Control Flow and Arrays

Computer Architecture
Riad Bourbia

Computer Sciences department
Guelma University

[Adapted from slides of Dr. Mudawar, & El-maleh]

Presentation Outline

*» Control Flow: Branch and Jump Instructions

*» Translating If Statements and Boolean Expressions
» Arrays

¢ Load and Store Instructions

¢ Translating Loops and Traversing Arrays

*» Addressing Modes

slide 2

Control Flow

*» High-level programming languages provide constructs:

< To make decisions in a program: IF-ELSE

< To repeat the execution of a sequence of instructions: LOOP

*» The ability to make decisions and repeat a sequence of

Instructions distinguishes a computer from a calculator

¢ All computer architectures provide control flow instructions
*» Essential for making decisions and repetitions

*» These are the conditional branch and jump instructions

slide 3

MIPS Conditional Branch Instructions

“* MIPS compare and branch instructions:
beq Rs, Rt, label if (Rs == Rt) branch to label
bne Rs, Rt, label If(Rs != Rt) branch to label
“* MIPS compare to zero & branch instructions:

Compare to zero is used frequently and implemented efficiently

bltz Rs, label If (Rs < @) branch to 1abel
bgtz Rs, label If (Rs > ©) branch to 1label
blez Rs, label If (Rs <= @) branch to label
bgez Rs, label If (Rs >= @) branch to 1label

*» begz and bnez are defined as pseudo-instructions.

slide 4

Branch Instruction Format

¢ Branch Instructions are of the I-type Format:

Op® Rs® Rt° 16-bit offset
Instruction I-Type Format
beq Rs, Rt, label Op=4| Rs Rt 16-bit Offset
bne Rs, Rt, label Op=5| Rs Rt 16-bit Offset
blez Rs, label Op = Rs %) 16-bit Offset
bgtz Rs, label Op=7| Rs %) 16-bit Offset
bltz Rs, label Op=1 Rs %) 16-bit Offset
bgez Rs, label Op=1| Rs 1 16-bit Offset

*» PC-Relative addressing:

¢ The branch instructions modify the PC register only

If (branch is taken) PC = PC + 4 + 4xoffset else PC = PC+4

slide 5

Unconditional Jump Instruction

¢ The unconditional Jump instruction has the following syntax:

J label

label:

jump to label

* The jump instruction is always taken

* The Jump instruction is of the J-type format:

Opbé=2

26-bit address

¢ The jump instruction modifies the program counter PC:

PC4

26-bit address

00

¢ The upper 4 bits of the PC are unchanged

—

multiple
of 4

slide 6

Translating an IF Statement

*» Consider the following IF statement:

if (a == b) c

d + e; else c =d - e;

Giventhata, b, c,d, e are in $to .. $t4 respectively

«» How to translate the above IF statement?

bne $t9, $tl, else
addu $t2, $t3, $t4
J next

else: subu $t2, $t3, $t4

hext:

slide 7

Logical AND Expression

“ Programming languages use short-circuit evaluation

¢ If first condition is false, second condition is skipped

if (($t1 > @) && ($t2 < 0)) {$t3++;}

One Possible Translation ...

bgtz $ti1, L1 # first condition
j next # skip if false

L1: bltz $t2, L2 # second condition
j next # skip if false

L2: addiu $t3, $t3, 1 # both are true
next:

slide 8

Better Translation of Logical AND

if (($t1 > 0) && ($t2 < 0)) {$t3++;}

Allow the program to fall through to second condition
1($t1 > 0) is equivalent to ($t1 <= 0)
1($t2 < 9) is equivalentto ($t2 >= 0)

Number of instructions iIs reduced from 5to 3

Better Translation ...

blez $tl1, next # 15t condition false?
bgez $t2, next # 2" condition false?
addiu $t3, $t3, 1 # both are true

hext:

slide 9

Logical OR Expression

* Short-circuit evaluation for logical OR

» If first condition Is true, second condition is skipped

if (($t1 > @) || ($t2 < 0)) {$t3++;}

*» Use fall-through to keep the code as short as possible

bgtz $t1, L1 # 1t condition true?
bgez $t2, next # 2" condition false?

