}) \qquad (2)$$

$$= \det (B - xI) \qquad (3)$$

$$= p_{B}(x).$$

Note that the passage from (2) to (3) because det $(P^{-1}) = \frac{1}{\det(P)}$. The proof is finished. **Remark.** The converse of (1) is false. For example, for

$$A=\left(egin{array}{cc}1&1\\0&1\end{array}
ight)$$
 and $B=\left(egin{array}{cc}1&0\\0&1\end{array}
ight)=I_2$

We see that $p_A(x) = p_B(x)$. Therefore, $Sp(A) = Sp(B) = \{1\}$ and det (A) = det(B). Further, if A is similar to B then there exists an invertible matrix P such that

$$A = PBP^{-1} = PI_2P^{-1} = I_2.$$

A contradiction since $A \neq l_2$. Thus, A is not similar to B. **Conclusion:** We can also write

$$\begin{cases} Sp(A) = Sp(B) \Rightarrow A \sim B, \\ p_A(x) = p_B(x) \Rightarrow A \sim B. \end{cases}$$

イロト イ団ト イヨト イヨト

Remark

By applying the following rule:

$$\det (A) = 0 \Leftrightarrow 0 \in Sp(A).$$
(4)

Let A and B be two similar matrices, i.e., there exists an invertible matrix P such that $A = PBP^{-1}$. We can also prove that Sp(A) = Sp(B). Let $\lambda \in Sp(A)$, there exists a nonzero vector x tel que $Ax = \lambda x$. That is,

$$(A - \lambda I) x = 0 = 0.x$$

Which gives $0 \in Sp(A - \lambda I)$. On the other hand, we have

$$A - \lambda I = P \left(B - \lambda I \right) P^{-1}.$$

イロト イ団ト イヨト イヨト

(5)

Remark

Assume that $0 \notin Sp(B - \lambda I)$. By (4) and (5) we have $B - \lambda I \in \mathbb{GL}_n(\mathbb{R})$. Consequently, $A - \lambda I \in \mathbb{GL}_n(\mathbb{R})$. From (4), $0 \notin Sp(A - \lambda I)$. A contradiction. Finally, we deduce that $0 \in Sp(B - \lambda I)$, and hence $\lambda \in Sp(B)$. Thus, $Sp(A) \subset Sp(B)$.

< ロ > < 同 > < 三 > < 三

Corollary

Two similar matrices A and B have the same determinant.

Proof.

Let P be an invertible matrix P such that $A = PBP^{-1}$. It follows that

$$\det\left(A
ight)=\det\left(\mathcal{PBP}^{-1}
ight)=\det\left(\mathcal{P}
ight)\det\left(B
ight)\det\left(\mathcal{P}^{-1}
ight)=\det\left(B
ight)$$
 ,

and so det $(A) = \det(B)$. This completes the proof.

Fact

We have

$$\det\left(\prod_{i=1}^{k}A_{i}\right)=\prod_{i=1}^{k}\det\left(A_{i}\right).$$

Example

Consider the following two matrices:

$$A=\left(egin{array}{cc} 2&1\ -1&-1\end{array}
ight)$$
 and $B=\left(egin{array}{cc} 5&2\ 4&1\end{array}
ight).$

How can we tell (rather quickly) that the matrices A and B are not similar to each other?

In fact, $A \approx B$ because det $(A) = -1 \neq \det(B) = -3$. Thus, we have applied the result:

$$\det (A) \neq \det (B) \Rightarrow A \nsim B.$$

• As we have seen before: det $(A) = \det(B) \Rightarrow A \sim B$.

< □ > < 同 > < 回 > < Ξ > < Ξ

Theorem

The relation " \sim " similarity is an equivalence relation.

Proof.

This relation is what we call an **equivalence relation**, because we have the following three properties:

1. The relation " \sim " is reflexive, because for each matrix $A\in \mathcal{M}_n(\mathbb{R})$ we have

$$A=I_nAI_n^{-1}.$$

Then $A \sim A$.

2. The relation " \sim " is symmetric, because for all matrices $A, B \in \mathcal{M}_n(\mathbb{R})$ we have

$$A \sim B \Rightarrow \exists P \in \mathbb{GL}_n(\mathbb{R})$$
 such that $A = PBP^{-1}$.

Proof.

Thus, $B \sim A$ (i.e., we can just say that A and B are similar to each other). For the matrices A, B, and P of Example 2, verify by direct computation that $A = PBP^{-1}$ and that $B = P^{-1}AP$.

3. The relation " \sim " is transitive, because for all matrices A, B, $C \in \mathcal{M}_n(\mathbb{R})$ we have

$$\left\{\begin{array}{l} A \sim B \\ B \sim C \end{array}\right\} \Rightarrow \left\{\begin{array}{l} \exists \ P \in \mathbb{GL}_n\left(\mathbb{R}\right) \text{ such that } A = PBP^{-1}, \\ \exists \ Q \in \mathbb{GL}_n\left(\mathbb{R}\right) \text{ such that } B = QCQ^{-1} \end{array}\right.$$

Which gives

$$A = P\left(QCQ^{-1}\right)P^{-1} = \underbrace{(PQ)}_{R}C\left(PQ\right)^{-1} = RCR^{-1} \text{ with } R \in \mathbb{GL}_{n}\left(\mathbb{R}\right).$$

Hence, $A \sim C$.

