
MIPS Arithmetic

and Logic Instructions

Computer Architecture

Riad Bourbia

Computer Sciences department

Guelma University

[Adapted from slides of Dr. A. El-maleh]

MIPS Arithmetic and Logic Instructions COE 301 – KFUPM slide 2

Presentation Outline

 Overview of the MIPS Architecture

 R-Type Instruction Format

 R-type Arithmetic, Logical, and Shift Instructions

 I-Type Instruction Format and Immediate Constants

 I-type Arithmetic and Logical Instructions

 Pseudo Instructions

Multiplication and Division Instructions

MIPS Arithmetic and Logic Instructions COE 301 – KFUPM slide 3

Overview of the MIPS Architecture

Memory

Up to 232 bytes = 230 words

4 bytes per word

$0

$1

$2

$31

Hi Lo

ALU

F0

F1

F2

F31
FP

Arith

EPC

Cause

BadVaddr

Status

EIU FPU

TMU

Execution &

Integer Unit

(Main proc)

Floating

Point Unit

(Coproc 1)

Trap &

Memory Unit

(Coproc 0)

. . .

. . .

Integer
mul/div

Arithmetic &

Logic Unit

32 General

Purpose

Registers

Integer

Multiplier/Divider

32 Floating-Point

Registers

Floating-Point

Arithmetic Unit

MIPS Arithmetic and Logic Instructions COE 301 – KFUPM slide 4

MIPS General-Purpose Registers

 32 General Purpose Registers (GPRs)

 All registers are 32-bit wide in the MIPS 32-bit architecture

 Software defines names for registers to standardize their use

 Assembler can refer to registers by name or by number ($ notation)

Name Register Usage

$zero $0 Always 0 (forced by hardware)

$at $1 Reserved for assembler use

$v0 – $v1 $2 – $3 Result values of a function

$a0 – $a3 $4 – $7 Arguments of a function

$t0 – $t7 $8 – $15 Temporary Values

$s0 – $s7 $16 – $23 Saved registers (preserved across call)

$t8 – $t9 $24 – $25 More temporaries

$k0 – $k1 $26 – $27 Reserved for OS kernel

$gp $28 Global pointer (points to global data)

$sp $29 Stack pointer (points to top of stack)

$fp $30 Frame pointer (points to stack frame)

$ra $31 Return address (used for function call)

MIPS Arithmetic and Logic Instructions COE 301 – KFUPM slide 5

Instruction Categories

 Integer Arithmetic (our focus in this presentation)

 Arithmetic, logic, and shift instructions

 Data Transfer

 Load and store instructions that access memory

 Data movement and conversions

 Jump and Branch

 Flow-control instructions that alter the sequential sequence

 Floating Point Arithmetic

 Instructions that operate on floating-point registers

 Miscellaneous

 Instructions that transfer control to/from exception handlers

 Memory management instructions

MIPS Arithmetic and Logic Instructions COE 301 – KFUPM slide 6

R-Type Instruction Format

 Op: operation code (opcode)

 Specifies the operation of the instruction

 Also specifies the format of the instruction

 funct: function code – extends the opcode

 Up to 26 = 64 functions can be defined for the same opcode

 MIPS uses opcode 0 to define many R-type instructions

 Three Register Operands (common to many instructions)

 Rs, Rt: first and second source operands

 Rd: destination operand

 sa: the shift amount used by shift instructions

Op6 Rs5 Rt5 Rd5 funct6sa5

MIPS Arithmetic and Logic Instructions COE 301 – KFUPM slide 7

R-Type Integer Add and Subtract

Instruction Meaning Op Rs Rt Rd sa func

add $t1, $t2, $t3 $t1 = $t2 + $t3 0 $t2 $t3 $t1 0 0x20

addu $t1, $t2, $t3 $t1 = $t2 + $t3 0 $t2 $t3 $t1 0 0x21

sub $t1, $t2, $t3 $t1 = $t2 – $t3 0 $t2 $t3 $t1 0 0x22

subu $t1, $t2, $t3 $t1 = $t2 – $t3 0 $t2 $t3 $t1 0 0x23

 add, sub: arithmetic overflow causes an exception

 In case of overflow, result is not written to destination register

 addu, subu: arithmetic overflow is ignored

 addu, subu: compute the same result as add, sub

Many programming languages ignore overflow

 The + operator is translated into addu

 The – operator is translated into subu

MIPS Arithmetic and Logic Instructions COE 301 – KFUPM slide 8

Using Add / Subtract Instructions

 Consider the translation of: f = (g+h)–(i+j)