L1: addiu $t3, $t3, 1 # increment $t3

next:

slide 10

Compare Instructions

“* MIPS also provides set less than instructions

slt Rd, Rs, Rt f(Rs<Rt)Rd=1elseRd=0
sltu Rd, Rs, Rt unsigned <
slti Rt, Rs, imm f(Rs<imm)Rt=1else Rt=0
sltiu Rt, Rs, imm unsigned <

“ Sighed / Unsigned comparisons compute different results
Given that: $t0 = 1 and $t1 = -1 = Oxffffffff
slt $t2, $to, $t1 computes $t2 = 0
sltu $t2, $to, $t1 computes $t2 = 1

slide 11

Compare Instruction Formats

Instruction Meaning Format
slt Rd, Rs, Rt Rd=(Rs <, Rt)?1:0 Op=0 | Rs | Rt | Rd 0 ox2a
sltu Rd, Rs, Rt Rd=(Rs <, Rt)?1:0 Op=0 | Rs | Rt | Rd 0 ox2b
slti Rt, Rs, im Rt=(Rs <, im)?1:0 oxa Rs Rt | 16-bit immediate
sltiu Rt, Rs, im Rt=(Rs <, im)?1:0 oxb Rs Rt | 16-bit immediate

¢ The other comparisons are defined as pseudo-instructions:

seq, she, sgt, sgtu, sle, sleu, sge, sgeu

Pseudo-Instruction

sgt $t2, $to, $t1

seq $t2, $to, $t1

Equivalent MIPS Instructions

slt

subu
sltiu

$t2, $t1, $teo

$t2, $to, $ti1
$t2, $t2, 1

slide 12

Pseudo-Branch Instructions

“* MIPS hardware does NOT provide the following instructions:

blt, bltu branch if less than

ble, bleu branch if less or equal
bgt, bgtu branch if greater than

bge, bgeu branch if greater or equal

(signed / unsigned)
(signed / unsigned)
(signed / unsigned)
(signed / unsigned)

“* MIPS assembler defines them as pseudo-instructions:

Pseudo-Instruction

blt $to, $tl1, label

ble $to, $tl1, label

Equivalent MIPS Instructions

slt
bne

slt
beq

$at, $to, $t1
$at, $zero, label

$at, $t1, $to
$at, $zero, label

$at ($1) is the assembler temporary register

slide 13

Using Pseudo-Branch Instructions

*» Translate the IF statement to assembly language

s $t1 and $t2 values are unsigned

if($tl <= $t2) {
$t3 = $t4;
}

L1:

bgtu
move

$t1, $t2, L1
$t3, $t4

» $t3, $t4, and $t5 values are signed

if (($t3 <= $t4) &&
($t4 >= $t5)) {
$t3 = $t4 + $t5;

}

L1:

bgt
blt
addu

$t3, $t4, L1
$t4, $t5, L1
$t3, $t4, $t5

slide 14

Conditional Move Instructions

Instruction Meaning R-Type Format
movz Rd, Rs, Rt if (Rt==0) Rd=Rs Op=0 Rs Rt Rd (%] oxa
movn Rd, Rs, Rt if (Rt!=0) Rd=Rs Op=0 | Rs Rt Rd %) oxb

if ($t0 == 0) {$t1=9$t2+$t3;} else {$t1=9$t2-%$t3;}

L1:
L2:

bne
addu
J
subu

$to, %0, L1
$t1, $t2, $t3
L2

$t1, $t2, $t3

addu
subu

movn

$t1, $t2, $t3
$t4, $t2, $t3
$t1, $t4, $teo

¢ Conditional move can eliminate branch & jump instructions

slide 15

Next . ..

