
Control Flow and Arrays

Computer Architecture

Riad Bourbia

Computer Sciences department

Guelma University

[Adapted from slides of Dr. Mudawar, & El-maleh]

Control Flow and Arrays COE 301 – KFUPM slide 2

Presentation Outline

 Control Flow: Branch and Jump Instructions

 Translating If Statements and Boolean Expressions

 Arrays

 Load and Store Instructions

 Translating Loops and Traversing Arrays

 Addressing Modes

Control Flow and Arrays COE 301 – KFUPM slide 3

Control Flow

 High-level programming languages provide constructs:

 To make decisions in a program: IF-ELSE

 To repeat the execution of a sequence of instructions: LOOP

 The ability to make decisions and repeat a sequence of

instructions distinguishes a computer from a calculator

 All computer architectures provide control flow instructions

 Essential for making decisions and repetitions

 These are the conditional branch and jump instructions

Control Flow and Arrays COE 301 – KFUPM slide 4

 MIPS compare and branch instructions:

beq Rs, Rt, label if (Rs == Rt) branch to label

bne Rs, Rt, label if (Rs != Rt) branch to label

 MIPS compare to zero & branch instructions:

Compare to zero is used frequently and implemented efficiently

bltz Rs, label if (Rs < 0) branch to label

bgtz Rs, label if (Rs > 0) branch to label

blez Rs, label if (Rs <= 0) branch to label

bgez Rs, label if (Rs >= 0) branch to label

 beqz and bnez are defined as pseudo-instructions.

MIPS Conditional Branch Instructions

Control Flow and Arrays COE 301 – KFUPM slide 5

Branch Instruction Format

 The branch instructions modify the PC register only

 PC-Relative addressing:

If (branch is taken) PC = PC + 4 + 4×offset else PC = PC+4

 Branch Instructions are of the I-type Format:

Op6 Rs5 Rt5 16-bit offset

Instruction I-Type Format

beq Rs, Rt, label Op = 4 Rs Rt 16-bit Offset

bne Rs, Rt, label Op = 5 Rs Rt 16-bit Offset

blez Rs, label Op = 6 Rs 0 16-bit Offset

bgtz Rs, label Op = 7 Rs 0 16-bit Offset

bltz Rs, label Op = 1 Rs 0 16-bit Offset

bgez Rs, label Op = 1 Rs 1 16-bit Offset

Control Flow and Arrays COE 301 – KFUPM slide 6

Unconditional Jump Instruction

 The unconditional Jump instruction has the following syntax:

j label # jump to label

. . .

label:

 The jump instruction is always taken

 The Jump instruction is of the J-type format:

 The jump instruction modifies the program counter PC:

 The upper 4 bits of the PC are unchanged

Op6 = 2 26-bit address

26-bit address 00PC4

multiple

of 4

Control Flow and Arrays COE 301 – KFUPM slide 7

Translating an IF Statement

 Consider the following IF statement:

if (a == b) c = d + e; else c = d – e;

Given that a, b, c, d, e are in $t0 … $t4 respectively

 How to translate the above IF statement?

bne $t0, $t1, else

addu $t2, $t3, $t4

j next

else: subu $t2, $t3, $t4

next: . . .

Control Flow and Arrays COE 301 – KFUPM slide 8

Logical AND Expression

 Programming languages use short-circuit evaluation

 If first condition is false, second condition is skipped

if (($t1 > 0) && ($t2 < 0)) {$t3++;}

One Possible Translation ...

bgtz $t1, L1 # first condition

j next # skip if false

L1: bltz $t2, L2 # second condition

j next # skip if false

L2: addiu $t3, $t3, 1 # both are true

next:

Control Flow and Arrays COE 301 – KFUPM slide 9

Better Translation of Logical AND

Allow the program to fall through to second condition

!($t1 > 0) is equivalent to ($t1 <= 0)

!($t2 < 0) is equivalent to ($t2 >= 0)

Number of instructions is reduced from 5 to 3

if (($t1 > 0) && ($t2 < 0)) {$t3++;}

Better Translation ...

blez $t1, next # 1st condition false?

bgez $t2, next # 2nd condition false?

addiu $t3, $t3, 1 # both are true

next:

Control Flow and Arrays COE 301 – KFUPM slide 10

Logical OR Expression

 Short-circuit evaluation for logical OR

 If first condition is true, second condition is skipped

 Use fall-through to keep the code as short as possible

bgtz $t1, L1 # 1st condition true?

bgez $t2, next # 2nd condition false?

