System of recurrence sequences. Part II By

Bellaouar Djamel

University 8 Mai 1945 Guelma

October 2024

Dj. Bellaouar (University 8 Mai 1945 Guelma)

System of recurrence sequences. Part II

October 2024 1 / 18

・ロト ・回ト ・ヨト ・

Definition

Define the linear system of differential equations $(x'_{1}(t), x'_{2}(t), ..., x'_{n}(t))$ by

$$\begin{aligned} x_{1}'(t) &= a_{11}x_{1}(t) + a_{12}x_{2}(t) + \dots + a_{1n}x_{n}(t) + f_{1}(t) \\ x_{2}'(t) &= a_{21}x_{1}(t) + a_{22}x_{2}(t) + \dots + a_{2n}x_{n}(t) + f_{2}(t) \\ \vdots \\ x_{n}'(t) &= a_{n1}x_{1}(t) + a_{n2}x_{2}(t) + \dots + a_{nn}x_{n}(t) + f_{n}(t) , \end{aligned}$$

$$(1)$$

where $a_{ij} \in \mathbb{R}$. The unknowns are the functions $x_1(t)$, $x_2(t)$, ..., $x_n(t)$ which are derivable and $f_i(t)$ are some given functions.

The system is called **homogeneous** if all $f_i = 0$, otherwise it is called **non-homogeneous**.

イロト イ団ト イヨト イヨト

A non-homogeneous system of linear equations (1) is written as the equivalent vector-matrix system

$$X^{\prime}\left(t
ight)=A\cdot X\left(t
ight)+f\left(t
ight)$$
 ,

where

$$X(t) = \begin{pmatrix} x_{1}(t) \\ x_{2}(t) \\ \vdots \\ x_{2}(t) \end{pmatrix}, A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}, f = \begin{pmatrix} f_{1} \\ f_{2} \\ \vdots \\ f_{2} \end{pmatrix}$$

・ロト ・回ト ・ヨト ・

In this section, we consider only homogeneous systems: We wish to solve the system

$$X' = AX. \tag{2}$$

イロト イヨト イヨト イヨト

There are two cases:

Case 1. Assume that A is diagonalizable. Then there exists an invertible matrix P such that $A = PDP^{-1}$, where D is diagonal. Thus,

$$\begin{cases} X' = PDP^{-1}X = PY' \\ Y' = DY \\ Y = P^{-1}X. \end{cases}$$

The system (2) becomes

$$Y'=DY$$
,

which is easier to solve since D is diagonal. Then after, we solve the equation $Y = P^{-1}X$, that is, X = PY.

Example

Solve the system of differential equations:

$$X' = AX$$
, $A = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$, where $X(0) = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$.

・ロト ・ 日 ・ ・ 日 ト

Solution. At first, the eigenvalues of A are $\lambda_1 = -1$ and $\lambda_2 = 4$. The corresponding eigenvectors are $v_1 = (1, -1)$ and $v_2 = (2, 3)$. Thus, we have

$$D = \begin{pmatrix} -1 & 0 \\ 0 & 4 \end{pmatrix}, P = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}.$$

We put $X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ and $Y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$. It follows that
 $Y' = DY \Leftrightarrow \begin{cases} y'_1 = -y_1 \\ y'_2 = 4y_2 \end{cases} \Leftrightarrow \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} c_1 e^{-t} \\ c_2 e^{4t} \end{pmatrix},$

٧

Image: A mathematical states and a mathem

and hence

$$X = PY = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} c_1 e^{-t} \\ c_2 e^{4t} \end{pmatrix} = \begin{pmatrix} c_1 e^{-t} + 2c_2 e^{4t} \\ -c_1 e^{-t} + 3c_2 e^{4t} \end{pmatrix}.$$

Since $X(0) = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$, then
$$\begin{cases} c_1 + 2c_2 = 3 \\ -c_1 + 3c_2 = 2 \end{cases} \Rightarrow c_1 = c_2 = 1.$$

Thus is,

$$\begin{cases} x_1 = e^{-t} + 2e^{4t} \\ x_2 = -e^{-t} + 3e^{4t}. \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ >

We present another method to solve the system X' = AX, where A is diagonalizable.

Theorem

Let $A \in \mathcal{M}_n(\mathbb{R})$ be a diagonalizable matrix and let

 $P = \begin{bmatrix} X_1 & X_n & \dots & X_n \end{bmatrix}$

be the invertible matrix formed by n eigenvectors $X_1, X_2, ..., X_n$ of A. Then the system X' = AX has a unique solution given by

$$X(t) = c_1 e^{\lambda_1 t} X_1 + c_2 e^{\lambda_2 t} X_2 + \dots + c_n e^{\lambda_n t} X_n,$$
(3)

where $c_1, c_2, ..., c_n \in \mathbb{R}^n$ and $\lambda_1, \lambda_2, ..., \lambda_n$ are the eigenvalues of A.

イロト イ団ト イヨト イヨト

Proof.

It is clear that X' = AX implies

$$X\left(t
ight)=e^{\mathcal{A}t}.\xi$$
, where $\xi\in\mathcal{M}_{n,1}\left(\mathbb{R}
ight)$.

Since A is diagonalizable, then

$$X(t) = Pe^{Dt}P^{-1} = P\begin{pmatrix} e^{\lambda_{1}t} & & \\ & e^{\lambda_{2}t} & & \\ & & \ddots & \\ & & & e^{\lambda_{n}t} \end{pmatrix}P^{-1}.\xi$$
(4)

Setting

$$P^{-1}.\xi = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} = C.$$

Proof.