 Programmer / Compiler allocates registers to variables

 Given that: $t0=f, $t1=g, $t2=h, $t3=i, and $t4=j

 Called temporary registers: $t0=$8, $t1=$9, …

 Translation of: f = (g+h)–(i+j)

addu $t5, $t1, $t2 # $t5 = g + h

addu $t6, $t3, $t4 # $t6 = i + j

subu $t0, $t5, $t6 # f = (g+h)–(i+j)

 Assembler translates addu $t5,$t1,$t2 into binary code

000000

Op

01001

$t1

01010

$t2

01101

$t5

00000

sa

100001

addu

MIPS Arithmetic and Logic Instructions COE 301 – KFUPM slide 9

Logic Bitwise Operations

 Logic bitwise operations: and, or, xor, nor

 AND instruction is used to clear bits: x and 0 0

 OR instruction is used to set bits: x or 1 1

 XOR instruction is used to toggle bits: x xor 1 not x

 NOT instruction is not needed, why?

not $t1, $t2 is equivalent to: nor $t1, $t2, $t2

x

0

0

1

1

y

0

1

0

1

x and y

0

0

0

1

x

0

0

1

1

y

0

1

0

1

x or y

0

1

1

1

x

0

0

1

1

y

0

1

0

1

x xor y

0

1

1

0

x

0

0

1

1

y

0

1

0

1

x nor y

1

0

0

0

MIPS Arithmetic and Logic Instructions COE 301 – KFUPM slide 10

Logic Bitwise Instructions

Instruction Meaning Op Rs Rt Rd sa func

and $t1, $t2, $t3 $t1 = $t2 & $t3 0 $t2 $t3 $t1 0 0x24

or $t1, $t2, $t3 $t1 = $t2 | $t3 0 $t2 $t3 $t1 0 0x25

xor $t1, $t2, $t3 $t1 = $t2 ^ $t3 0 $t2 $t3 $t1 0 0x26

nor $t1, $t2, $t3 $t1 = ~($t2|$t3) 0 $t2 $t3 $t1 0 0x27

 Examples:

Given: $t1 = 0xabcd1234 and $t2 = 0xffff0000

and $t0, $t1, $t2 # $t0 = 0xabcd0000

or $t0, $t1, $t2 # $t0 = 0xffff1234

xor $t0, $t1, $t2 # $t0 = 0x54321234

nor $t0, $t1, $t2 # $t0 = 0x0000edcb

MIPS Arithmetic and Logic Instructions COE 301 – KFUPM slide 11

Shift Operations

 Shifting is to move the 32 bits of a number left or right

 sll means shift left logical (insert zero from the right)

 srl means shift right logical (insert zero from the left)

 sra means shift right arithmetic (insert sign-bit)