L1: addiu $t3, $t3, 1 # increment $t3

next:

if (($t1 > 0) || ($t2 < 0)) {$t3++;}

Control Flow and Arrays COE 301 – KFUPM slide 11

Compare Instructions

MIPS also provides set less than instructions

slt Rd, Rs, Rt if (Rs < Rt) Rd = 1 else Rd = 0

sltu Rd, Rs, Rt unsigned <

slti Rt, Rs, imm if (Rs < imm) Rt = 1 else Rt = 0

sltiu Rt, Rs, imm unsigned <

 Signed / Unsigned comparisons compute different results

Given that: $t0 = 1 and $t1 = -1 = 0xffffffff

slt $t2, $t0, $t1 computes $t2 = 0

sltu $t2, $t0, $t1 computes $t2 = 1

Control Flow and Arrays COE 301 – KFUPM slide 12

Compare Instruction Formats

 The other comparisons are defined as pseudo-instructions:

seq, sne, sgt, sgtu, sle, sleu, sge, sgeu

Instruction Meaning Format

slt Rd, Rs, Rt Rd=(Rs <s Rt)?1:0 Op=0 Rs Rt Rd 0 0x2a

sltu Rd, Rs, Rt Rd=(Rs <u Rt)?1:0 Op=0 Rs Rt Rd 0 0x2b

slti Rt, Rs, im Rt=(Rs <s im)?1:0 0xa Rs Rt 16-bit immediate

sltiu Rt, Rs, im Rt=(Rs <u im)?1:0 0xb Rs Rt 16-bit immediate

Pseudo-Instruction Equivalent MIPS Instructions

sgt $t2, $t0, $t1

seq $t2, $t0, $t1
subu $t2, $t0, $t1

sltiu $t2, $t2, 1

slt $t2, $t1, $t0

Control Flow and Arrays COE 301 – KFUPM slide 13

Pseudo-Branch Instructions

 MIPS hardware does NOT provide the following instructions:

blt, bltu branch if less than (signed / unsigned)

ble, bleu branch if less or equal (signed / unsigned)

bgt, bgtu branch if greater than (signed / unsigned)

bge, bgeu branch if greater or equal (signed / unsigned)

MIPS assembler defines them as pseudo-instructions:

Pseudo-Instruction Equivalent MIPS Instructions

blt $t0, $t1, label

ble $t0, $t1, label

$at ($1) is the assembler temporary register

slt $at, $t0, $t1
bne $at, $zero, label

slt $at, $t1, $t0
beq $at, $zero, label

Control Flow and Arrays COE 301 – KFUPM slide 14

Using Pseudo-Branch Instructions

 Translate the IF statement to assembly language

 $t1 and $t2 values are unsigned

 $t3, $t4, and $t5 values are signed

bgtu $t1, $t2, L1

move $t3, $t4

L1:

if($t1 <= $t2) {

$t3 = $t4;

}

if (($t3 <= $t4) &&

($t4 >= $t5)) {

$t3 = $t4 + $t5;

}

bgt $t3, $t4, L1

blt $t4, $t5, L1

addu $t3, $t4, $t5

L1:

Control Flow and Arrays COE 301 – KFUPM slide 15

Conditional Move Instructions

 Conditional move can eliminate branch & jump instructions

Instruction Meaning R-Type Format

movz Rd, Rs, Rt if (Rt==0) Rd=Rs Op=0 Rs Rt Rd 0 0xa

movn Rd, Rs, Rt if (Rt!=0) Rd=Rs Op=0 Rs Rt Rd 0 0xb

if ($t0 == 0) {$t1=$t2+$t3;} else {$t1=$t2-$t3;}

bne $t0, $0, L1

addu $t1, $t2, $t3

j L2

L1: subu $t1, $t2, $t3

L2: . . .

addu $t1, $t2, $t3

subu $t4, $t2, $t3

movn $t1, $t4, $t0

. . .