It follows from (4) that

$$X(t) = \begin{bmatrix} X_1 & X_n & \dots & X_n \end{bmatrix} \begin{pmatrix} e^{\lambda_1 t} & & \\ & e^{\lambda_2 t} & & \\ & & \ddots & \\ & & & e^{\lambda_n t} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$$
$$= \begin{bmatrix} e^{\lambda_1 t} X_1 & e^{\lambda_2 t} X_n & \dots & e^{\lambda_n t} X_n \end{bmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$$
$$= c_1 e^{\lambda_1 t} X_1 + c_2 e^{\lambda_2 t} X_2 + \dots + c_n e^{\lambda_n t} X_n.$$

Therefore,

$$X(t) = c_1 e^{\lambda_1 t} X_1 + c_2 e^{\lambda_2 t} X_2 + ... + c_n e^{\lambda_n t} X_n.$$

This completes the proof.

(5)

Example

Solve the system of differential equations:

$$X' = AX$$
, $A = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$, where $X(0) = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$.

・ロト ・ 日 ト ・ 日 ト ・

Solution. After the computation of the eigenvalues and eigenvectors of the matrix A. It follows from (5) that

$$X(t) = c_1 e^{-t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + c_2 e^{4t} \begin{pmatrix} 2 \\ 3 \end{pmatrix}.$$

Hence

$$\begin{cases} x(t) = c_1 e^{-t} + 2c_2 e^{4t}, \\ y(t) = -c_1 e^{-t} + 3c_2 e^{4t}. \end{cases}$$

Since
$$X(0) = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
, then

$$\begin{cases} x_1 = e^{-t} + 2e^{4t} \\ x_2 = -e^{-t} + 3e^{4t}. \end{cases}$$

・ロト ・回ト ・ヨト ・

Example

Solve the system of differential equations:

$$X' = AX$$
 with $A = \left(egin{array}{ccc} 1 & 0 & 0 \ 1 & 2 & 0 \ 1 & 0 & 2 \end{array}
ight).$

・ロト ・ 日 ・ ・ 日 ト

Solution. Simple computation we get

$$\left\{ \begin{array}{ll} \lambda_1 = 1, \ \textit{v}_1 = (-1, 1, 1) \\ \lambda_1 = 2, \ \textit{v}_2 = (0, 1, 0) \ \text{and} \ \textit{v}_3 = (0, 0, 1) \, . \end{array} \right.$$

The matrix A is diagonalizable, and by (3) we obtain

$$X(t) = c_1 e^t \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} + c_2 e^{2t} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + c_3 e^{2t} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

where c_1 , c_2 , c_3 are constants. That is,

$$\begin{cases} x(t) = -c_1 e^t \\ y(t) = c_1 e^t + c_2 e^{2t} \\ z(t) = c_1 e^t + c_3 e^{2t}. \end{cases}$$

・ロト ・ 日 ト ・ 日 ト ・

Remark. In another way, which is very long and based on the calculation of P and P^{-1} with $A = PDP^{-1}$. From which it follows that

$$e^{At} = P e^{Dt} P^{-1}. ag{6}$$

Let $A = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$. The solution of the differential system X' = AX is $X(t) = e^{At}.C$, where C is an arbitrarily constant. Since $X(0) = \begin{pmatrix} 3 & 2 \end{pmatrix}^t$, then $C = \begin{pmatrix} 3 & 2 \end{pmatrix}^t$. Therefore,

$$X(t) = e^{At} \cdot X(0) . \tag{7}$$

Image: A math a math

Simple computation gives
$$P = \begin{pmatrix} 2 & 1 \\ 3 & -1 \end{pmatrix}$$
 and $P^{-1} = \begin{pmatrix} \frac{1}{5} & \frac{1}{5} \\ \frac{3}{5} & \frac{-2}{5} \end{pmatrix}$.
Hence
 $X(t) = e^{At} \cdot C_0 = \begin{pmatrix} 2 & 1 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} e^{4t} & 0 \\ 0 & e^{-t} \end{pmatrix} \begin{pmatrix} \frac{1}{5} & \frac{1}{5} \\ \frac{3}{5} & \frac{-2}{5} \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix}$

 $= \left(\begin{array}{c} 2e^{4t} + e^{-t} \\ 3e^{4t} - e^{-t} \end{array}\right).$

1

x 01. Calculate e^{At} for each $t \in \mathbb{R}$, where

$$A = \left(\begin{array}{rrrr} 0 & -1 & 1 \\ 0 & 0 & 1 \\ -1 & 0 & 1 \end{array}\right)$$

Deduce the general solution of the system of differential equations:

$$\left\{ \begin{array}{l} p' = -q + r \\ q' = r \\ r' = -p + r \end{array} \right.$$

・ロト ・ 日 ト ・ 日 ト ・

x 02. Solve the system of differential equations:

$$\begin{cases} x'(t) = y(t) \\ y'(t) = z(t) \\ z'(t) = w(t) \\ w'(t) = x(t) \end{cases}$$

5. Solve the system of differential equations $X' = A \cdot X$, where

$$A=\left(egin{array}{cccc} 1 & 1 & 0 \ 1 & 1 & 0 \ 0 & 0 & 2 \end{array}
ight)$$

・ロト ・ 日 ・ ・ 日 ト