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a If β ≤ 0, for all n ≥ 3 we get
1

n(ln n)β
≥ 1

n
,

thus, from the comparaison test the series ∑
n≥2

1
n(ln n)β

diverges.

b If β > 0. The function x 7→ f (x) =
1

x(ln x)β
is positive and decreasing on [2,+∞[,

thus by using integral test (see theorem 1.2.2).

(i) If β 6= 1, we have

∫ x

2

dt
t(ln t)β

=

[
(ln t)1−β

1− β

]x

2
=

1
1− β

(
(ln x)1−β − (ln 2)1−β

)
,

we deduce that

lim
x→∞

∫ x

2

dt
t(ln t)β

=


(ln 2)1−β

1− β
, if β > 1

+∞, if 0 < β < 1.

Then, the series converges if β > 1, and diverges if 0 < β < 1.

(ii) Now, if β = 1.

∫ x

2

dt
t(ln t)

= ln(ln(x))− ln(ln(2)) −→x→∞= ∞.

Thus, the series ∑
n≥2

1
n(ln n)

diverges.

�

1.3 Alternating Series

We have focused almost exclusively on series with positive terms up to this point. In this
short section we begin to delve into series with both positive and negative terms, presenting
a test which works for many series whose terms alternate in sign.

Definition1.3.1. A serieswith terms alternately positive andnegative is called an alternating
series. For example, 1− 1/2 + 1/3− 1/4 + 1/5− 1/6 + 1/7− ........... The general form
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1.3 Alternating Series 21

of alternating series is given by

a1 − a2 + a3 − a4 + a5 − a6 + a7 − a8 + ........ = ∑
n≥1

(−1)n+1an, (an > 0)

or
−a1 + a2 − a3 + a4 − a5 + a6 − a7 + a8 − ........ = ∑

n≥1
(−1)nan, (an > 0)

1.3.1 The Alternating Series Test

Theorem 1.3.1. Suppose that the sequence (an) satisfies the three conditions:

1. an ≥ 0 for sufficiently large n,

2. an+1 ≤ an for sufficiently large n (i.e., an is monotonically decreasing), and

3. an → 0 as n→ ∞.

Then the alternating series ∑
n≥1

(−1)n+1an converges.

An explanation of why the Alternating Series Test works:

We are going for simplicity:

1. that the starting index of the series is n = 0, and

2. that the terms a0, a2, a4, ..... are all positive and the terms a1, a3, a5, ..... are all negative.

Now for each n ≥ 0, let Sn = a0 + a1 + ....+ an be the nth partial sum. Consider the following
picture which plots Sn vertically and n horizontally (an explanation of the picture is below)
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1.3 Alternating Series 22

The partial sums are plotted with the red and blue points (the Sn where n is even are the red
points and the Sn where n is odd are the blue points). Notice that to get from one partial
sum to the next, i.e. to get from Sn to Sn+1, you have to add an+1. This is indicated by the
green arrows. Now we will use the hypotheses of the Alternating Series Test:

• By hypothesis (1), the an alternate in sign. In our case, all the even an are negative and
all the oddanarepositive. Therefore, whenever n is odd, Sn is below theprevious partial
sum, and whenever n is even, Sn is above the previous partial sum. This makes each
blue dot lower than each preceding red dot, and each red dot above each preceding
blue dot.

• By hypothesis (3), |an| ≥ |an+1|. Since |an| is the length of the nth green arrow, we are
assured by hypothesis (3) that the green arrows are getting shorter as n increases. Thus
the red and blue dots are getting closer and closer together.

• By hypothesis (2), lim
n→∞
|an| = 0. This means that since |an| is the length of the green

arrows, the length of these green arrows is going to zero as n increases. Thus the red
and blue dots are both approaching the same height, so they have the same limit. This
limit L is the limit of the partial sums, so by definition the infinite series converges to
L.

This concludes the explanation of why the Alternating Series Test works.

