Department of Mathematics

Second year level

Sheet2 : Sequences and Series of Functions

<u>EXERCICE</u> 1.Let $(f_n)_n$ be the sequence of functions defined on \mathbb{R}_+ by

$$\forall n \in \mathbb{N}^*, \ \forall x \in \mathbb{R}_+, \quad f_n(x) = (x^2 + 1)e^{-x}\frac{nx}{nx+1}$$

- (1) Calculate $f_n(0)$, then show that $(f_n)_n$ converges on \mathbb{R}_+ to a function f that we will determine.
- (2) Is the convergence of $(f_n)_n$ to f uniform on \mathbb{R}_+ ?
- (3) For all $x \neq 0$, calculate $f(x) f_n(x)$. Deduce that, $\forall a > 0$, and $\forall x > a$, we have

$$0 \le f(x) - f_n(x) \le \frac{f(x)}{(na+1)}$$

(4) Let $g_n(x) = \frac{f(x)}{(na+1)}$, calculate $g'_n(x)$, then show the uniform convergence of f_n towards f on \mathbb{R}^*_+

(5) Calculate $\lim_{n \to \infty} \int_a^1 f_n(x) dx$ where $a \in [0, 1[$.

<u>EXERCICE</u> 2.Let $(f_n)_{n \in \mathbb{N}^*}$ be the sequence of functions defined on [0, 1] by

$$f_n(x) = \begin{cases} n^2 x (1 - nx) & \text{if } x \in [0, \frac{1}{n}] \\ 0 & \text{if } x \in \left[\frac{1}{n}, 1 \right]. \end{cases}$$

- (1) Calculate the limit of the sequence (f_n) .
- (2) Calculate $\int_{1}^{0} f_n(t) dt$. Is there uniform convergence on [0, 1]?
- (3) Study the uniform convergence on [a, 1] for $a \in [0, 1]$.

 $\underline{\mathcal{EXERCICE}}$ 3. We consider the sequence of functions $f_n: [0,1] \to \mathbb{R}$ defined by

$$f_n(x) = \frac{ne^x}{n+x}$$

- (c.1): Determine the simple limit of f_n . Is there uniform convergence?
- (c.2): Determine $\lim_{n \to \infty} \int_0^1 f_n(x) dx$.

 $\underline{\mathcal{EXERCICE}}$ 4. For all integer $n \ge 1$ and all $x \in \mathbb{R}^+$, we put

$$f_n(x) = x^2 e^{-nx}$$
 and $g_n(x) = \int_0^x f_n(t) dt = \int_0^x t^2 e^{-nt} dt.$

- (1) Calculate $f'_n(x)$ and $\sup_{x \in \mathbb{R}} |f_n(x)|$, then show that the series of functions $\sum_{n \ge 1} f_n(x)$ is normally convergent on \mathbb{R}^+ .
- (2) Let $f(x) = \sum_{n \ge 1} f_n(x)$. Show that f is continuous on \mathbb{R}^+ and show that its sum $f(x) = \frac{x^2}{e^x 1}$. (Indication : use the sum of a geometric series).
- (3) Using two integrations by parts, show that

$$g_n(x) = -\left(\frac{x^2}{n} + \frac{2x}{n^2}\right)e^{-nx} + \frac{2}{n^3}\left(1 - e^{-nx}\right), \text{ for } x > 0.$$

(4) Show that $|g_n(x)| \le \frac{6}{n^3}$ (We can use the fact that $\frac{p!}{n^p} \ge x^p e^{-nx}$ for all integer $p \ge 0$ and all $x \in \mathbb{R}^+$).

- (5) Deduce that the series of functions $\sum_{n\geq 1} g_n(x)$ is normally convergent on \mathbb{R}^+ .
- (6) Let $g(x) = \sum_{n>1} g_n(x)$. Calculate $\lim_{x \to +\infty} g_n(x)$. Express $\lim_{x \to +\infty} g(x)$ as a sum of series.

(7) Show that $g(x) = \int_0^x f(t)dt$. Deduce the following identity : $\int_0^{+\infty} \frac{t^2}{e^t - 1}dt = 2\sum_{n \ge 1} \frac{1}{n^3}$.