Control Flow and Arrays COE 301 – KFUPM slide 16

Next . . .

 Control Flow: Branch and Jump Instructions

 Translating If Statements and Boolean Expressions

 Arrays

 Load and Store Instructions

 Translating Loops and Traversing Arrays

 Addressing Modes

Control Flow and Arrays COE 301 – KFUPM slide 17

Arrays

 In a high-level programming language, an array is a

homogeneous data structure with the following properties:

 All array elements are of the same type and size

 Once an array is allocated, its size cannot be modified

 The base address is the address of the first array element

 The array elements can be indexed

 The address of any array element can be computed

 In assembly language, an array is just a block of memory

 In fact, all objects are simply blocks of memory

 The memory block can be allocated statically or dynamically

Control Flow and Arrays COE 301 – KFUPM slide 18

Static Array Allocation

 An array can be allocated statically in the data segment

 A data definition statement allocates static memory:

label: .type value0 [, value1 ...]

label: is the name of the array

.type directive specifies the size of each array element

value0, value1 ... specify a list of initial values

 Examples of static array definitions:

arr1: .half 20, -1 # array of 2 half words

arr2: .word 1:5 # array of 5 words (value=1)

arr3: .space 20 # array of 20 bytes

str1: .asciiz "Null-terminated string"

Control Flow and Arrays COE 301 – KFUPM slide 19

Watching Values in the Data Segment

 The labels window is the symbol table

 Shows labels and corresponding addresses

 The la pseudo-instruction loads the address

of any label into a register

Control Flow and Arrays COE 301 – KFUPM slide 20

Dynamic Memory Allocation

 One of the functions of the OS is to manage memory

 A program can allocate memory on the heap at runtime

 The heap is part of the data segment that can grow at runtime

 The program makes a system call ($v0=9) to allocate memory

.text

. . .

li $a0, 100 # $a0 = number of bytes to allocate

li $v0, 9 # system call 9

syscall # allocate 100 bytes on the heap

move $t0, $v0 # $t0 = address of allocated block

. . .

Control Flow and Arrays COE 301 – KFUPM slide 21

Allocating Dynamic Memory on the Heap

Stack Segment

Heap Area

Static Area

Data Segment

0x00000000
Reserved

0x10000000

Text Segment

0x7fffffff

0x00400000

0x10040000

Control Flow and Arrays COE 301 – KFUPM slide 22

Computing the Addresses of Elements

 In a high-level programming language, an array is indexed

array[0] is the first element in the array

array[i] is the element at index i

&array[i] is the address of the element at index i

&array[i] = &array + i × element_size

 For a 2D array, the array is stored linearly in memory

matrix[Rows][Cols] has (Rows × Cols) elements

&matrix[i][j] = &matrix + (i×Cols + j) × element_size

 For example, to allocate a matrix[10][20] of integers:

matrix: .word 0:200 # 200 words (initialized to 0)

&matrix[1][5] = &matrix + (1×20 + 5)×4 = &matrix + 100

Control Flow and Arrays COE 301 – KFUPM slide 23

Element Addresses in a 2D Array

&matrix[i][j] = &matrix + (i×COLS + j) × Element_size

0

1

…

i

…

ROWS-1

0 1 … j … COLS-1

COLS

R
O
W
S

Address calculation is essential when programming in assembly

Control Flow and Arrays COE 301 – KFUPM slide 24

Load and Store Instructions

 Instructions that transfer data between memory & registers

 Programs include variables such as arrays and objects

 These variables are stored in memory

 Load Instruction:

 Transfers data from memory to a register

 Store Instruction:

 Transfers data from a register to memory

Memory address must be specified by load and store

MemoryRegisters

load

store

Control Flow and Arrays COE 301 – KFUPM slide 25

 Load Word Instruction (Word = 4 bytes in MIPS)

lw Rt, imm(Rs) # Rt MEMORY[Rs+imm]

 Store Word Instruction

sw Rt, imm(Rs) # Rt MEMORY[Rs+imm]

