Minimal Polynomial By

Bellaouar Djamel

University 8 Mai 1945 Guelma

October 2024

・ロト ・四ト ・ヨト ・ヨト

We introduce here a second polynomial which is extracted from the characteristic polynomial of a square matrix.

Definition

Let A be a square matrix and let $p_A(x)$ be its characteristic polynomial. The **minimal polynomial** of A, denoted by $m_A(x)$, is a polynomial satisfying the following two properties:

• $m_A(x)|p_A(x)$; i.e., $m_A(x)$ divides the characteristic polynomial $p_A(x)$.

イロン イ部ン イヨン イヨ

We introduce here a second polynomial which is extracted from the characteristic polynomial of a square matrix.

Definition

Let A be a square matrix and let $p_A(x)$ be its characteristic polynomial. The **minimal polynomial** of A, denoted by $m_A(x)$, is a polynomial satisfying the following two properties:

- $m_A(x)|p_A(x)$; i.e., $m_A(x)$ divides the characteristic polynomial $p_A(x)$.
- **3** $m_A(A) = p_A(A) = 0$ (the zero matrix). That is, $m_A(x)$ satisfies Cayley-Hamilton Theorem as does $p_A(x)$.

イロト イ団ト イヨト イヨト

Theorem

The eigenvalues of a matrix A are the roots of $m_A(x)$.

Proof.

Let λ be an eigenvalue of A and let x be its eigenvector. From the Euclidean division of $m_A(x)$ by $x - \lambda$, we obtain

$$\mathit{m}_{\mathcal{A}}\left(x
ight)=\mathcal{Q}\left(x
ight)\left(x-\lambda
ight)+\mathit{c},\ \mathit{c}\in\mathbb{R} ext{ and }\mathcal{Q}\in\mathbb{R}\left[X
ight].$$

It follows that

$$0=m_{A}\left(A\right) =Q\left(A\right) \left(A-\lambda I\right) +cI.$$

If we apply this to the vector x, we get

$$0 = Q(A)(Ax - \lambda x) + cx.$$

Hence cx = 0. Since x is not zero, we get c = 0, and so $m_A(x) = Q(x)(x - \lambda)$. This means that λ is a root of $m_A(x)$. The proof is finished.

< □ > < 同 > < 回 > < Ξ > < Ξ

Remark. The minimal polynomial of *A* is a polynomial satisfying the following three properties:

- $m_A(x)|p_A(x)|$,
- 2 $m_A(A) = p_A(A) = 0$ (the zero matrix),
- For any $\lambda \in Sp(A) : m_A(\lambda) = 0$. This means that $p_A(x)$ and $m_A(x)$ have the same roots.

メロト メタト メヨト メヨ

Calculate the minimal polynomial of the matrices:

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix},$$
$$B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

・ロト ・回ト ・ヨト ・ヨ

Solution.

• We can easily prove that $p_A(x) = (1-x)(3-x)$, and so $m_A(x) = p_A(x)$.

• First, the characteristic polynomial is $p_A(x) = (x-1)^2$. Hence,

$$m_{\mathcal{A}}\left(x
ight)=\left(x-1
ight)$$
 or $m_{\mathcal{A}}\left(x
ight)=\left(x-1
ight)^{2}$,

and since $A - I_2 \neq 0$, then $m_A(x) = p_A(x) = (x - 1)^2$.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Determine the minimal polynomials of the following matrices:

1)
$$A = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
,
2) $B = \begin{bmatrix} 4 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & 1 & 4 \end{bmatrix}$,
3) $C = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}$.

・ロト ・ 日 ・ ・ ヨ ト ・

- 1) It is clear that $p_A(x) = x^3$. Then, $m_A(x) = x^3$ or x^2 or x. On the other hand, we have $m_A(x) = x^2$; since $A \neq 0$ and $A^2 = 0$.
- 2) Note that after computation, $p_B(x) = (x-3)^2 (x-6)$. Since $p_B(x)$ and $m_B(x)$ having the same roots and $m_B(x)$ divides $p_B(x)$, then $m_B(x) = (x-3) (x-6)$ or $m_B(x) = (x-3)^2 (x-6)$. But,

$$(B-3I_3) (B-6I_3) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

It follows that $m_B(x) = (x-3)(x-6)$.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3) From simple computation, we get $p_C(x) = (x-1)^2$. Since $A - I_2 \neq 0$, then

$$m_{C}(x) = (x-1)^{2} = p_{C}(x).$$

・ロト ・ 日 ・ ・ 日 ト

Corollary

Let $A \in \mathcal{M}_n(\mathbb{R})$ with $m_A(x) = (x - a)(x - b)$; $a, b \in \mathbb{R}$. Then A^n can be written in terms of A and I.

Proof.

The proof is by induction on n. Indeed, for n = 1, we have

 $A^1 = 1.A + 0.I.$

Moreover, for n = 2, $A^2 = (a + b) A - abI$, since $m_A(A) = 0$. Assume that A^n can be written in terms of A and I, i.e., $A^n = a_n A + b_n I$. Therefore,

$$A^{n+1} = AA^n = A(a_nA + b_nI) = a_nA^2 + b_nA$$

= $a_n((a+b)A - abI) + b_nA$
= $((a+b)a_n + b_n)A - aba_nI = f(A, I).$

This means that A^{n+1} can be written in terms of A and I.

We will accept the following corollary without proof.