¢ Control Flow: Branch and Jump Instructions

* Translating If Statements and Boolean Expressions
“ Arrays

“* Load and Store Instructions

¢ Translating Loops and Traversing Arrays

*» Addressing Modes

slide 16

Arrays

** In a high-level programming language, an array is a
homogeneous data structure with the following properties:

< All array elements are of the same type and size

< Once an array is allocated, its size cannot be modified

<> The base address is the address of the first array element
<> The array elements can be indexed

<> The address of any array element can be computed
*» In assembly language, an array is just a block of memory
*» In fact, all objects are simply blocks of memory

*» The memory block can be allocated statically or dynamically

slide 17

Static Array Allocation

* An array can be allocated statically in the data segment

*» A data definition statement allocates static memory:

label: .type value@ [, valuel ...]

label: is the name of the array

.type directive specifies the size of each array element

valued, valuel ... specify a list of initial values

» Examples of static array definitions:

arrl:
arr2:
arr3:

strl:

.half 20, -1 # array of 2 half words
.word 1:5 # array of 5 words (value=1)
.Space 20 # array of 20 bytes

.asciiz "Null-terminated string"

slide 18

Watching Values in the Data Segment

Data Segment

SRl

Data Segment

Address Value (+0) Yalue (+4) Yalue (+8) Yalue (+c) Yalue (+10) Yalue (+14) Yalue (+18) Yalue (+1c)
0x10010000 OxELL££0014 Qx00000001 0x00000001 0x00000001 Q0x00000001 Qx00000001 Q0x00000000 Q0x00000000
0x10010020 Qx00000000 Qx00000000 Qx00000000 OxGEcecTode 0xT265742d| 0Omxeleseded Ox20646574 0xEaT27473
Ox10010040 0x000067 6e Qx00000000 0x00000000 0x00000000 Qx00000000 Qx00000000 0x00000000 0x00000000

a4 | | »
<= > 0x10010000 (.data) |w Hexadecimal Addresses Hexadecimal Values [| ASCI

Nl)

Address

YValue (+0)

Value (+4)

Value (+8)

Yalue (+c)

Value (+10)

Value (+14)

Value (+18)

Yalue (+1c)

0x10010000

.

WO WO WD

WO WD WD .

WO WO WD .

WO AD AD .

WO AD AD .

WO A0 MO AD

"0 MO AND AD

0x10010020

WO WO W0 MO

"0 W0 WO ND

WO W0 %0 NO

1 1 u N

r £ t -

a n 1 m

d e ¢

i r t =3

0x10010040

“0Zv0 g mn

"0 MO AND AD

WO OAO AND AD

WO WO AO AD

WO A0 AO AD

WO A0 AO AD

WO A0 MO AD

"0 MO AND AD

Jl

| b

@ | »

0x10010000 (.data)

Hexadecimal Addresses Hexadecimal Values ASCI

¢ The labels window is the symbol table

< Shows labels and corresponding addresses

“* The 1la pseudo-instruction loads the address

of any label into a register

Labels

‘o &

Label

Address A

COMparsons.asm

0x10010000

0x10010004

0x10010018

0x1001002c

[v| Data

Text

slide 19

Dynamic Memory Allocation

* One of the functions of the OS is to manage memory

“ A program can allocate memory on the heap at runtime

** The heap is part of the data segment that can grow at runtime
“ The program makes a system call ($v0=9) to allocate memory

. text

1li $a0, 100 # $a0 = number of bytes to allocate
1li $vo, 9 # system call 9

syscall # allocate 100 bytes on the heap

move $t0, $vo # $t0 = address of allocated block

slide 20

Allocating Dynamic Memory on the Heap

OxX7fffffff
Stack Segment
Vv
\
Heap Area
0x10040000 >~ Data Segment
Static Area
0x10000000)
Text Segment
0x00400000

slide 21

Computing the Addresses of Elements

* In a high-level programming language, an array is indexed
array[0] is the first element in the array
array[i] is the element at index i
&array[i] is the address of the element at index i
&array[i] = &array + i x element_size

*» For a 2D array, the array Is stored linearly in memory
matrix[Rows][Cols] has (Rows x Cols) elements
&matrix[i][j] = &matrix + (ixCols + j) x element_size

*» For example, to allocate a matrix[10][20] of integers:
matrix: .word 0:200 # 200 words (initialized to 0)
&matrix[1][5] = &matrix + (1x20 + 5)x4 = &matrix + 100

slide 22

Element Addresses in a 2D Array

Address calculation is essential when programming in assembly

COLS
4 A A\
0 1 . J .. COLS-1
f
9
1
m (YY)
S < .
(a'< 1
ROWS-1
-

&matrix[i][j] = &matrix + (ixCOLS + j) x Element_size

slide 23

Load and Store Instructions

¢ Instructions that transfer data between memory & registers

** Programs include variables such as arrays and objects

¢ These variables are stored in memory

% Load Instruction: load
JRE—
< Transfers data from memory to a register Registers Memory
T

store

¢+ Store Instruction:

< Transfers data from a register to memory

“* Memory address must be specified by load and store

slide 24

Load and Store Word

¢ Load Word Instruction (Word = 4 bytes in MIPS)
lw Rt, imm(Rs) # Rt € MEMORY[Rs+imm]
 Store Word Instruction
sw Rt, imm(Rs) # Rt =» MEMORY[Rs+imm]

“* Base / Displacement addressing is used
< Memory Address = Rs (base) + Immediate (displacement)

< Immediatel® is sign-extended to have a signed displacement

Base or Displacement Addressing

Opé® Rs® | Rt° immediatel®

é—» Memory Word
Base address

slide 25

Example on Load & Store

* Translate: A[1] = A[2] + 5 (Ais an array of words)

¢ Given that the address of array A is stored in register $t0

1w $t1, 8(%$t0) # $tl1 = A[2]
addiu $t2, $t1, 5 # $t2 = A[2] + 5
SW $t2, 4(%$t0) # A[1] = $t2
*» Index of A[2] and A[1] should be multiplied by 4. Why?
Registers Memory
$t0 &A I A[3] &A + 12
$t1 A[2] « A[2] &A + 8
$t2 A[2] + 5 A[1] &A + 4
W A[o] &A

slide 26

Load and Store Byte and Halfword

*» The MIPS processor supports the following data formats:
<> Byte = 8 bits, Half word = 16 bits, Word = 32 bits

¢ Load & store instructions for bytes and half words

< Ib = load byte, Ibu = load byte unsigned, sb = store byte
< Ih =load half, lhu =load half unsigned, sh = store halfword

*» Load expands a memory value to fit into a 32-bit register

*» Store reduces a 32-bit register value to fit in memory

v

« 32-bit Register

S sign — extend S|S b
O zero - extend 0 bu
S sign — extend S|s h
0 zero - extend 0 hu

slide 27

Load and Store Instructions

Instruction Meaning I-Type Format
1b Rt, imm(Rs) Rt €, MEM[Rs+imm] | @x20 | Rs | Rt | 16-bit immediate
lh Rt, imm(Rs) Rt €, MEM[Rs+imm] | ©x21 | Rs Rt | 16-bit immediate
lw Rt, imm(Rs) Rt €, MEM[Rs+imm] | @x23 | Rs Rt | 16-bit immediate
lbu Rt, imm(Rs) Rt €, MEM[Rs+imm] | @x24 | Rs Rt | 16-bit immediate
lhu Rt, imm(Rs) Rt €, MEM[Rs+imm] | @x25 | Rs Rt | 16-bit immediate
sb Rt, imm(Rs) Rt =», MEM[Rs+imm] | Ox28 | Rs Rt | 16-bit immediate
sh Rt, imm(Rs) Rt =», MEM[Rs+imm] | @x29 | Rs Rt | 16-bit immediate
sw Rt, imm(Rs) Rt =, MEM[Rs+imm] | @x2b | Rs Rt | 16-bit immediate

* Base / Displacement Addressing is used

< Memory Address = Rs (Base) + Immediate (displacement)
< If Rs is $zero then

< If Immediate is 0 then

Address = Immediate (absolute)

Address = Rs (register indirect)

slide 28

Next . ..

¢ Control Flow: Branch and Jump Instructions

* Translating If Statements and Boolean Expressions
» Arrays

¢ Load and Store Instructions

“* Translating Loops and Traversing Arrays

“» Addressing Modes

slide 29

Translating a WHILE Loop

¢ Consider the following WHILE loop:

i = 0; while (A[i] != value && i<n) i++;

Where A Is an array of integers (4 bytes per element)
% Translate WHILE loop: $a0 = &A, $al = n, and $a2 = value
QGA[i] = &A + i*4 = &A[i-1] + 4

1i $to, o

loop: 1w $t1, 9(%a0)
beq $t1, $a2, done
beq $t0, $al, done
addiu $to, $to, 1
addiu $a0, %a0, 4
j loop

done: . . .