 The 5-bit shift amount field is used by these instructions

shift-in 0. . .shift-out

sll 32-bit value

. . .shift-in 0 shift-out
srl

. . .shift-in sign-bit shift-out
sra

MIPS Arithmetic and Logic Instructions COE 301 – KFUPM slide 12

Shift Instructions

 sll, srl, sra: shift by a constant amount

 The shift amount (sa) field specifies a number between 0 and 31

 sllv, srlv, srav: shift by a variable amount

 A source register specifies the variable shift amount between 0 and 31

 Only the lower 5 bits of the source register is used as the shift amount

Instruction Meaning Op Rs Rt Rd sa func

sll $t1,$t2,10 $t1 = $t2 << 10 0 0 $t2 $t1 10 0

srl $t1,$t2,10 $t1 = $t2 >>> 10 0 0 $t2 $t1 10 2

sra $t1,$t2,10 $t1 = $t2 >> 10 0 0 $t2 $t1 10 3

sllv $t1,$t2,$t3 $t1 = $t2 << $t3 0 $t3 $t2 $t1 0 4

srlv $t1,$t2,$t3 $t1 = $t2 >>>$t3 0 $t3 $t2 $t1 0 6

srav $t1,$t2,$t3 $t1 = $t2 >> $t3 0 $t3 $t2 $t1 0 7

MIPS Arithmetic and Logic Instructions COE 301 – KFUPM slide 13

$t1 = 0x0000abcd

$t1 = 0xcd123400

Shift Instruction Examples

 Given that: $t2 = 0xabcd1234 and $t3 = 16

sll $t1, $t2, 8

sra $t1, $t2, 4 $t1 = 0xfabcd123

srlv $t1, $t2, $t3

Rt = $t2Op Rs = $t3 Rd = $t1 sa srlv

01010000000 01011 01001 00000 000110

srl $t1, $t2, 4 $t1 = 0x0abcd123

MIPS Arithmetic and Logic Instructions COE 301 – KFUPM slide 14

Binary Multiplication

 Shift Left Instruction (sll) can perform multiplication

 When the multiplier is a power of 2

 You can factor any binary number into powers of 2

 Example: multiply $t0 by 36

$t0*36 = $t0*(4 + 32) = $t0*4 + $t0*32

sll $t1, $t0, 2 # $t1 = $t0 * 4

sll $t2, $t0, 5 # $t2 = $t0 * 32

addu $t3, $t1, $t2 # $t3 = $t0 * 36

MIPS Arithmetic and Logic Instructions COE 301 – KFUPM slide 15

Your Turn . . .

sll $t1, $t0, 1 # $t1 = $t0 * 2

sll $t2, $t0, 3 # $t2 = $t0 * 8

sll $t3, $t0, 4 # $t3 = $t0 * 16

addu $t4, $t1, $t2 # $t4 = $t0 * 10

addu $t5, $t4, $t3 # $t5 = $t0 * 26

Multiply $t0 by 26, using shift and add instructions

Hint: 26 = 2 + 8 + 16

Multiply $t0 by 31, Hint: 31 = 32 – 1

sll $t1, $t0, 5 # $t1 = $t0 * 32

subu $t2, $t1, $t0 # $t2 = $t0 * 31

MIPS Arithmetic and Logic Instructions COE 301 – KFUPM slide 16

I-Type Instruction Format

 Constants are used quite frequently in programs

 The R-type shift instructions have a 5-bit shift amount constant

What about other instructions that need a constant?

 I-Type: Instructions with Immediate Operands

 16-bit immediate constant is stored inside the instruction

Rs is the source register number

Rt is now the destination register number (for R-type it was Rd)

 Examples of I-Type ALU Instructions:

Add immediate: addi $t1, $t2, 5 # $t1 = $t2 + 5

OR immediate: ori $t1, $t2, 5 # $t1 = $t2 | 5

Op6 Rs5 Rt5 immediate16

MIPS Arithmetic and Logic Instructions COE 301 – KFUPM slide 17

I-Type ALU Instructions

Instruction Meaning Op Rs Rt Immediate

addi $t1, $t2, 25 $t1 = $t2 + 25 0x8 $t2 $t1 25

addiu $t1, $t2, 25 $t1 = $t2 + 25 0x9 $t2 $t1 25

andi $t1, $t2, 25 $t1 = $t2 & 25 0xc $t2 $t1 25

ori $t1, $t2, 25 $t1 = $t2 | 25 0xd $t2 $t1 25

xori $t1, $t2, 25 $t1 = $t2 ^ 25 0xe $t2 $t1 25

lui $t1, 25 $t1 = 25 << 16 0xf 0 $t1 25

 addi: overflow causes an arithmetic exception

 In case of overflow, result is not written to destination register

 addiu: same operation as addi but overflow is ignored

 Immediate constant for addi and addiu is signed

 No need for subi or subiu instructions

 Immediate constant for andi, ori, xori is unsigned

MIPS Arithmetic and Logic Instructions COE 301 – KFUPM slide 18

 Given that registers $t0, $t1, $t2 are used for A, B, C

Examples of I-Type ALU Instructions

Expression Equivalent MIPS Instruction

A = B + 5;

C = B – 1;

A = B & 0xf;

C = B | 0xf;

C = 5;

A = B;

addiu $t0, $t1, 5

addiu $t2, $t1, -1

andi $t0, $t1, 0xf

ori $t2, $t1, 0xf

addiu $t2, $zero, 5

addiu $t0, $t1, 0

No need for subiu, because addiu has signed immediate

Register $zero has always the value 0

Rt = $t2Op = addiu Rs = $t1 -1 = 0b1111111111111111

MIPS Arithmetic and Logic Instructions COE 301 – KFUPM slide 19

 I-Type instructions can have only 16-bit constants

What if we want to load a 32-bit constant into a register?