 Base / Displacement addressing is used

Memory Address = Rs (base) + Immediate (displacement)

 Immediate16 is sign-extended to have a signed displacement

Load and Store Word

Op6 Rs5 Rt5 immediate16

Base or Displacement Addressing

Memory Word

Base address

+

Control Flow and Arrays COE 301 – KFUPM slide 26

Example on Load & Store
 Translate: A[1] = A[2] + 5 (A is an array of words)

 Given that the address of array A is stored in register $t0

lw $t1, 8($t0) # $t1 = A[2]

addiu $t2, $t1, 5 # $t2 = A[2] + 5

sw $t2, 4($t0) # A[1] = $t2

 Index of A[2] and A[1] should be multiplied by 4. Why?

Registers

sw

lw

Memory

A[2]

A[1]

A[3]

. . .

. . .

&A + 12

&A + 8

&A + 4

&A

$t0

$t1

$t2

&A

A[2]

A[2] + 5

. . .

. . . A[0]

Control Flow and Arrays COE 301 – KFUPM slide 27

0 0

s s s

s s

0 0

s

bu

b

h

hu

sign – extend

zero – extend

sign – extend

zero – extend

32-bit Register

 The MIPS processor supports the following data formats:

Byte = 8 bits, Half word = 16 bits, Word = 32 bits

 Load & store instructions for bytes and half words

 lb = load byte, lbu = load byte unsigned, sb = store byte

 lh = load half, lhu = load half unsigned, sh = store halfword

 Load expands a memory value to fit into a 32-bit register

 Store reduces a 32-bit register value to fit in memory

Load and Store Byte and Halfword

Control Flow and Arrays COE 301 – KFUPM slide 28

Load and Store Instructions

Instruction Meaning I-Type Format

lb Rt, imm(Rs) Rt 1 MEM[Rs+imm] 0x20 Rs Rt 16-bit immediate

lh Rt, imm(Rs) Rt 2 MEM[Rs+imm] 0x21 Rs Rt 16-bit immediate

lw Rt, imm(Rs) Rt 4 MEM[Rs+imm] 0x23 Rs Rt 16-bit immediate

lbu Rt, imm(Rs) Rt 1 MEM[Rs+imm] 0x24 Rs Rt 16-bit immediate

lhu Rt, imm(Rs) Rt 2 MEM[Rs+imm] 0x25 Rs Rt 16-bit immediate

sb Rt, imm(Rs) Rt 1 MEM[Rs+imm] 0x28 Rs Rt 16-bit immediate

sh Rt, imm(Rs) Rt 2 MEM[Rs+imm] 0x29 Rs Rt 16-bit immediate

sw Rt, imm(Rs) Rt 4 MEM[Rs+imm] 0x2b Rs Rt 16-bit immediate

 Base / Displacement Addressing is used

 Memory Address = Rs (Base) + Immediate (displacement)

 If Rs is $zero then Address = Immediate (absolute)

 If Immediate is 0 then Address = Rs (register indirect)

Control Flow and Arrays COE 301 – KFUPM slide 29

Next . . .

 Control Flow: Branch and Jump Instructions

 Translating If Statements and Boolean Expressions

 Arrays

 Load and Store Instructions

 Translating Loops and Traversing Arrays

 Addressing Modes

Control Flow and Arrays COE 301 – KFUPM slide 30

Translating a WHILE Loop

 Consider the following WHILE loop:

i = 0; while (A[i] != value && i<n) i++;

Where A is an array of integers (4 bytes per element)

 Translate WHILE loop: $a0 = &A, $a1 = n, and $a2 = value

&A[i] = &A + i*4 = &A[i-1] + 4

li $t0, 0 # $t0 = i = 0

loop: lw $t1, 0($a0) # $t1 = A[i]

beq $t1, $a2, done # (A[i] == value)?

beq $t0, $a1, done # (i == n)?

addiu $t0, $t0, 1 # i++

addiu $a0, $a0, 4 # $a0 = &A[i]

j loop # jump backwards to loop

done: . . .