$t6 =i =0

$t1 = A[i]

(A[i] == value)?
(i == n)?

i++

$a0 = &A[1i]
jump backwards to loop

slide 30

Copying a String

A string in C is an array of chars terminated with null char

i = 0;
do { ch = source[i]; target[i] = ch; i++; }
while (ch = "\0');

Given that: $a0 = &target and $al = &source

loop:

1b $t0, 0(%$al) # load byte: $tO = source[i]
sb $t0, 0(%$a0) # store byte: target[i]= $tO
addiu $a0@, $a0, 1 # $a0 = &target[i]

addiu $al, $al, 1 # $al = &source[i]

bnez $t0, loop # loop until NULL char

slide 31

Initializing a Column of a Matrix

M = new int[10][5];

int i;

// allocate M on the heap

for (i=0; i<1@; i++) { M[i][3] = i; }

M[i][3] = &M + (i*5 + 3) * 4 = &M + i*20 + 12

1i $a0,
1i $vo,
syscall
move $tO,
1i $t1,
1i $t2,
L: sw $t1,
addiu $t1,
addiu $to,
bne $t1,

200
9

$vo

%

10
12($t0)
$t1, 1
$to, 20
$t2, L

H

H H H H H HE H HE K

$a0 = 10*5*4 = 200 bytes
system call 9
allocate 200 bytes

$to = &M

$t1 =i =0

$t2 = 10

store M[i][3] = 1
i++

$to = &M[1i][3]
if (i !'= 10) loop back

slide 32

Addressing Modes

** Where are the operands?

* How memory addresses are computed?

Immediate Addressing

Opb | Rs® | Rt® | 16-bit immediate
Register Addressing
Op® | Rs® | Rt® | Rd® | sa® | funct®

> One Operand is a constant

Operands are in registers

\ 4

Base / Displacement Addressing

Register

Memory Addressing (load/store)

Op®

Rs®

Rt°

16-bit immediate

A 4

| Halfword Word

Register = Base address

&

slide 33

Branch / Jump Addressing Modes

PC-Relative Addressing

Op® | Rs® | Rt® 16-bit Offset

PC3

g |

Branch Target Address
PC =PC + 4 x (1 + Offset)

Pseudo-direct Addressing

Used by branch (beq, bne, ...)

?9—. Word = Target Instruction

\

PC30 + Offset1® + 1 00

Op® 26-bit address

PC3

00

Jump Target Address

Used by jump instruction

Word = Target Instruction

pC*

26-bit address 00

slide 34

Jump and Branch Limits

% Jump Address Boundary = 22% instructions = 256 MB

< Text segment cannot exceed 22° instructions or 256 MB

< Upper 4 bits of PC are unchanged

Target Instruction Address

PC4

immediate26

00

¢ Branch Address Boundary

<> Branch instructions use I-Type format (16-bit immediate constant)

< PC-relative addressing:

= Target instruction address = PC + 4x(1 + immediatel®)

= During assembly: immediate=(Target address — (PC+4))/4, where PC

PC30 + immediatelt + 1

00

contains address of current instruction

slide 35

Jump and Branch Limits

to immediatel).

“» Example

0
Again:4

8 Dbeq $sl,$s2,Next

12

16 bne $sl,$zero,Again
Next: 20

During execution, PC contains the address of current instruction (thus we add 1

Maximum branch limit is -21° to +215-1 instructions.
If immediate is positive => Forward Jump

If iImmediate is negative => Backward Jump

Forward Jump

During assembly:
Immediate=(Next-(PC+4))/4=(20-12)/4=2
During execution:
PC=PC+4*(immediate+1)=8+4*(3)=20

Backward Jump

During assembly:
Immediate=(Again-(PC+4))/4=(4-20)/4=-4
During execution:
PC=PC+4*(immediate+1)=16+4*(-3)=4

slide 36

Summary of RISC Design

¢ All instructions are of the same size
¢ Few instruction formats
* General purpose registers for data and memory addresses

“* Memory access only via load and store instructions

<> Load and store: bytes, half words, and words

* Few simple addressing modes

slide 37