Proposition

Let $P \in \mathbb{GL}_n(\mathbb{R})$. Define the mapping T_P by: $T_P : \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$, $A \mapsto T_P(A) = P^{-1}AP$. Then the following statements hold: **1** $T_{P}(I_{n}) = I_{n}$ 2 $T_{P}(A+B) = T_{P}(A) + T_{P}(B)$ $T_P(AB) = T_P(A) T_P(B)$ $T_{P}(rA) = rT_{P}(A)$ $T_P(A^k) = (T_P(A))^k$ **•** $T_P(A^{-1}) = (T_P(A))^{-1}$ $T_P(e^A) = e^{T_P(A)}$

 $T_Q (T_P (A)) = T_{PQ} (A).$

Similar matrices

Results and Examples

Proof.

We have

Remark. Let $A, B \in \mathcal{M}_n(\mathbb{R})$. If $A \sim B$, then

 $A \in \mathbb{GL}_{n}(\mathbb{R}) \Leftrightarrow B \in \mathbb{GL}_{n}(\mathbb{R}).$

In fact, we have $A = PBP^{-1} \Leftrightarrow B = P^{-1}AP$. **Conclusion.** Let $A \in \mathcal{M}_n(\mathbb{R})$, and let $B = P^{-1}AP \in \mathcal{M}_n(\mathbb{R})$ be a matrix similar to A. Then A and B have the same characteristic polynomial. Furthermore, $f(A) = P \cdot f(B) \cdot P^{-1}$ for each $f \in \mathbb{K}[X]$, and in particular $A^k = PB^kP^{-1}$ for $k \ge 1$.

Corollary

Let $A, B \in \mathcal{M}_n(\mathbb{R})$. If $A \sim B$, then Tr(A) = Tr(B).

• Tr(A) is the **trace** of A.

イロト イヨト イヨト イヨト

Similar matrices

Results and Examples

Proof.

We know that

$$\forall M, N \in \mathcal{M}_n(\mathbb{R}) : Tr(MN) = Tr(NM).$$

Then

$$Tr(A) = Tr(PBP^{-1}) = Tr(BPP^{-1}) = Tr(B).$$

Corollary

Two similar matrix have the same rank.

Proof.

Assume that $A = PBP^{-1}$ for some invertible square matrix P. We have $rk(B) \ge rk(PBP^{-1}) = rk(A)$. Now note that $B = P^{-1}AP$, so we similarly get $rk(A) \ge rk(P^{-1}AP) = rk(B)$.

Conclusion. Two similar matrices have the same determinant, same trace, same rank, same characteristic polynomial, same eigenvalues.

Question. Why the study of similarity between matrices is **important**? **Ans.** If a matrix A is similar to a diagonal matrix D, then the computations of A^k , e^A , $\cos A$, \sqrt{A} ,... are quite **easy**.

Problem

Is always any square matrix similar to a digonal matrix?

(日) (同) (三) (三) (三)

1. Let A and B be two similar matrices, i.e., there exists an invertible matrix P such that $A = PBP^{-1}$. Prove that

$$(\lambda, x)$$
 is an eigenpair of $A \Rightarrow (\lambda, P^{-1}x)$ is an eigenpair of B .

Ex 02. Let $A, B \mathcal{M}_n(\mathbb{R})$ and $f(x) = a_0 + a_1x + ... + a_nx^n \in \mathbb{R}[x]$ be a polynomial of degree n. Prove that

$$A \sim B \Rightarrow f(A) \sim f(B)$$
.

x 03. Consider the two matrices:

$$A = \begin{pmatrix} 1 & 0 & 4 \\ 1 & 1 & 3 \\ 2 & 1 & 7 \end{pmatrix} \text{ et } B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 3 & 1 & 2 \end{pmatrix}$$

Prove that $A \sim B$; i.e., A and B are not similar to each other.

・ロト ・回ト ・ ヨト ・

x 04. Show that

$$A - \lambda I_n \sim B \Rightarrow A \sim B + \lambda_n I.$$

Ex 05. Using two methods. Prove that similar matrices have the same eigenvalues.
 Ex 06. Prove that

$$A \sim B \Rightarrow e^A \sim e^B$$
.

x 07. Without calculating, neither eigenvalues nor eigenvectors, show that

$$\left(\begin{array}{rrr}1 & -1\\3 & 1\end{array}\right) \sim \left(\begin{array}{rrr}1 & 3\\-1 & 1\end{array}\right).$$

Ex 08. Show by direct computation that the matrices A and B of Example 2 have the same characteristic equation. What are the eigenvalues of A and B?

< ロ > < 同 > < 三 > < 三