Control Flow and Arrays COE 301 – KFUPM slide 31

Copying a String

loop:

lb $t0, 0($a1) # load byte: $t0 = source[i]

sb $t0, 0($a0) # store byte: target[i]= $t0

addiu $a0, $a0, 1 # $a0 = &target[i]

addiu $a1, $a1, 1 # $a1 = &source[i]

bnez $t0, loop # loop until NULL char

A string in C is an array of chars terminated with null char

i = 0;

do { ch = source[i]; target[i] = ch; i++; }

while (ch != '\0');

Given that: $a0 = &target and $a1 = &source

Control Flow and Arrays COE 301 – KFUPM slide 32

Initializing a Column of a Matrix

M = new int[10][5]; // allocate M on the heap

int i;

for (i=0; i<10; i++) { M[i][3] = i; }

&M[i][3] = &M + (i*5 + 3) * 4 = &M + i*20 + 12

li $a0, 200 # $a0 = 10*5*4 = 200 bytes

li $v0, 9 # system call 9

syscall # allocate 200 bytes

move $t0, $v0 # $t0 = &M

li $t1, 0 # $t1 = i = 0

li $t2, 10 # $t2 = 10

L: sw $t1, 12($t0) # store M[i][3] = i

addiu $t1, $t1, 1 # i++

addiu $t0, $t0, 20 # $t0 = &M[i][3]

bne $t1, $t2, L # if (i != 10) loop back

Control Flow and Arrays COE 301 – KFUPM slide 33

Addressing Modes

Op6 Rs5 Rt5 16-bit immediate

Base / Displacement Addressing

Word

Memory Addressing (load/store)

Register = Base address

+ HalfwordByte

Op6 Rs5 Rt5 16-bit immediate

Immediate Addressing

One Operand is a constant

Op6 Rs5 Rt5 Rd5 funct6sa5

Register Addressing

Register

Operands are in registers

Where are the operands?

 How memory addresses are computed?

Control Flow and Arrays COE 301 – KFUPM slide 34

Branch / Jump Addressing Modes

Used by branch (beq, bne, …)

Word = Target Instruction

Op6 Rs5 Rt5 16-bit Offset

PC-Relative Addressing

PC30 00

+1

Branch Target Address

PC = PC + 4 × (1 + Offset)
PC30 + Offset16 + 1 00

26-bit addressPC4 00Jump Target Address

Word = Target Instruction

26-bit addressOp6

Pseudo-direct Addressing

PC30

:

00

Used by jump instruction

Control Flow and Arrays COE 301 – KFUPM slide 35

Jump and Branch Limits

 Jump Address Boundary = 226 instructions = 256 MB

 Text segment cannot exceed 226 instructions or 256 MB

 Upper 4 bits of PC are unchanged

 Branch Address Boundary

 Branch instructions use I-Type format (16-bit immediate constant)

 PC-relative addressing:

 Target instruction address = PC + 4×(1 + immediate16)

 During assembly: immediate=(Target address – (PC+4))/4, where PC

contains address of current instruction

immediate26PC4 00Target Instruction Address

PC30 + immediate16 + 1 00

Control Flow and Arrays COE 301 – KFUPM slide 36

Jump and Branch Limits

 During execution, PC contains the address of current instruction (thus we add 1

to immediate16).

 Maximum branch limit is -215 to +215-1 instructions.

 If immediate is positive => Forward Jump

 If immediate is negative => Backward Jump

 Example

0

Again:4

8 beq $s1,$s2,Next

12

16 bne $s1,$zero,Again

Next: 20

Forward Jump

During assembly:

Immediate=(Next-(PC+4))/4=(20-12)/4=2

During execution:

PC=PC+4*(immediate+1)=8+4*(3)=20

Backward Jump

During assembly:

Immediate=(Again-(PC+4))/4=(4-20)/4=-4

During execution:

PC=PC+4*(immediate+1)=16+4*(-3)=4

Control Flow and Arrays COE 301 – KFUPM slide 37

Summary of RISC Design

 All instructions are of the same size

 Few instruction formats

 General purpose registers for data and memory addresses

Memory access only via load and store instructions

 Load and store: bytes, half words, and words

 Few simple addressing modes