 Can’t have a 32-bit constant in I-Type instructions

 The sizes of all instructions are fixed to 32 bits

 Solution: use two instructions instead of one

 Suppose we want: $t1 = 0xAC5165D9 (32-bit constant)

lui: load upper immediate

32-bit Constants

Op6 Rs5 Rt5 immediate16

lui $t1, 0xAC51

ori $t1, $t1, 0x65D9

0xAC51$t1

Upper

16 bits

0x0000

Lower

16 bits

0xAC51$t1 0x65D9

MIPS Arithmetic and Logic Instructions COE 301 – KFUPM slide 20

Pseudo-Instructions

 Introduced by the assembler as if they were real instructions

 Facilitate assembly language programming

Pseudo-Instruction Equivalent MIPS Instruction

move $t1, $t2

not $t1, $t2

neg $t1, $t2

li $t1, -5

li $t1, 0xabcd1234

The MARS tool has a long list of pseudo-instructions

addu $t1, $t2, $zero

nor $t1, $t2, $zero

sub $t1, $zero, $t2

lui $t1, 0xabcd

ori $t1, $t1, 0x1234

addiu $t1, $zero, -5

MIPS Arithmetic and Logic Instructions COE 301 – KFUPM slide 21

Integer Multiplication in MIPS

 Multiply instructions

 mult $s1,$s2 Signed multiplication

 multu $s1,$s2 Unsigned multiplication

 32-bit multiplication produces a 64-bit Product

 Separate pair of 32-bit registers

 HI = high-order 32-bit of product

 LO = low-order 32-bit of product

MIPS also has a special mul instruction

 mul $s0,$s1,$s2 $s0 = $s1 × $s2

 Put low-order 32 bits into destination register

 HI & LO are undefined

Multiply

Divide

$0

HI LO

$1

.

.

$31

MIPS Arithmetic and Logic Instructions COE 301 – KFUPM slide 22

Integer Division in MIPS

 Divide instructions

 div $s1,$s2 Signed division

 divu $s1,$s2 Unsigned division

 Division produces quotient and remainder

 Separate pair of 32-bit registers

 HI = 32-bit remainder

 LO = 32-bit quotient

 If divisor is 0 then result is unpredictable

 Moving data from HI/LO to MIPS registers

 mfhi Rd (move from HI to Rd)

 mflo Rd (move from LO to Rd)

Multiply

Divide

$0

HI LO

$1

.

.

$31

MIPS Arithmetic and Logic Instructions COE 301 – KFUPM slide 23

Integer Multiply/Divide Instructions
Instruction Meaning Format

mult Rs, Rt Hi, Lo = Rs × Rt op6 = 0 Rs5 Rt5 0 0 0x18

multu Rs, Rt Hi, Lo = Rs × Rt op6 = 0 Rs5 Rt5 0 0 0x19

mul Rd, Rs, Rt Rd = Rs × Rt 0x1c Rs5 Rt5 Rd5 0 0x02

div Rs, Rt Hi, Lo = Rs / Rt op6 = 0 Rs5 Rt5 0 0 0x1a

divu Rs, Rt Hi, Lo = Rs / Rt op6 = 0 Rs5 Rt5 0 0 0x1b

mfhi Rd Rd = Hi op6 = 0 0 0 Rd5 0 0x10

mflo Rd Rd = Lo op6 = 0 0 0 Rd5 0 0x12

 Signed arithmetic: mult, div (Rs and Rt are signed)

 LO = 32-bit low-order and HI = 32-bit high-order of multiplication

 LO = 32-bit quotient and HI = 32-bit remainder of division

 Unsigned arithmetic: multu, divu (Rs and Rt are unsigned)

 NO arithmetic exception can occur