Example 1.3.1. Does the series ∑
n≥1

(−1)n+1 2n + 3
3n + 4

converge or diverge?

This series does alternate in sign, and 2n + 3
3n + 4

is decreasing, but 2n + 3
3n + 4

→ 2/3 6= 0, so the
series diverges by the Test for Divergence.

Remark1.3.1. Note that in the solutionof Example 1.3.1, wedidnot appeal to theAlternating
Series Test, but instead used the Test for Divergence. The Alternating Series Test never shows
that series diverge.

1.3.2 Absolute and Conditional Convergence

Definition 1.3.2. A series ∑
n≥1

an is said to be absolutely convergent if the series ∑
n≥1
|an| is

convergent.
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1.3 Alternating Series 23

Definition 1.3.3. If ∑
n≥1

an is converges but ∑
n≥1
|an| diverges, then the series ∑

n≥1
an is called

conditionally convergent.

Example 1.3.2. • Test the convergence of the series: 5− 10/3 + 20/9− 40/27 + .....

Test the convergence and absolute convergence of the series:

• 1
1× 3

− 1
2× 4

+
1

3× 5
− 1

4× 6
+ ....

• ∑
n≥1

(−1)n−1
√

n
.

Remark 1.3.2. • Every absolutely convergent series is a convergent series but the con-
verse is not true.

• If ∑
n≥1

an is a series of positive terms, then ∑
n≥1
|an| = ∑

n≥1
an. Therefor the concepts of

convergence and absolutely convergence are the same. Thus, any convergent series
of positive terms is also absolutely convergent.

The proof of the Alternating Series Test implies the following very simple bound on
remainders of these series.

Theorem 1.3.2. The Alternating Series Remainder Estimates.

Suppose that the sequence (bn) satisfies the three conditions of the Alternating Series Test:

1. bn ≥ 0 for sufficiently large n,

2. bn+1 ≤ bn for sufficiently large n (i.e., bn is monotonically decreasing), and

3. bn → 0 as n→ ∞.

Then if n ≥ N, the error in the nth partial sum of ∑
n≥1

(−1)n+1bn is bounded by bn+1

∣∣∣∣∣sn − ∑
n≥1

(−1)n+1bn

∣∣∣∣∣ ≤ bn+1.

Example 1.3.3. How many terms of the alternating series must we add to approximate the
true sum with error less than 1/10000?
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1.3 Alternating Series 24

Notice that there are now three disjoint classes of infinite series: those which converge
absolutely, those which converge conditionally, and those which diverge. Putting all this
together, we have the following diagram illustrating the various possibilities for infinite series.
This diagram is extremely important to understand:

1.3.3 The Cauchy Product of Infinite Series

The Cauchy product of two infinite series ∑
n

an and ∑
n

bn is defined to be the series

∑
n

cn, where cn =
n

∑
j=0

ajbn−j = a0bn + a1bn−1 + a2bn−2 + .... + an−1b1 + anb0.

The convergence of ∑
n

an and ∑
n

bn is not in itself sufficient to ensure the convergence

of the Cauchy product of these series. Convergence is however assured provided that the
series ∑

n
an and ∑

n
bn are absolutely convergent.

Theorem 1.3.3. The Cauchy product ∑
n

cn of two absolutely convergent infinite series

∑
n

an and∑
n

bn is absolutely convergent, and

∑
n

cn =

(
∑
n

an

)(
∑
n

bn

)
.

Proof. For each non-negative integer m, let

Sm = {(j, k) ∈ Z×Z : 0 ≤ j ≤ m, 0 ≤ k ≤ m} ,
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1.3 Alternating Series 25

Tm = {(j, k) ∈ Z×Z : 0 ≤ j, 0 ≤ m, 0 ≤ j + k ≤ m} ,

Now
m

∑
n=0

cn = ∑
(j,k)∈Tm

ajbk and
(

m

∑
n=0

an

)(
m

∑
n=0

bn

)
= ∑

(j,k)∈Sm

ajbk.