Corollary

The matrix A is diagonalizable if and only if the roots of $m_A(x)$ are simple.

Example

Let

$${\cal A}=\left(egin{array}{cccc} 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 0 \end{array}
ight).$$

Verify that A is diagonalizable.

()

Solution. After computation, we get

$$p_A(x) = (1+x)^2 (x-2).$$

This means that $m_A(x) = (1+x)(x-2)$ or $m_A(x) = (1+x)^2(x-2)$. But,

$$(I+A)(A-2I) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Thus, $m_A(x) = (1 + x) (x - 2)$. It is clear that the roots of $m_A(x)$ are simple, and hence A is diagonalizable.

Study the diagonalization of the matrix

$$A=\left(egin{array}{ccc} a&0&0\ 1&a&0\ 1&1&a\end{array}
ight)$$
 , where $a\in\mathbb{R}.$

Since A is a lower triangular matrix, then $p_A(x) = (x - a)^3$. Since $(A - aI) \neq 0$, then $m_A(x)$ can not be (x - a). This means that the roots of $m_A(x)$ are not simple, and so A is not diagonalizable.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Consider the matrix

$$\mathsf{A}=\left(egin{array}{ccc} \mathsf{a} & b & b \ b & \mathsf{a} & b \ b & b & \mathsf{a} \end{array}
ight).$$

Show that A is diagonalizable.

In fact, we have

$$A = a \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + b \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} = aI_3 + bB.$$

It suffices to prove that B is diagonalizable. After computation we obtain

$$m_{B}\left(x
ight)=\left(x+1
ight)\left(x-2
ight)$$
 ,

and hence B is diagonalizable.

Image: A math the second se

That is, B can be written in the form $B = PDP^{-1}$, from which it follows that

$$A = al_3 + bPDP^{-1}$$

= $P(al_3 + bD)P^{-1}$
= $PD'P^{-1}$,

where $D' = aI_3 + bD$ is diagonal, so A is diagonalizable.

・ロト ・ 日 ・ ・ 目 ・ ・

Consider the matrix

$$\mathsf{A} = \left(egin{array}{cccc} 1 & 1 & 1 \ 1 & 1 & 1 \ 1 & 1 & 1 \end{array}
ight).$$

By computation, $m_A(x) = x(x-3)$. This means that A is diagonalizable since the roots of $m_A(x)$ are simple.

メロト メポト メヨト メヨ

x 01. Find minimal polynomial of the matrix

$$A=\left(egin{array}{ccc} 2 & 2 & -5 \ 3 & 7 & -15 \ 1 & 2 & -4 \end{array}
ight)$$

Deduce that A is diagonalizable. Ans.

$$p_{\mathcal{A}}\left(x
ight)=\left(x-3
ight)\left(x-1
ight)^{2}$$
 and $m_{\mathcal{A}}\left(x
ight)=\left(x-3
ight)\left(x-1
ight).$

・ロト ・回ト ・ヨト ・

x 02. Consider the matrix

$$A=\left(egin{array}{cccc} 1 & 1 & 0 \ 1 & 1 & 0 \ 0 & 0 & 2 \end{array}
ight).$$

Calculate the minimal polynomial of A. Ans. $m_A(x) = x(x-2)$.

・ロト ・ 日 ・ ・ ヨ ト ・

x 03. Calculate the characteristic polynomial of the matrix

$$\left(\begin{array}{rrrrr} 4 & 1 & 1 & 1 \\ 1 & 4 & 1 & 1 \\ 1 & 1 & 4 & 1 \\ 1 & 1 & 1 & 4 \end{array}\right)$$

•

Deduce its minimal polynomial. Ans.

$$p_{A}(x) = (3-x)^{3}(7-x)$$
 and $m_{A}(x) = (3-x)(7-x)$.

・ロト ・ 日 ・ ・ 日 ト

Ex 04. Calculate the minimal polynomial of the following matrices

x 05. Verify that all matrices of the forn

$$egin{array}{ccc} A=\left(egin{array}{ccc} 1 & lpha \ 0 & 1 \end{array}
ight)$$
 ; $lpha\in {\mathbb R}^*$

are not diagonalizable.

・ロト ・日子・ ・ ヨト

x 06. Calculate the minimal polynomial of the matrix

$$A=\left(egin{array}{cccccc} \lambda&&&&&\ 1&\lambda&&&\ &\ddots&\ddots&&\ &&1&\lambda&\ &&&1&\lambda \end{array}
ight)$$
 , $\lambda\in\mathbb{R}.$

Is it diagonalizable ?

・ロト ・ 日 ・ ・ ヨ ト ・

x 07. Let $A \in \mathcal{M}_3(\mathbb{R})$ given by

$$A = \left(\begin{array}{rrrr} 3 & 2 & -2 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right).$$

a) Determine the characteristic polynomial of A.

b) Determin the minimal polynomial of A.

c) Is the matrix A diagonalizable?

5. Solve $A \in \mathcal{M}_2(\mathbb{C})$ whose minimal polynomial is $x^2 + 1$.

x 09. Calculate the minimal polynomial of the matrix:

Ans. $m_A(x) = x(x-8)$.

メロト メロト メヨトメ

10. Calculate the characteristic polynomial and its minimal polynomial of the matrix

Ans. $p_A(x) = (x-2)^3 (x-7)^2$ and $m_A(x) = (x-2)^2 (x-7)$.

メロン スピン メヨン メ