Also
m

∑
n=0
|cn| ≤ ∑

(j,k)∈Tm

|aj||bk| ≤ ∑
(j,k)∈Sm

|aj||bk| ≤
(

∑
n
|an|

)(
∑
n
|bn|
)

.

since |cn| ≤=
n

∑
j=0
|aj||bn−j| and the infinite series ∑

n
an and ∑

n
bn are absolutely convergent.

It follows that the Cauchy product ∑
n

cn is absolutely convergent, and is thus convergent.
Moreover∣∣∣∣∣∑n

c2m
n −

(
m

∑
n

an

)(
m

∑
n

bn

)∣∣∣∣∣ =

∣∣∣∣∣∣ ∑
(j,k)∈T2m\Sm

ajbk

∣∣∣∣∣∣
≤ ∑

(j,k)∈T2m\Sm

∣∣ajbk
∣∣

≤ ∑
(j,k)∈S2m\Sm

∣∣ajbk
∣∣

=

(
2m

∑
n
|an|

)(
2m

∑
n
|bn|
)
−
(

m

∑
n
|an|

)(
m

∑
n
|bn|
)

,

since Sm ⊂ T2m ⊂ S2m. But

lim
m→∞

(
2m

∑
n
|an|

)(
2m

∑
n
|bn|
)

=

(
∞

∑
n
|an|

)(
∞

∑
n
|bn|
)

= lim
m→∞

(
m

∑
n
|an|

)(
m

∑
n
|bn|
)

,

since the infinite series ∑
n

an and ∑
n

bn are absolutely convergent. It follows that

lim
m→∞

(
2m

∑
n

cn −
(

m

∑
n

an

)(
m

∑
n

bn

))
= 0,

and hence
∞

∑
n

cn = lim
m→∞

2m

∑
n

cn =

(
∞

∑
n

an

)(
∞

∑
n

bn

)
,
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1.4 Summary of convergence(divergence) tests 26

as required. �

1.4 Summary of convergence(divergence) tests

Having completed our discussion of methods to classify infinite series as absolutely con-
vergent, conditionally convergent, or divergent, we now summarize the procedure one
should use when trying to solve such a classification problem. To classify an infinite series

∑ an as absolutely convergent, conditionally convergent or divergent, follow these steps:

1. First, check to see whether the series is a p-series or a geometric series (or is a sum or
difference of series of this type). If it is, use the p..series Test and/or Geometric Series
Test (together with linearity properties) to classify the series.

2. If the terms of the series contain only multiplication and division and contain ex-
ponentials or factorial terms, use the Ratio Test. (If the terms of the series are all
polynomials in n, avoid the Ratio Test.)

3. Otherwise, classify the series as positive, negative, alternating, or none of these. If the
series is negative, factor out−1 from the series and treat what remains as a positive
series.

4. If the series is positive:

(a) If the terms of the series contain addition/subtraction in the denominator, or if
they contain sines or cosines, try the Comparison Test.

(b) If lim
n→∞

an 6= 0, then the series diverges by the nth-Term Test.

(c) If the terms of the series look like a function you can integrate, try the Integral Test
(use this only as a last resort).

5. If the series is alternating, compute lim
n→∞
|an|.

(a) If this limit is not zero, then the series diverges by the nth-Term Test.

(b) If this limit is zero, you can usually verify that |an| ≥ |an+1|, then the series
converges by the Alternating Series Test. In this case, you then have to examine
the series ∑

n
|an| :
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1.4 Summary of convergence(divergence) tests 27

(i) If ∑
n
|an| converges, then ∑

n
an converges absolutely.

(ii) If ∑
n
|an| diverges, then ∑

n
an converges conditionally.

6. If the series is neither positive, negative nor alternating:

(a) If you can show that lim
n→∞
|an| 6= 0, then the series diverges by the nth-Term Test.

(b) Forget the original series and try to show that the positive series ∑
n
|an| converges;

in this case the original series converges absolutely by definition.
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